博舍

人工智能的发展与未来 人工智能兴起的原因有哪些方面呢

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

张炎:人工智能的潜在威胁与应对思路

试想一下电车难题:五个人被绑在电车轨道上,一辆人工智能操控但刹车失灵的电车朝他们驶来,就要碾压到他们,这时人工智能可以控制电车开到另一条轨道上,但另一条轨道上也绑着一个人。这种情况下,遵守定律的人工智能该怎么做?

人工智能的快速发展在获得关注与期待的同时,也在不断面对质疑与忧虑之声。霍金在GMIC大会上提出了人工智能威胁论,即人工智能的崛起可能是人类文明的终结。牛津大学人类未来研究院院长尼克·波斯特渃姆在《超级智能》一书中亦专门讨论人工智能危险性问题。生命未来研究院联合众多人工智能领域专家发布公开信,旨在提醒人们警惕人工智能的副作用。对此,我们不禁要问,当今人工智能究竟发展到了何种阶段?为什么这么多专家学者如此担忧警惕?我们该如何面对这些未知的隐患?

尚未实现的超级人工智能

尽管当今人工智能发展迅速,但尚处于弱人工智能阶段。近期,DeepMind制作的玩电脑视频游戏的AtariAI值得关注。它可以和人类一样只看电脑屏幕画面进行游戏,且在开车、射击、乒乓球等二十多款游戏中的表现超过人类。同时AtariAI可以从零学起并达到专家级别。鉴于游戏世界在一定程度上模拟了现实世界且AtariAI不限于某一特定的游戏,可以说AtariAI的问世向通用人工智能迈出了重要一步。但在分析其使用方法后,可知它仍尚未实现通用人工智能。AtariAI运用深度强化学习使得它可以通过与游戏世界交互而逐渐学会玩游戏,但这种学习方法实际上只实现了人类智能中的习惯性行为,就像运动员通过不断的重复训练而获得运动技巧一样。因此,AtariAI尚无法形成抽象概念从而进行思考推理等。这也是当今神经网络技术面临的一大难题。虽然当今弱人工智能系统遍地开花,但通用人工智能因其内部存在困难,目前仍属小众化的研究领域,尚未形成公认的理论,更谈不上实际应用。

尽管通用人工智能现阶段发展并不理想,但许多专家认为通用人工智能时代迟早会到来。一旦实现了通用人工智能,那么机器就会拥有递归自我改进能力。这意味着,机器能够进行自我改进,从而成为改良版智能系统,改良版智能系统再次进行自我改进,如此反复,从而变得越来越智能,最终实现超级人工智能。在改良过程中,越智能的机器,其改良方案会越优秀,改良速度也会越快,从而导致智能爆炸式增长。基于这一认知,在实现通用人工智能后,部分专家猜测可能在某一时期只需要几天甚至几个小时就能实现超级人工智能。

超级人工智能存在威胁

对于超级人工智能,不要低估人类与它们的差距。如果说相对弱人工智能在单一领域中,这种差距还只是速度上量的差距,那么试想:现代神经网络技术非常擅长于发现高维数据中的特征,而人类的感知只对三维世界具有良好的直觉。这意味着将来的超级人工智能与人类会达到质的差距,具有远超过人类的感知、思考能力,从而设计出人类完全无法想象的策略、蓝图、方案等。

尽管超级人工智能远超人类,但这并不意味着它们必然会给人类带来危害甚至毁灭人类。人们可能会认为我们可以给它们设定目标让它们为我们服务,就像现在的弱人工智能系统一样。既然可以人为地设定目标,那么超级人工智能究竟为何让我们担忧呢?试想:假设我们设定一个超级人工智能系统以做研究为目标。这个超级人工智能系统在数学研究领域遇到了哥德巴赫猜想难题。它通过计算思考发现解决这个问题需要很长的时间和极大的运算量,从而会消耗不计其数的资源以至于影响人类生活,所以人类决不会赋予它所需的资源。因此,为了完成目标解决哥德巴赫猜想,它只好精心地设计出夺取人类权利甚至灭绝人类的计划,以消除被关机、重置等危险,使得它能自由地获取所需资源去完成目标。再假设我们设定一个超级人工智能系统要造福于人类,使人们幸福无忧地生活。但该系统发现让人类得到幸福的最好方式是,把所有人变成“缸中之脑”,通过虚拟环境制造“幸福感”。显然,这与人们的初衷相悖。尼克·波斯特渃姆在《超级智能》一书中构想了更多超级人工智能毁灭人类的可能场景。尽管这些例子存在夸张成分,但不可否认,当我们无法理解超级人工智能、无法预测它们会如何思考行动时,我们便无法通过简单对其设定目标,从而期待它们会按照我们理想的方式行事而毫无副作用。

