追寻文学审美——人工智能对文学的影响
从应用的角度来看,人工智能助手在我们的生活中将发挥越来越重要的作用,诚如美国人工智能研究专家卢克·多梅尔在其《人工智能》一书中所列举的。美国斯坦福大学实验室的实验表明,“一个能够根据人类用户做运动时间长短而增加或减少体重的人性化卡通人工智能,能够敦促人类用户去健身房锻炼并养成健康的饮食习惯。”
同时,人工智能对人类文学生活的影响也在与日俱增。人工智能不仅可以为人类提供用智能程序定制的文学,还可以按照用户的需要,生产各种各样的文体,以满足人类的文学需求。2017年5月,由人工智能创造的诗集《阳光失了玻璃窗》在中国出版,其中有这样的诗句:“树影压在秋天的报纸上/中间隔着一片梦幻的海洋/我凝视着一池湖水的天空。”如此富有想象力的诗句,简直可与人类创作的诗句相媲美。人工智能(AI)在文学创作中的应用,不只体现在AI创作诗歌,还体现在AI编剧,AI写小说。
当人工智能介入我们的文学生活后,人与人的交互就转变为人与机器的交互,这种交互伴随着中国老龄化人口社会的到来,伴随着空巢老人数量的不断增长,正日益逼近我们的生活。
文学生活本应是审美化、无功利化的,但这一点在人类社会无法真正实现,因为人类的文学生活掺杂了太多的功利性因素,从文学作品的创作、阅读、传播到消费,都充斥着个人的或意识形态的欲望。比如西方中世纪长达一千年的历史,按照约翰·德林瓦特在《世界文学史》中的观察,“欧洲成了连绵战争、瘟疫、饥荒的场所,普通人只能依靠逐渐增强的教会的权力来抵抗贵族和封建领主的残酷暴政。在这样一个前所未有的混乱时代,文学是不可能产生的。”当然,人们的文学生活也就无从谈起。不难看出,人类的文学生活不断受到来自文学之外的各种因素的影响,很难保持纯粹的审美特性。
虽然有人指出了人工智能的诸多缺陷,如徐肖楠所提到的,“人工智能机器对于写作活动和阅读活动本身是没有感受的”,“人工智能在写作时并不知道自己在做什么,并没有写作者的写作体验”,“人工智能在写作时也并不知道阅读者会发生什么体验,它只会根据阅读者发生阅读反应之后的数据去设计作品,并没有对阅读过程和阅读快感的反应与理解”,等等。此类观点就现阶段的人工智能发展水平而言,也许是正确的,但并不能说明未来的人工智能发展水平。借助人工智能,人类也许能够重返文学生活的游戏化状态,无功利的审美状态。
(作者系中国劳动关系学院教授)
人工智能技术在文化产业中的应用与影响研究
摘要:人工智能技术的发展为文化产业提供了诸多应用性机遇;其中一些关键性技术点与文化产业相结合,可以实现文化内容产生、创意资讯传播以及文化市场管理方面的创新。本文拟从几种主要的人工智能技术出发,介绍在技术与产业相结合过程中形成的代表性应用,同时探讨分析目前的人工智能应用带来的“信息茧房”“机器歧视”等社会问题,从而为我国文化产业发展提供相应的经验。
关键词:人工智能;文化产业;算法公平;信息茧房
人工智能(ArtificialIntelligence,AI)本质上是对人的意识与思维的信息过程的模拟,是指使用机器代替人类完成认知、识别、分析和决策等功能。在《人工智能:一个现代路径》[STUARTJ.RUSSELL&PETERNORVIG,ARTIFICIALINTELLIGENCE:AMODERNAPPROACH1034(3ded.2010),supranote7,at4.]一书中,“人工智能”被定义为:行为是为了获得最好的结果,或者在不确定的情况下,获得期待的最好结果,这是一种“理性行为”选择。在过去的十余年中,人工智能技术在以深度学习为代表的机器学习、语音识别、自然语言生成与处理、计算机视觉等领域取得不少成果,引得全球广泛关注。
世界各国都在积极部署关于人工智能的战略规划,2016年10月,美国和英国双双出台国家人工智能战略。就我国而言,2017年,国务院印发《新一代人工智能发展规划》,其中提出到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元[国务院:新一代人工智能发展规划[J].重庆与世界,2018(02):5-17.]。
基于此,本文重点关注人工智能技术在文化产业――即新闻出版、发行、广播电视、电影、文化艺术、文化信息传输、广告服务和文化休闲娱乐等领域中的应用现状、存在的问题及对策,从而为我国文化产业发展提供可借鉴思路。
一、人工智能的主要技术类型与文化产业中的典型性应用
在美联社于2017年发布的《人工智能工作手册》中,人工智能在新闻业应用最频繁的技术主要有5类,包括机器学习、自然语言技处理术、语音识别技术、机器视觉和机器人技术[余婷,陈实.人工智能在美国新闻业的应用及影响[J].新闻记者,2018(04):33-42.]。在整个文化产业当中,目前应用最为广泛的技术类型是以深度学习为代表的机器学习,其他4类技术类型也均有不少应用落地。
