博舍

人工智能(AI)真的会带来大规模失业吗 人工智能会不会带来失业问题

人工智能(AI)真的会带来大规模失业吗

前言

前言任何技术的“跨越式”进步都会对社会带来巨变,而对未来工业革命的终极定义还未可知,当然“AI”也有可能。

任何技术的“跨越式”进步都会对社会带来巨变:蒸汽机带动的第一次工业革命;电力带动的第二次工业革命。

第三次工业革命,应该还未有终极定义,我们正处于这个过程中。“半导体”的发现,带动了电子技术革命,然后计算机的发明基本让人类进入了一个新时代,核能(裂变/聚变)的利用等等新技术,都有可能成为与“蒸汽机”、“电力”具有同等“历史地位”的候选项。

当然“AI”也有可能。

技术的发展,必然会“改造”一部分行业,也会“消灭”一部分行业,但更重要的是:会“创造”大量的新行业与就业机会。

先不说AI,看看仅10年来我们身边的变化:外卖、快递、滴滴司机、自媒体……

我们不能只去关注“电商消灭实体”、“O2O让人懒惰”,也要看到在这个过程创造的大量的新的就业机会。

当然,新的就业机会,不一定都是“消灭”的那部分行业的从业人员去补充的,能够适应变化的,或许会“焕发第二春”,如早期的淘宝小卖家做出来的,各路自媒体头部的玩家,网约车补贴大战早期入局的驾驶员;不能适应变化的,只能说:“XXX带来了大规模失业”。

回到AI的问题,先从自动控制说起。

我们知道工业自动化技术发展多年,技术水平已经相当高且“靠谱”,所以我们的生产线、发电厂、炼油厂等等支撑当前世界运转的核心工业才能有长足进步,也使得很多劳动密集型产业变成了技术、资金密集型产业,这其中最重要的一点就是“自动控制技术”的发展。

“自动控制“要发挥作用,“被控对象”的“可测性”非常重要,只有被控对象可观、可测,并能通过各种传感器、变送器转变为“电信号”,PID控制才有可能。正是因为被控对象的“精准可测”,火星车才能自己在火星“玩耍”,发电厂能全自动运行,工业流水线能自动化生产。

在这一切背后的“无名英雄”其实都是:传感器。

举个例子,感受下AI和传感器的关系。

过去我们开门用钥匙--->有了RFID技术后,我们可以刷卡开门--->指纹识别传感器成熟后,我们可以刷指纹开门--->人脸识别技术成熟后,我们可以刷脸开门。

过去我们在停车场停车,工作人员给你写个小纸条,夹在雨刮片下面,同时还要在自己小本本上记录--->有了RFID技术后,改成了发卡--->车牌识别技术成熟后,直接抬杆入场--->绑定了支付工具后,可以实现出场自动放行,无感支付。

过去我们进火车站,必须要人工验票、看身份证,来确定:票没问题,身份证与候车人一致,为什么这个操作模式一直没有变化,直到人脸识别技术成熟?

过去技术上没有“传感器”可以做到“识别人”与身份证的一致性,因为人脸这种“被测对象不可测”,所以是不可能出现“自动化”的技术方案的。但“人脸识别技术”在深度学习技术推动的机器学习技术取得突破后,准确率已经达到“可信任”水平时,“人脸”这个“被测对象”现在具备了“可测性”,结合RFID的身份证芯片识别,车票的二维码/条形码识别,“人脸闸机”这种无人值守、全自动的“准入产品”才能横空出世(有点绕,没看懂多看两遍,仔细品)。

换个角度看问题,现在是不是对AI的价值有了更深刻的印象?