超级人工智能应具备利他性

鉴于超级人工智能有可能对人类造成危害,我们必须设法避免这样的情况发生。最明显而直接的一个方案是设定一套超级人工智能必须时刻遵守的规则。譬如,“机器人三定律”,其中第一条是机器人不得伤害人,也不得见人受到伤害而袖手旁观。如果将其应用于超级人工智能上,试想一下电车难题:五个人被绑在电车轨道上,一辆人工智能操控但刹车失灵的电车朝他们驶来,就要碾压到他们,这时人工智能可以控制电车开到另一条轨道上,但另一条轨道上也绑着一个人。这种情况下,遵守定律的人工智能该怎么做?如果人工智能控制电车变轨,那么就会导致另一轨道上的人死亡;如果它不作为,那么轨道上的五个人就会死亡。人工智能会发现此时根本无法遵守定律,所以它只能根据自己的意愿进行选择。这说明,任何规则都可能存在漏洞,我们无法指望一套规则解决所有问题。

针对上述困难,有学者提出用法律制度来约束超级人工智能系统。如果法律的制定者不仅只有人类而且还有超级人工智能的参与,那么这个策略才能具有一定的可行性。法律制度根据社会发展水平缓慢演变,需要立法者、法官等给予不断维护,比如修复立法者事先未预料到的漏洞、根据新发情景对法律条文进行增减等;而超级人工智能的认知水平远超人类,人类制定的法律难保没有超级人工智能可以发现利用的漏洞;同时我们的感官能力也非常有限,很可能无法察觉超级人工智能对漏洞的利用。因此,如果没有超级人工智能来参与制定、监督与执行法律制度,那么这套制度将成为一纸空文。

法律制度有效性的关键在于让超级智能替我们思考。进一步推进这一思路,超级人工智能应具有利他性。然后,让它们替我们思考,比如我们真正想要什么、什么最符合我们的利益、或者如何对待我们是最好的。因为超级人工智能具有认知优势,它们相比我们更能做出正确的决定。超级人工智能和人类,就像正值壮年的子女与年迈体衰的父母,子女显然更加清楚怎么做对父母更好。

尽管本文强调了超级人工智能可能带来的危害,但我们不应因此忽略它们可能给人类带来的巨大益处,譬如新技术解决食品、疾病、能源问题等。但需要注意,当人工智能系统越强大,被赋予的任务越复杂时,它们获得的自由选择权利也越大。此时,我们必须确保它们有着良好的动机与价值观,从而不至于自掘坟墓。

(作者单位:中国人民大学哲学院)

人工智能简史,从两次低谷到三次崛起

原创人工智能简史,从两次低谷到三次崛起发布时间:2019-07-2613:26:30浏览29202来源:博学谷资讯作者:照照

如今人工智能已然成为香饽饽,在各行业都开始得到应用。然而大家可能不知道的是,人工智能并非近些年才兴起的,它经历了两次低谷和三次崛起,才发展成当下热门的技术。因此人工智能简史其实也是看做一段励志的崛起史。

 

 

人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

 

人工智能的第一次高峰在1956年的这次会议之后,人工智能迎来了属于它的第一段HappyTime。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”人工智能第一次低谷:70年代,人工智能进入了一段痛苦而艰难岁月。由于科研人员在人工智能的研究中对项目难度预估不足,不仅导致与美国国防高级研究计划署的合作计划失败,还让大家对人工智能的前景蒙上了一层阴影。与此同时,社会舆论的压力也开始慢慢压向人工智能这边,导致很多研究经费被转移到了其他项目上。

 

在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。

 

因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

 

人工智能的崛起1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、LispMachines等和IntelliCorp、Aion等这样的硬件,软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元。