通过上表可知,人工智能中的虚拟代理、机器人自动化、机器学习、深度学习、生物与语音识别、自然语言生成与处理(NLP)、硬件优化与决策管理等技术可以与文化产业中的信息采集、内容生产、信息传播和受众管理等有效结合,提供诸如内容个性化算法、受众目标与偏好识别、自动新闻内容生产等方面的服务,也可以提供在客户管理与市场调研方面的有力手段。
目前,国外一些先进的文化媒体机构对于上述技术的应用已经形成一定的有益经验与有效做法。
首先,在内容生产中,人工智能可以实现自动写作与自动摘要、抽取式新闻写作,并试图使机器像人类一样阅读与思考。
美联社是最早运用AI技术进行自动化写作的媒体之一。2014年,美联社与美国AutomatedInsights公司合作,使用该公司开发的自动化写稿程序Wordsmith来自动编发企业财报新闻。该程序几分钟内可写出150-300字的快讯,每季度能生产4000篇财报新闻,是过去数量的10倍。2015年之后,国内腾讯新闻、新华社和今日头条等也陆续推出了写稿机器人。
其次,在信源数据收集中,人工智能可以基于传根器应用生成内容,实现信息传播的可视化追踪。
NewsTracer是路透社使用的新闻追踪系统,这一系统每天可以对5亿条Twitter信息进行分析,从假新闻、广告和杂音,以及众多的人名、机构和地点中找到真的新闻事件与线索,这让记者能够从社交媒体的众多信息中脱身,把更重要的时间用来挖掘故事。
第三,在文化创意视频类服务中,人工智能可以实现文本和视频之间的转换、高效寻找视频片段与资源以及优化视频内容搜索等。
Zorroa是美国的一家视觉资产管理公司,2017年,公司推出企业可视化智能平台(EVI),帮助用户对大型数据库中的可视资产进行搜索和运行分析。在与索尼影业的合作中,EVI通过面部识别、图像分类、机器学习等方式整理、分析了索尼多年来积累的数百万小时的视觉资产。使用该平台后,平时需要27小时才能搜索到的特定视频资源,仅需3分钟即可检索到,为索尼影业的视频资源开发带来极大的便利[https://zorroa.com/case-studies/]。
第四,在文化信息传播中,人工智能可以通过受众的好奇点与文化传媒内容进行匹配、通过信号源获取受众的兴趣点,并且精准分析受众,预测其内容消费需求,实现精准投放。
Netflix是在用户个性化分发业务上较为成熟的视频网站。2016年年报显示,Netflix拥有9300万全球会员,每天流媒体播放超过1.25亿小时的电视节目和电影。预测用户想要观看的内容是其公司业务模式的关键部分。2016年,Netflix开发名为Meson的应用程序,构建、培训和验证个性化算法,提供视频推荐建议。类似的企业还有IRIS.TV等,该公司曾在三个月的时间内运用个性化分发,将其客户所在公司的观众存留率提高了50%[https://www.techemergence.com/ai-in-movies-entertainment-visual-media/]。
最后,在市场调研与客户管理方面,人工智能可以获知受众对内容消费的使用特点、通过深度神经网络技术来感知受众对文化内容的情感参与和变化,从而进行有效的客户管理与市场营销。
2016年,日本广告公司MaCannEricksonJapan聘用了全球第一个使用人工智能开发的机器人创意总监AI-CD?。当年9月,机器人创意总监与人类创意总监以同一个广告主题各自开发了10分钟的广告片,并交由全国民意调查评判。尽管人类创意总监以8%的微弱优势险胜,AI在受众分析与市场营销方面的潜力不容小觑。
可见,人工智能已经显著改变了媒体格局――包括观众发现和参与内容的方式,以及内容创建和分发给观众的方式。目前,算法不仅会影响受众在不同平台上看到的内容,还会首先影响平台生产和创建的内容。人工智能从根本上改变了受众行为和创作过程。
二、人工智能应用对文化产业发展的影响与启示
尽管统计显示,就目前的全球文化产业而言,仅有8%的文化企业已经部署并使用了人工智能技术应用[https://www.ibc.org/tech-advances/the-future-is-artificial-ai-adoption-in-broadcast-and-media/2549.article],但人工智能技术对文化产业乃至整个社会的影响已经有所显露。