可以这么说:随着AI技术的发展,只要突破“可信任”这个门槛的技术,都会成为“新的传感器”推动某一个领域自动化水平大幅发展。

所以,AI取得实质性突破的领域,必然会带来对应领域的从业人员失业问题,这个是工业革命的历史车轮向前推进的必然。

说到当下,呼叫中心、客服,可能是受冲击比较大的岗位,但是,现阶段还是有监督学习为主方向的,所以同时也创造了“标注师”这个岗位啊。

AI这个方向大热应该是2012年的AlexNet胜利开始的,但是,当下的大多数AI催生的技术,还远未达到传感器级别的“可信任”程度,也就是说,还未具备大规模工业化应用的可能,这个时候,一窝蜂的涌入,必然需要付出“前浪死在沙滩上”的代价。

Gartner的TheHypeCycle(成熟度曲线)算是具有大多数认同的行业分析报告,2019年的报告如下如(中英文都有):

总之,黎明前的黑夜有多长,也许还有很长。

免责声明

文章来源:知乎

凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网赞同其观点,也不代表本网对其真实性负责,转载请联系原出处。您若对该文章内容有任何疑问或质疑,请立即与后台小编联系,平台将迅速给您回应并做处理。注明本公司原创内容,转载请与我们联系哦!

如何认识人工智能对未来经济社会的影响

原标题:如何认识人工智能对未来经济社会的影响

人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。

人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。

总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。

作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。

一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。

另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。

当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。

(作者单位:国务院发展研究中心创新发展研究部)

(责编:赵超、吕骞)

分享让更多人看到

人工智能对就业的影响及其对策

应对人工智能对就业影响的措施

缩小人工智能对就业的替代效应。一方面需要激发企业家的冒险精神和开拓精神,结合企业家个人特质及灵敏嗅觉,突破现有技术的桎梏,在已有基础上围绕技术进步主动提供中高端产品和服务的供给,通过延长产业链、提升产品附加值、丰富产品类型以及开拓新领域等方法,增加就业岗位和提升就业层级;另一方面需要提高劳动者综合素质能力,通过建立健全职业教育体系,开展前瞻性的职业技能培训,以适应人工智能不断发展的要求,以增强自身工作的不可替代性。

促进人工智能与劳动力市场的均衡发展。在人工智能发展的过程中需要从供给和需求两端共同发挥作用,实现即扩大创造效应又削弱替代效应的突破,实现人工智能发展中的劳动力市场需求平衡。实现人工智能发展下的劳动力市场供需平衡,弱化结构性失业的影响,应与产业结构调整、新兴产业发展、技术创新、劳动力结构变化以及国家发展战略相结合。

深化产业结构调整。对传统落后产业要有“壮士断腕”的魄力,加速清理和淘汰“僵尸企业”,积极发展和培育新兴产业。充分利用供给侧结构性改革等经济改革政策,引导更多的企业家投身于新一代信息技术、高端装备制造、新型材料、新能源、节能环保以及生物医药等六大领域,促进经济结构转型升级,激发对就业的创造效应。

鼓励和引导技术创新。技术进步是促进新兴产业快速发展的内驱动力。因此在新兴产业发展的过程中一方面需要加强共性技术机构和科技基础设施的建设,鼓励和引导技术创新;另一方面需要构建多层次人才培养体系,重点培育和挖掘高级技能工人,并对一般产业工人的通用技能进行提升,同时实现企业、职业技术学校、研究型高校和机构以及改革服务机构的有机协调发展。

完善产业区域协调发展机制。注重我国经济、人文以及自然环境的区域差异,在结合不同区域已有发展基础上鼓励优化新兴产业发展环境,通过地区间的错位发展和多元创新,形成差异化发展格局,实现区域优势互补和协同发展,并通过区域间协同发展以探索我国产业结构调整的路径和方向。

积极应对人口老龄化。在人工智能等新一代技术革命背景下,在实现经济转型增长的过程中不仅需要将“人口红利”向“人才红利”进行转换,还要充分运用老龄人口资源,激发老龄人口学习和再就业的意愿,并健全保障措施帮助老龄人口为经济发展发挥余热。

积极应对人工智能对就业结构带来的影响,一方面需要积极发挥企业家精神以扩大人工智能对就业的创造效应,另一方面需要积极应对人工智能不同发展阶段对就业的影响以弱化人工智能对就业的替代效应,同时还要促进人工智能与劳动力市场之间的均衡发展,最终实现强化人工智能对就业的创造效应,弱化替代效应,均衡发展的目标。

(图文来自网络)

【N个你】电销机器人

一/款/高/效/智/能/AI/系/统

产品三大优势:

不用招聘、不用培训、立即上岗、立即出业绩直接复制N个销售高手的话术及逻辑销售能力到你公司最关键它的使用成本还不到一个人工成本的1/5

一个时代的进步,一定是科技的迅速发展

AI智能语音机器人就选【N个你】

小N期待与您共同拥有更多未来的可能哦~返回搜狐,查看更多

人工智能可能有自主意识了吗

➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术

➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互

➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系

➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。

LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。

为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。

事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?

