博舍

医学领域的人工智能 人工智能常见问题包括

医学领域的人工智能

医学领域的人工智能是使用机器学习模型搜索医疗数据,发现洞察,从而帮助改善健康状况和患者体验。得益于近年来计算机科学和信息技术的发展,人工智能(AI)正迅速成为现代医学中不可或缺的一部分。由人工智能支持的人工智能算法和其他应用程序正在为临床和研究领域的医学专业人员提供支持。

目前,人工智能在医学领域中最常见的职责是临床决策支持和医学影像分析。临床决策支持工具可让医疗服务提供方快速访问与其患者相关的信息或研究,从而帮助他们制定有关治疗、用药、心理健康和其他患者需求方面的决策。在医学影像方面,人工智能工具可用于分析CT扫描、X射线、核磁共振影像以及其他影像,以找出人类放射科医师可能会错过的病变或其他检查结果。

新冠病毒疫情为众多医疗系统带来严峻挑战,而这也促使全球许多医疗卫生组织开始实地测试人工智能支持的新兴技术,比如旨在帮助监视患者的算法以及用于筛查新冠患者的基于人工智能的工具。

这些测试的研究和结果仍在收集过程中,且有关在医学领域应用人工智能的总体标准仍在制定过程中。但人工智能已经让越来越多的临床医生、研究人员以及他们所服务的患者从中受益。在这个角度来说,人工智能无疑将成为数字化医疗卫生系统的核心,为现代医学的形成和发展提供支持。

人工智能的常用十种算法

1.决策树

根据一些feature进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

2.随机森林

视频

在源数据中随机选取数据,组成几个子集

S矩阵是源数据,有1-N条数据,ABC是feature,最后一列C是类别

由S随机生成M个子矩阵

这M个子集得到M个决策树

将新数据投入到这M个树中,得到M个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果

3.逻辑回归

视频

当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

所以此时需要这样的形状的模型会比较好

那么怎么得到这样的模型呢?

这个模型需要满足两个条件大于等于0,小于等于1大于等于0的模型可以选择绝对值,平方值,这里用指数函数,一定大于0小于等于1用除法,分子是自己,分母是自身加上1,那一定是小于1的了

再做一下变形,就得到了logisticregression模型

通过源数据计算可以得到相应的系数了

最后得到logistic的图形

4.SVM

视频

supportvectormachine

要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1

点到面的距离根据图中的公式计算

所以得到totalmargin的表达式如下,目标是最大化这个margin,就需要最小化分母,于是变成了一个优化问题

举个栗子,三个点,找到最优的超平面,定义了weightvector=(2,3)-(1,1)

得到weightvector为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出a和截矩w0的值,进而得到超平面的表达式。

a求出来后,代入(a,2a)得到的就是supportvector

a和w0代入超平面的方程就是supportvectormachine

5.朴素贝叶斯

视频

举个在NLP的应用

给一段文字,返回情感分类,这段文字的态度是positive,还是negative

为了解决这个问题,可以只看其中的一些单词

这段文字,将仅由一些单词和它们的计数代表

原始问题是:给你一句话,它属于哪一类

通过bayesrules变成一个比较简单容易求得的问题

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率

栗子:单词love在positive的情况下出现的概率是0.1,在negative的情况下出现的概率是0.001

6.K最近邻

视频

knearestneighbours

给一个新的数据时,离它最近的k个点中,哪个类别多,这个数据就属于哪一类

栗子:要区分猫和狗,通过claws和sound两个feature来判断的话,圆形和三角形是已知分类的了,那么这个star代表的是哪一类呢

k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫

7.K均值

视频

想要将一组数据,分为三类,粉色数值大,黄色数值小最开心先初始化,这里面选了最简单的3,2,1作为各类的初始值剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别

分好类后,计算每一类的平均值,作为新一轮的中心点

几轮之后,分组不再变化了,就可以停止了

8.Adaboost

视频

adaboost是bosting的方法之一

bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。

下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度

adaboost的栗子,手写识别中,在画板上可以抓取到很多features,例如始点的方向,始点和终点的距离等等

training的时候,会得到每个feature的weight,例如2和3的开头部分很像,这个feature对分类起到的作用很小,它的权重也就会较小

而这个alpha角就具有很强的识别性,这个feature的权重就会较大,最后的预测结果是综合考虑这些feature的结果

9.神经网络

视频

NeuralNetworks适合一个input可能落入至少两个类别里

NN由若干层神经元,和它们之间的联系组成第一层是input层,最后一层是output层

在hidden层和output层都有自己的classifier

input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class1

同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights和bias

这也就是forwardpropagation

10.马尔可夫

视频

MarkovChains由state和transitions组成

栗子,根据这一句话‘thequickbrownfoxjumpsoverthelazydog’,要得到markovchain

步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如the后面可以连接的单词,及相应的概率

生活中,键盘输入法的备选结果也是一样的原理,模型会更高级

原文出自:https://www.imooc.com/article/32691

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