就其积极意义而言,人工智能技术在提高内容生产效率、提升用户留存率以及优化文化产业资产管理等方面存在重要意义、毋庸置疑的高效率和部分的不可替代性。而就其消极影响而言,内容分发的局限性开始受到社会关注;人工智能算法的公平化、透明化一度遭受质疑;算法带来的偏见与歧视又引发社会伦理问题;人工智能应用背后的商业力量或许是造成这一系列问题的原因之一……
不少科技界声名显赫的人物也因此表达了对人工智能未来发展的担忧,如特斯拉创始人埃隆・马斯克曾说:“我们应该十分小心地看待人工智能。我越来越倾向于认为,在国际或者国家层面上应当有相应的人工智能监管措施,以防人类做出不可挽回的事情来。”微软创始人比尔・盖茨、物理学家史蒂芬・霍金等也表达了类似的看法。未来人工智能应用将在何种程度上造福于人类,部分取决于今天我们在何种程度上理解并解决人工智能可能产生的问题与自有弊端。
具体而言,本文将从如下三方面阐述人工智能应用的问题、影响与对策:
(一)内容分发的局限性:“信息茧房”
如今的网络文化空间,从某种意义上说,是一个算法帮助公众做决定的环境。如果说曾经的传统媒体为公众搭建了一个“拟态环境”,不同的编辑部依托各自的编辑方针、新闻判断原则,以“议程设置”的方式决定着每日媒体内容的生产加工,那如今,在网络媒体中这一权力部分地转交给了算法。算法可以决定人们阅读哪些新闻,观看哪些视频,收到哪些广告,人们的数字存在(DigitalExistence)日益受到算法左右。
文化传媒企业使用算法决定内容推荐的初衷是在于解决信息过载的问题,提高用户获取信息的效率,更希望借此增加用户的沉浸时长,提高应用的用户忠诚度和留存率。因此,企业利用大数据主动搜集用户信息,根据用户自身兴趣,为用户定制个性化内容,形成一整套精确的内容分发模式。Facebook信息流产品Newsfeed、对话式新闻产品微软小冰和Quartz、今日头条以及Netflix、IRIS.TV等一系列人工智能应用均属于此类型。
这一初衷是好的,但问题出在“精确”上。信息越精确,代表着信息涉及的范围越狭窄。人工智能研究者已经发现,仅仅关注推荐系统的精确度远远不够,这会导致用户难以获取足够的信息增量,视野越来越狭隘。美国学者桑斯坦在其著作《信息乌托邦》[凯斯・R・桑斯坦.信息乌托邦:众人如何生产知识[M].法律出版社,2008:206-208.]中指出,人们借助网络平台和技术工具,在海量的信息中,完全根据自己的喜好定制报纸和杂志,进行一种完全个人化的阅读。在信息传播中,因公众自身的信息需求并非全方位的,公众只注意自己选择的东西和使自己愉悦的通讯领域,久而久之,会将自身桎梏于像蚕茧一般的“信息茧房”中。
学术界不少学者指出“信息茧房”问题的危害,将“信息茧房”与群体极化、证实性偏见等议题关联起来。学者陈昌凤认为,信息的个人化偏向容易产生詹姆斯・斯托纳(JamesStoner)1961年提出的群体极化现象,即团体成员从开始只是有某些偏向,通过协商、讨论,逐渐朝偏向的方向继续移动、形成极端的观点,甚至引发社会波动,如散播错误信息、形成极端性社会团体、公共理性批判缺失等[陈昌凤,张心蔚.信息个人化、信息偏向与技术性纠偏――新技术时代我们如何获取信息[J].新闻与写作,2017(08):42-45.]。与此同时,人们总是倾向于寻找、阅读自己认同的信息来佐证自己的认知,加深了信息的个人化偏向。对垂直细分领域内容的追逐,弱化了公共事务领域内容的传播,网络社会中传统媒体讲求的“社会公器”意义式微,一个对公共事务冷漠、毫无参与感与同理心的社会将会是“信息茧房”之下最极端也最为悲剧性的结局。
对此,文化传媒企业和公众这两个主体都需要采取一定的对策。对于文化企业而言,应当在推荐的精确度指标之外,加入新的算法推荐考量指标,如多样性、覆盖率、新颖性等;另外,有研究表明,基于关联规则的推荐方法要优于基于内容规则的推荐方法,更易为用户发掘新的兴趣点,现有的障碍在于关联规则难以抽取、耗时长[刘辉,郭梦梦,潘伟强.个性化推荐系统综述[J].常州大学学报(自然科学版),2017,29(03):51-59.]。
而对于公众而言,文化传媒企业设置算法推荐的初衷就有迎合用户喜好的意味,用户越是喜欢哪一类内容,平台就越是推荐哪一类内容。因此用户想要逃离“信息茧房”,第一个步骤就是反省自身,提升自身的媒介素养。平台可以帮助用户实现媒介素养提升,如每周发布用户阅读周报,告知用户在阅读中各类型信息的占比情况,提示用户哪一类信息了解匮乏等,起到一定的督促作用。
(二)从算法偏见到机器歧视――算法的公平与透明化困境
当我们在日常生活中的决策权部分地交给算法之后,我们本能地期待着一个更加公平、透明的环境。但是,一个不容忽视的问题是:算法或者机器真的能够做到公平、公正、不偏不倚吗?算法的规则是否本身就带有人类固有的偏见呢?