人工智能自主意识之辨

勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。

受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。

至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。

清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”

中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。

被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。

这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。

当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。

但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。

段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。

若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。

不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。

若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。

段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。

但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”

换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。

郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”

技术换道

有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。

据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。

一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。

从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。

梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”

不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。

谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。

郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。

梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。

相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。

这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。

“人工智能觉醒”背后

有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。

梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”

据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。

这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”

梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”

我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。

中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”

在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。

毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。

从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。

为了人机友好的未来

确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。

薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。

梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。

“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。

因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。

与其对立的观点则认为,目前这一担忧为时尚早。

“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。

商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。

郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”

在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”

编辑:李华山

2022年08月16日07:42:05

人工智能只会让人失业吗麦肯锡的调查分析给出了不一样的答案!

到2030年对人工智能的额外投资可以为就业贡献5%,创造的额外财富可以推动劳动力需求,再将就业率提高12%。

麦肯锡全球研究院的***研究,试图模拟人工智能对世界经济的影响。模拟研究发现人工智能有很大的潜力为全球经济活动做出贡献,一个关键挑战是采用人工智能可能会扩大国家,公司和工人之间的差距。需要注意的是,人工智能的影响可能不是线性的,但是随着时间的推移,会以加速度跑起来。

完全采用人工智能技术的创新型前沿公司可以在现在和2030年之间将现金流量翻倍,这可能需要雇佣更多的工人。这些公司会将那些不愿意或无法以同样的速度实施AI技术的公司甩到身后。

而完全没有采用人工智能的公司,由于失去了市场份额,他们的现金流可能会下降20%,从而使他们面临裁员的压力。

员工。AI技术的普及使得自动化或劳务外包更加普遍,特别是脑力或者体力上的「重复性劳动」。

研究表明,重复性任务和少量数字技术为特征的岗位需求,可能会从总就业占比的40%下降到2030年不到30%;而对非重复性活动或高水平数字技能的工作岗位需求,从大约40%上升到超过50%。

这些转变会对工资产生影响,导致差异拉大。

大约13%的工资总额可能转移到需要非重复和高数字技能的类别,其中收入可能会增加,而重复和低数字技能类别的工人可能会遇到停滞甚至削减工资。后一组工资总额的比例可能从33%降至20%。

就业和工资差距扩大的直接后果将是对那些开发和使用人工智能工具的技术人员的激烈争夺。

总体而言,人工智能的采用和吸收可能不会对净就业产生重大影响。

到2030年对人工智能的额外投资可以为就业贡献5%,创造的额外财富可以推动劳动力需求,再将就业率提高12%。

国家之间。这种态势目前已经很明显,并且似乎将进一步扩大。这些国家(主要是发达国家)将自己定位为人工智能***,与今天相比,可以获得额外20-25%的经济效益,

许多发达国家可能别无选择,只能推动人工智能实现更高的生产率增长,因为其GDP增长势头放缓。在许多情况下,这部分反映了人口老龄化带来的挑战。此外,在这些经济体中,工资率很高,这意味着使用机器替代劳动力的动机比低工资发展中国家更多。

相比之下,新兴经济体可能仅增加5-15%。

许多发展中经济体的数字基础设施不足,创新和投资能力薄弱,技能基础薄弱。再加上低工资和充足的生产力,这些经济体似乎不太可能与人工智能采用中的先进同行保持同步。

发展中国家倾向于采取其他方式来促进经济。比如重组其行业,以提高其生产力。因此,他们可能没有动力去推动人工智能(无论如何,这可能会为他们提供比发达经济体相对更小的经济效益)。

目前人工智能的发展,就已经促进一个行业在蓬勃发展,就是人工智能标注行业!

几乎所有的科技公司,就在三四线城市寻求数据标注分包团队!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