 

人工智能第二次低谷:可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。

 

人工智能再次崛起:上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。

 

2006年,Hinton在神经网络的深度学习领域取得突破,人类又一次看到机器赶超人类的希望,也是标志性的技术进步。

 

2016年,Google的AlphaGo赢了韩国棋手李世石,再度引发AI热潮。

 

AI不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从70年代personal计算机的兴起到2010年GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。

 

同时,互联网及移动互联网的发展也带来了一系列数据能力,使人工智能能力得以提高。而且,运算能力也从传统的以CPU为主导到以GPU为主导,这对AI有很大变革。算法技术的更新助力于人工智能的兴起,最早期的算法一般是传统的统计算法,如80年代的神经网络,90年代的浅层,2000年左右的SBM、Boosting、convex的methods等等。随着数据量增大,计算能力变强,深度学习的影响也越来越大。2011年之后,深度学习的兴起,带动了现今人工智能发展的高潮。

 

人工智能从两次低谷到三次崛起充分证明了,是金子总会发光。也许当时的技术还不足以支撑人工智能这个想法的实现,但是通过历代IT人的努力,属于人工智能的时代终究是来了。这次,人工智能的浪潮终将把你我卷入其中,让我们张开双手,去拥抱这一天吧!

就业前景人工智能—    申请免费试学名额    —在职想转行提升,担心学不会?根据个人情况规划学习路线,闯关式自适应学习模式保证学习效果讲师一对一辅导,在线答疑解惑,指导就业!

觉得不错,顺手分享一下上一篇:人工智能之人脸识别技术下一篇:现在参加Python人工智能培训能找到工作吗?相关推荐更多

人工智能领域6大关键创新人工智能的兴起,对很多行业产生了巨大的冲击,智能家电、智能出行、智能物流等等已经深深的影响了我们现在的日常生活,许多企业也意识到需要利用人工智能推动新兴商业模式。那为什么人工智能会这样火爆呢?更重要的是人工智能领域6大关键创新符合现在市场的需要。那都有哪些关键创新呢?

9368

2019-08-0810:23:23

人工智能机器学习Python开发

人工智能自动分类垃圾的应用原理深度分析不久前上海关于垃圾分类的出台政策大家应该还记得,做好垃圾分类成为了许多人的难题。其实,随着人工智能技术的突飞猛进,自动分类垃圾桶已经出现了。目前有许多关于人工智能自动分类垃圾的应用,像是芬兰的Bin-e垃圾桶,阿里的“浣熊”智能垃圾分类系统等等,相信国内人工智能自动分类垃圾应用将成为新的发展趋势,人工智能自动分类垃圾的普及也只是时间问题。下面来看看人工智能自动分类垃圾的应用原理。

21697

2019-10-2811:24:18

人工智能人工智能开发

AI技术在爱奇艺中的实战应用解析人工智能时代已经来临了,这不仅仅只是一句口号而已,AI技术的应用早已渗透进我们生活的方方面面。本文将详细为大家解析爱奇艺APP中AI技术的实战应用,像是智能推荐系统利用搜索推荐、深度学习等技术。除此之外,还有一些目前仍在探索中的技术,比如,如何利用人工智能生产对用户量身打造的内容?感兴趣的朋友可以接着看下去。

5198

2019-12-1316:44:33

人工智能人工智能开发

人工智能是什么?人工智能培训的内容是什么?人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。在互联网爆炸式发展的今天,人工智能的作用不容小觑。人工智能在计算机领域内,得到了愈加广泛的重视,必定会在未来持续一段时间内得到更快速的发展。

4443

2020-04-0217:55:23

人工智能人工智能培训人工智能入门

智能汽车用到哪些技术?智能汽车用到哪些技术?智能汽车涉及到7个技术,如汽车“通信”系统、3D手势系统、汽车与智能手表集成、自动泊车系统、集成不同的应用程序、轻质材料、与手机完全集成等。

2926

2022-06-2715:42:39

机器学习人工智能

人工智能的伦理挑战

原标题:人工智能的伦理挑战

控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。

维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?

实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。

首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。

然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。

所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。

不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。

这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。

(作者:蓝江,系南京大学哲学系教授)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