2015年5月,Google的照片应用加入自动标签功能,应用更新不久,一位黑人程序员发现自己的照片竟然被Google打上“大猩猩”的标签。Flickr类似的自动标签系统也犯过大错,曾把人标记为猿,把集中营标记为健身房。2016年3月,微软公司的人工智能聊天机器人Tay上线。可是上线不到一天,Tay就被网民“教育”成为一个集反犹太人、性别歧视、种族歧视等于一身的“坏孩子”,被强制下线。此外,有研究称谷歌广告服务会默认为女性用户推送比男性用户薪水更低的广告。这些事件一方面反映出现有的人工智能、机器学习技术的不成熟,另一方面,机器歧视(MachineBias)问题开始进入公众视野。
2017年,Pew研究中心曾在研究报告《算法时代》[LeeRainie,JannaAnderson:Code-Dependent:ProsandConsoftheAlgorithmAge,http://www.pewinternet.org/2017/02/08/code-dependent-pros-and-cons-of-the-algorithm-age/]中指出:“算法的客观中立仅仅是理想,创建算法的人即使尽量做到客观中立,也不可避免地受到自身成长环境、教育背景、知识结构和价值观的影响。此外,创建算法所依赖的底层数据的有限性也会导致算法偏见。”
那么,算法偏见的来源在哪里?首先,存在错误、不准确和无关的数据可能导致偏见。输入不完美、甚至有错误的数据,自然会得到错误、有偏见的结果。
其次,机器学习的过程可能是偏见的另一个重要来源。例如,一个用于纠错的机器学习模型在面对大量姓名的时候,如果某姓氏极为少见,那它在全部数据中出现的频率也极低,机器学习模型便有可能将包含这个姓氏的名字标注为错误,这对罕见姓氏拥有者和少数民族(姓氏与非少数民族不同)而言就会造成歧视[曹建峰.人工智能:机器歧视及应对之策[J].信息安全与通信保密,2016(12):15-19.]。这类歧视的来源并非程序人员有意识的选择,具有难以预料、无法估计的特点。
再者,正如Pew报告所指出的,算法可能先入为主地默认了算法创建者或者底层数据中带有的价值判断,从而产生了性别、宗教和种族方面的歧视。这类歧视主要是由于产品设计(DiscriminationbyDesign)的局限性。
种种算法偏见与机器歧视的案例让我们不禁怀疑,“公平”这一社会理念到底是否可以被操作化,成为被准确量化的算法规则。而与此同时,机器自动化决策的不透明性使得准确量化公平难上加难。机器决策是经由算法这一“黑箱”(Blackbox)完成的,也就是说,不论是普通人还是熟悉公平原则的社会学者,均无法了解算法的内在机制、原理,更无法监督机器的决策过程。因此,当算法的编程人员不清楚或者未能统一“公平”的内涵与规则时,他们自身的偏见就会在一定程度上影响算法,同时他们也可能会忽视算法可能产生的偏见,不公平的人工智能应用随之产生。
正如学者DanielleK.Citron在《技术正当程序》中所说,对于关乎个体权益的自动化决策系统、算法和人工智能,考虑到算法和代码,而非规则,日益决定各种决策工作的结果,人们需要提前构建技术公平规则,通过设计保障公平的实现,并且需要技术正当程序,来加强自动化决策系统中的透明性以及被写进代码中的规则的准确性。
日前,美国弗吉尼亚大学学者AhmedAbbasi等在《让“设计公平”成为机器学习的一部分》(Make“FairnessbyDesign”PartofMachineLearning)一文[https://hbr.org/2018/08/make-fairness-by-design-part-of-machine-learning]中指出,可以通过将数据科学家与社会科学家组队、谨慎打标签、将传统的机器学习指标与公平度量相结合、平衡代表性与群聚效应临界点(criticalmassconstraints)以及保持意识等方法减少算法形成歧视的可能性。其中,“平衡代表性与群聚效应临界点”是指在对数据进行采样时,应既考虑数据的整体特征,同时不忽略某个特定少数群体或者极端数据情况。只有这样,机器学习模型在预测一个普通人和一个特殊群体时,才能都给出更为准确的答案。
另外,谷歌也开始倡导“机会平等”,试图将反歧视纳入算法。还有学者引入“歧视指数”的概念,为设计“公平”的算法提供具体方法。我们必须清楚,人工智能总是通过一个快速且脱离人类社会与历史的学习来完成自我构建,因而一个未经完善的机器学习模型必然存在“道德缺陷”。在人工智能应用的构建中,人类与人类长久以来葆有的道德与社会规则不能缺席。
(三)人工智能应用背后的力量
“信息茧房”的形成不是由于信息广度不足,内容生产不够,而是由于信息推荐固定地集中在某一特定领域造成了信息的窄化;算法偏见的形成不是由于机器学习具有天生的弊端,而是由于人类未将公平公正的原则纳入算法考量之中。人工智能应用背后存在着的,是人的力量与符合经济社会的商业逻辑。
为了迎合消费者,信息推荐系统会将消费者的阅读“口味”作为依据。当搜索引擎通过机器学习意识到,搜索八卦新闻的人愿意在日后更多地看到八卦新闻,为了提升用户留存度,搜索引擎会相应地减少其他类型新闻推荐。
为了满足商家,人工智能产品会把更昂贵的产品卖给用户忠诚度高的用户,即“大数据杀熟”现象。同时,为了更加精准地进行广告投放,人工智能偶尔也会忽视公平原则,例如女性用户通常会收到比男性用户薪资低的推荐广告。这样的现象发人深省,未来是否有必要通过一定的法律手段,要求包括文化企业在内的商家作出“不作恶”的商业承诺。
整体而言,我们的社会正被人工智能推向一个新的发展节点。正如[金兼斌.人工智能将给传媒业带来什么?[J].中国传媒科技,2017(05):1.]学者指出,社会和传媒技术的发展,从来都不是线性和匀速的。从工业革命到信息技术革命,每一次社会巨变都伴随着这样一个临界时刻。今天,我们已经能够感受到,我们的日常生活――包括媒介生活中的许多基础性的东西,正在被人工智能应用所搅动。在这样的时刻,只有紧抓机遇、规避风险、解决弊病,才能真正实现行业和社会的跨越式发展。我国的文化产业走到了一个崭新的路口,新的机遇在等待着它。
(责编:尹峥、赵光霞)分享让更多人看到
人工智能对人类的影响有哪些
原标题:人工智能对人类的影响有哪些人工智能是时代进步的产物,也是目前人们非常关注的一个产业,那么ai人工智能的产生对人类的影响有哪些呢?
1、人工智能对文化产业影响
据了解,人工智能对文化产业有促进作用的影响,同时人工智能进入文化产业,将刺激消费者欲望,吸引更多的文化消费需求,也将会引起企业单位产品和服务成本下降,改善企业财务状况。
2、人工智能对新闻业的影响
人工智能对新闻业的影响有三点:
1)将会对内容生产有一定影响,机器新闻写作高效、全天候的模式使它能够生产海量新闻内容;
2)反应迅速:出稿速度快,不是人力可为,在突发事件的报道中,人工智能下的机器人新闻写作正在扮演着越来越重要的“守望者”角色。
3)千人千面,个性化内容分发:实现了长尾市场与利基市场的激活机器人新闻写作能够以用户偏好来制作相关的新闻内容,而且还能提供与用户个人生活场景相匹配的私人定制产品。
3、人工智能对金融创新影响
人工智能在金融创新方面可以改善客户体验、拓宽服务范围、增强风控能力,智能客服通过对日志信息进行有效的识别、分析和挖掘,为客户服务与客户营销等提供数据与决策支持。积累的历史数据还有助于智能客服系统进行知识学习和更新,为改善问答提供参考与依据。
4、人工智能对商业决策影响
对于公司来说不管是投入几百万还是几千万,都会涉及到一个问题:怎么去评估投资的回报,怎么科学衡量这件事情的产出,这就需要作出商业决策,人工智能可以在这方面发挥很大的作用,可以帮助收集数据,给出解决方案等等,作出一系列决策反应。
以上四点是小编总结的人工智能对人类的影响,未来,随着人工智能的发展,我们的生活也将会变得越来越便利。当然了,现在也是选择千锋学习人工智能的绝佳时机。返回搜狐,查看更多
责任编辑:人工智能对社会、对人类思维的影响(深度好文)
人工智能对社会、对人类思维的影响
传感器技术·2018-12-1016:10·
越来越多的人关注和研究AI,那么AI到底是什么?我们今天就来全面的解析一下,AI是什么?
人工智能(AI)是机器智能和计算机科学的一个分支,是一门研究机器智能和智能机器的新型的、综合性的、具有强大生命力的边缘学科。
人工智能自二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
人工智能的主要特征
智能是知识与智力的总合。知识是智能行为的基础;智力是获取知识并运用知识求解问题的能力。智能具有以下特征:
1、具有感知能力:指人们通过视觉、听觉、触觉、味觉、嗅觉等感觉器官感知外部世界的能力;
2、具有记忆与思维的能力:这是人脑最重要的功能,亦是人之所以有智能的根本原因;
3、具有学习能力及自适应能力;
4、具有行为能力。
人工智能的起源及发展
1936年,24岁的英国数学家图灵提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。人工智能的研究从1956年正式开始,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(ArtificialIntelligence,AI)这个术语。
第一阶段:50年代人工智能的兴起和冷落。
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。
DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。
日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。
由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。
另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
人工智能的数学基础
人类智能在计算机上的模拟就是人工智能,而智能的核心是思维,因而如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。
在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。此外,概率论及模糊理论的有关概念及理论也在不确定性知识的表示与处理中占有重要地位。
因此,在系统学习人工智能的理论与技术之前,先掌握一些有关逻辑、概率论及模糊理论方面的知识是很有必要的。
人工智能中用到的逻辑可概括地划分为两大类。一类是经典命题逻辑和一阶渭词逻辑,其特点是任何一个命题的真值或者为“真”,或者为“假”,二者必居其一。
因为它只有两个真值,因此又称为二值逻辑。另一类是泛指除经典逻辑外的那些逻辑,主要包括三值逻辑、多值逻辑、模糊逻辑、模态逻辑及时态逻辑等,统称为非经典逻辑。
在非经典逻辑中,又可分为两种情况,一种是与经典逻辑平行的逻辑,如多值逻辑、模糊逻辑等,它们使用的语言与经典逻辑基本相同,主要区别是经典逻辑中的一些定理在这种非经典逻辑中不再成立,而且增加了一些新的概念和定理。另一种是对经典逻辑的扩充,如模态逻辑、时态逻辑等。
它们一般承认经典逻辑的定理,但在两个方面进行了扩充:一是扩充了经典逻辑的语言;二是补充了经典逻辑的定理。例如模态逻辑增加了两个新算子L(……是必然的)和A4(……是可能的),从而扩大了经典逻辑的词汇表。概率论在人工智能中的应用主要体现在有关概率、条件概率等的概念以及BaYes定理等,多年来它一直是人工智能中处理不确定性的理论基础。
在科学研究和日常生活中,人们一直追求用确定的数学模型来描述现象或解决问题。随着通信、计算机和网络技术的飞速发展,随着基础软件、中间件和应用软件的广泛应用,计算机在数值计算、数据处理、信息查询、工业控制、符号推理乃至知识工程等方面发挥出来的能力已大大提高。但是,计算机在这些领域中所解决的问题往往都是“良性设定问题”,即求解问题的前提条件明确、数学模型精确,并且可以用计算机程序设计语言进行描述。
人工智能从来就是在数学的基础上发展起来的,为了解决人工智能中的各种不确定性问题,同样需要数学的支持。
人工智能的体现形式和研究领域
博弈
博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论。博弈思想在人工智能方面最早体现在计算机游戏方面,最早的计算机游戏(computergame)指的就是下棋,为了设计可以和人类竞争甚至战胜人类的程序,人们便开始研究如何使得计算机可以学习人类的思维模式,具备与人类一样的博弈能力。
博弈的过程包含着对问题的表示、分解、搜索和归纳这四个重要问题。计算机棋类博弈基本属于完全信息的动态博弈。也就是对弈双方不仅清楚当前的局面,了解对手以往的着数,而且了解对手接下来可能采取的着数。尽管双方可能采取的着法数以十计、百计,但毕竟还是有限的。计算机可以通过展开一颗根在上、叶在下的庞大的博弈树描述这一对弈过程。再利用自身在时间和空间上的强大能力,进行巧妙的搜索,从而找到可行解及近优解,亦即给出当前的着法。
显然,计算机的搜索能力是计算机智力水平的重要体现。搜索算法是机器“思维”的核心。包括着法生成,博弈树展开,各种剪枝搜索和各种启发式搜索。显而易见,搜索算法的设计和编写过程处处体现着人工智能的思想。机器博弈是既简单方便、经济实用,又丰富内涵、变化无穷的思维逻辑研究载体。
个把小时就可以下一盘棋,就可以对电脑的“智能”进行测试,而且可以悔棋、重试、复盘,可以一步步地发现电脑与人脑功能的差距,从而不断提高电脑的智力水平。毫无疑问的是,机器博弈的研究可以显著推动人工智能的发展。
专家系统
专家系统是一种具有大量专门知识和经验的智能程序系统,它能运用领域专家多年积累的经验和专门知识,模拟领域专家的思维过程,解决该领域中需要专家才能解决的复杂问题。专家系统是目前人工智能中最活跃,最有成效的一个研究领域,它是一种基于知识的系统,它从人类专家那里获得知识,并用来解决只有专家才能解决困难问题辅助教学系统。
人工智能专家系统常由知识库、是推理机等构成。推理机主要决定哪些规则满足事实或目标,并授予规则优先级,然后执行最高优先级规则来进行逻辑推理。知识获取机为用户建立的一个知识自动输入的确定方法。匹配模块是该人工智能专家系统的核心部分,匹配功能的实现关系到整个程序的实现,解释模块以及结果处理都依赖于它的执行结果。其过程如下图所示:
目前已研究的专家系统模型有很多种。其中较为流行的有如下几种:
基于规则的专家系统
基于规则推理(RuleBasedReasoning,RBR)的方法是根据以往专家诊断的经验,将其归纳成规则,通过启发式经验知识进行推理。早期的专家系统大多数是用规则推理的方法,如DENDRAL专家系统、MYCIN专家系统、PROSPECTOR专家系统等。
基于案例的专家系统
基于案例推理(CaseBasedReasoning,CBR)的方法就是通过搜索曾经成功解决过的类似问题,比较新、旧问题之间的特征、发生背景等差异,重新使用或参考以前的知识和信息,达到最终解决新问题的方法。第一个真正意义上的基于案例的专家系统是1983年由耶鲁大学JanetKolodner教授领导开发的CYRUS系统。它以Schank的动态存储模型和问题求解的MOP(MemoryOrganizedPacket)理论为基础,做与旅行相关的咨询工作。
基于框架的专家系统
框架(Frame)是将某类对象的所有知识组织在一起的一种通用数据结构,而相互关联的框架连接组成框架系统。
框架表示法最突出的特点是善于表达结构性的知识,且具有良好的继承性和自然性。因此,基于框架的专家系统适合于具有固定格式的事物、动作或事件。
基于模糊逻辑的专家系统
和二值的波尔逻辑不同,模糊逻辑是多值的。它处理归属的程度和可信的程度。模糊逻辑使用介于0(完全为假)和1(完全为真)之间逻辑值得连续区间。与非黑即白不同,它使用颜色的色谱,可以接受同时部分为真和部分未假的事物。
基于模糊逻辑的专家系统的优点在于:①具有专家水平的专门知识,能表现专家技能和高度的技巧以及有足够的鲁棒性;②能进行有效的推理,具有启发性,能够运用人类专家的经验和知识进行启发性的搜索、试探性的推理;③具有灵活性和透明性。但是,模糊推理知识获取困难,尤其是征兆的模糊关系较难确定,且系统的推理能力依赖模糊知识库,学习能力差,容易发生错误。由于模糊语言变量是用隶属函数表示的,实现语言变量与隶属函数之间的转换是一个难点。
基于D-S证据理论的专家系统
证据理论是由Dempster于1967年首先提出,由他的学生Shafer于1976年进一步发展起来的一种不精确推理理论,也称为Dempster/Shafer证据理论(D-S证据理论),属于人工智能范畴,最早应用于专家系统中,具有处理不确定信息的能力。作为一种不确定推理方法,证据理论的主要特点是:满足比贝叶斯概率论更弱的条件;具有直接表达“不确定”和“不知道”的能力.。当约束限制为严格的概率时,它就成为概率论。
基于Web的专家系统
基于Web的专家系统是Web数据交换技术与传统专家系统集成所得到的一种先进专家系统。它利用Web浏览器实现人机交互,基于Web专家系统中的各类用户都可通过浏览器访问专家系统。从结构上,它由浏览器、应用服务器和数据库服务器三个层次所组成,包括Web接口、推理机、知识库、数据库和解释器。
模式识别
广义地说,存在于时间和空间中可观察的事物,如果我们可以区别他们是否相同或者是否相似,都可以称之为模式。但需要注意的是,模式并不是指向事物本身,而是我们从事物获得的信息。因此,模式往往表现为具有时间或空间分布的信息。人们为了掌握客观事物,按事物相似的程度组成类别。模式识别的作用和目的就在于面对某一具体事物时将其正确的归入某一类别。
模式识别系统有两个过程组成,即设计和实现。设计是指用一定数量的样本(训练集或学习集)进行分类器的设计。实现是指用所涉及的分类器对待识别的样本进行分类决策。基于统计方法的模式识别系统主要由4个部分组成:数据获取,预处理,特征提取和选择,分类决策,如下图所示:
概括地说,模式识别中的最基本的问题是解决模式的分类。较全面的看,是研究模式的描述、分析、分类、理解和综合。更高层次的模式识别应该还包括对模式的学习、判断、自适应、自寻优和自动发现规律等。
所以,模式识别在某种意义上和人工智能中的“学习”“概念形成”相近。模式识别与及其职能的结合将开辟广阔的应用前景。
人工神经网络
众所周知,人类大脑的组织结构和运行机制有其绝妙的特点,从模仿人脑智能的角度出发,来探寻新的信息表示、储存和处理方式,设计全新的计算机处理结构模型,构建一种更接近人类智能的信息处理系统来解决实际工程和科学研究领域中难以解决的问题,一定能够极大推动科研进步,这些促成了人工神经网络(ANN)的出现。
简单的说,ANN是模仿人脑工作方式而设计的一种机器,它可用电子或光电元件实现,还可以用软件在计算机上进行仿真模拟,甚至最新的研究成果显示人类已经使用DNA在试管中制造出了首个人造神经网络(这个相互作用的分子组成的电路能像人脑一样,基于不完整的模式进行回);人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
神经网络发展很快,已经被广泛应用在市场的方方面面。
自然语言理解
自然语言理解一直是智能领域研究的重要课题之一,因为自然语言本身具有独特的魅力,其一,如果计算机能够理解自然语言,那么人机交互将变得前所未有的畅通,那将是对计算机技术的重大突破,其二,创造和使用自然语言是人类几千年智慧的结晶,研究自然语言更有助于解开人工智能的奥秘。
对自然语言的理解,有以下四条准则:问答、文摘生成、释义、翻译。与之对应就可以得到,自然语言理解的处理过程为:语言形式化描述、处理算法设计、处理算法实现和评估。其中语言形式化描述就是通过对自然语言自身规律进行研究,进而采用数学的方法将其描述出来,以便于计算机处理,也可认为是对自然语言进行数学建模。处理的算法设计就是将数学形式化描述的语言变换为计算机可操作、控制的对象。处理算法实现和评估就是通过程序设计语言(如C语言)将算法实现出来,并对其性能和功能进行评估。
自然语言理解的智能应用主要体现在翻译方面。
人工智能的现在与未来
如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。
大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
现在,研究和应用从实验室到工业现场、从家电到火箭制导,已经广泛用于武器控制、机器人规划与控制、(制造业采矿业等的)自动加工系统的智能控制、故障检测与诊断、飞行器的智能控制医用智能控制、智能仪器等。
自然科学方面,AI与其它学科相互交叉、相互渗透和相互促进。AI向其它学科提供了工具和方法,如知识表示和推理机制、问题求解和搜索算法,模糊逻辑推理和非单调推理技术,以及计算智能技术等,可以解决从前难以解决的问题。而其他学科的重要概念,在AI研究中也得到发展。如计算机系统的分时系统、编目处理系统和交互调试系统等。
社会科学方面也是如此。在需要使用数学-计算机工具解决问题的学科(如经济学),AI带来的帮助不言而喻。
更重要的是,AI反过来有助于人类最终认识自身智能的形成。在重新阐述知识历史的过程中,AI有望解决知识的模糊性,消除知识的不一致性。这将导致逻辑和哲学等等方面的改善,影响到心理学、认知学的核心理论,对于哲学社会学方面的理论也将带来彻底的变革。
此外,综合应用语法、语义和AI的形式知识表示方法,有可能改善知识的自然语言表达形式与此同时,潜在的知识,直感灵感等等也能够阐述为适用的AI形式。从而扩大知识的领域,以及对现有知识进行提纯。
如果说生物计算机、量子计算机、光子计算机是未来计算机硬件系统的发展方向,那么实现人工智能就是日后计算机软件的努力目标,但是,从某种意义上来说,人工智能的发展目标却是脱离计算机,不再作为一个独立的子系统来存在。它将渗透入我们社会的方方面面,润物无声。
可以预见,随着人工智能的完善,它将对人类整体的文明产生巨大冲击,事实上,这个冲击已然产生,只是它的步步推进不足以产生爆炸性的效果,因而,注意者并不包括大多数人。
人工智能对经济的影响
成功的专家系统能为它的建造者、拥有者和用户带来明显的经济效益。在信息爆炸的知识经济时代,优秀的信息处理便是财富,它会为部分人的经济效益做出极大贡献。同时,尽管人工智能的发展目标是脱离计算机,成为独立的应用,但未来很长一段时间内,它还会依托于计算机存在,越来越优秀的人工智能对计算机的软硬件都提出了新的要求,这将会成为计算机行业的一个推动力。
人工智能对社会的影响
人工智能和机器人行业几乎是亲密无间,在欧美,工业过程控制系统、智能机器人系统和智能化生产系统开始起步。我国也从无到有,出现了机械手生产厂家,机器人产业的雏形已经形成,在10~20年后有望形成规模,脱离自动化而形成独立的产业。这却带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,将迫使人们工作方式的巨大改变,甚至造成失业,数字巨大的失业者将成为社会的不安定因素。
人工智能对人类思维的影响
伴随着机器变得越来越“聪明”,人们越来越相信智能机器的判断和决定。这在某种程度上会导致人类失去对问题及其求解任务的责任感和敏感性。进而致使认知能力下降,思维变得懒惰。通俗来说,就是变蠢。人类用了200万年进化成现在的智慧生物,在人工智能的“帮助”下,这一逆过程或许不需这么久。
至于所谓的“人工智能失控”、“智能机器人反噬人类”,好莱坞已经做出了太多猜测,但不得不说,所谓的“阿西莫夫三定律”真的能永远束缚机器人(狭义上的人工智能)吗?这很难说。自然是难以揣测的,两个原子的偶然碰撞擦出了生命的第一缕火花,那无数个0、1的组合难道没有那灵光一闪的瞬间吗?混沌机制向来是上帝的领域,数字生命无穷小的诞生概率在数学上可以被认为为零,但现实中却存在可能。
但我们不能因噎废食,人工智能已经——或正在——或即将证明它在人类社会中的的巨大作用,对于人工智能的未来发展,我们应当持乐观态度。我们相信人工智能有个更加美好的未来;尽管这一天的到来,需要付出辛勤劳动和昂贵代价,需要好几代人的持续奋斗。一代代科学家为我们提供了巨人的肩膀,正是为了让我们立于其上,继往开来。
“东方军事家”公众号