十款最佳人工智能软件
市场上逐渐将人工智能软件用于程序,编程和其他目的的计算机化已变得普遍。基于AI的平台具有丰富的机器计算和学习能力,可实现业务流程的自动化。自动化可以节省大量时间和精力。这是十大最佳人工智能软件的列表。
自动化使组织能够更高效,更有利地执行工作。
此外,自动化可以帮助个人更新其技能和能力。您将要使用商业智能软件来促进公司的运营。
最佳人工智能软件1.DeepVisionDeepVision专为个人面部分析而设计,是针对安全性,安全性和商业智能的完美AI解决方案。该软件可有效监视指定区域,以根据年龄,性别和其他详细信息随时间推移识别人员。
它使用面部人口统计模型来了解目标区域内随时间变化的人口统计变化,或用于跟踪客户模式。此外,它还帮助广告商和品牌与目标受众建立联系,以进行产品展示和广告宣传。该模型的创建是通过面部匹配来跟踪个人,以量化访客的访问频率,并帮助零售商立即找到潜在的顾客。
主要特点
它可以使用支持AI的技术识别视频或图像中的个人面孔。该软件可以通过执行面部匹配来检测目标对象的位置。它具有面部识别和检测功能。该软件只需查看人的图像即可立即识别人的脸。凭借其面部人口统计功能,它可以估计人们的性别和年龄。2.Braina它是少数支持多种语言的顶级AI软件之一。Braina也可以用作虚拟语音识别软件。借助于此,可以轻松快捷地将软件语音转换为文本。这个以生产力为中心的商业智能平台支持100多种语言。
主要特点
Braina中集成的工具和功能使用户可以快速完成工作。它与多语言虚拟助手集成在一起。该软件为用户提供了完美的成绩单。另外,它还可以读回非英语文本,以便于用户理解。其无可挑剔的语音命令使用户可以使用自己的语音搜索,播放/暂停/停止媒体。使用此软件,用户可以在不费力的情况下调整窗口大小,打开网站,文件夹和文件并执行其他任务。3.GoogleCloudMachineLearningEngine
无论您是希望开展新业务还是计划对现有业务进行数字化转型,GoogleAI技术和云解决方案都将帮助您取得令人难以置信的成功。GoogleCloudMachineLearningEngine是用于训练,调整和分析模型的理想解决方案。它带有ComputeEngine,CloudSDK,CloudStorage和CloudSQL。
该软件还提供了安全耐用的对象存储的好处。其库和命令行工具允许用户利用GoogleCloud。此外,还有用于SQLServer,MySQL和PostgreSQL的关系数据库。
主要特点GoogleCloudMLEngine通过预测和监视这些预测使用户受益。用户可以管理其模型及其多个版本。该解决方案的各个组成部分包括g-cloud,它是用于管理版本和模型的命令行工具。RESTAPI,旨在帮助用户进行在线预测;和GoogleCloudPlatformConsole(用于部署和管理模型的UI界面)。4.Engati使用Engati,用户可以轻松创建规模和复杂程度不同的聊天机器人。它带有150多个模板,因此个人可以快速开始使用聊天机器人。另外,该软件还包括高级“对话流”构建器,高端集成功能以及用于在网站或任何可用渠道上部署漫游器的功能。
该平台使聊天机器人的构建比以往更加轻松。有专门设计用于部署,构建,分析和训练机器人的部分。此外,使用该软件广播的聊天机器人用户信息,门户网站用户,实时聊天和广告系列将使您受益匪浅。
主要特点
使用此软件创建具有成本效益的聊天机器人,并轻松简化客户支持。当聊天代理不在线时,它提供了自动答复的好处。该软件具有自动营销和销售功能。使用此工具,您可以构建聊天机器人,该聊天机器人可以作为交互式,即时的方式让客户获取您的品牌详细信息。通过减轻筛选过程,它也可以减轻人事经理的工作。该软件能够实时对潜在员工进行背景调查。智能聊天机器人可帮助自动解决客户请求。5.Azure机器学习工作室
Azure机器学习Studio是出色的交互式编程软件之一,最适合创建可用于预测分析的商业智能系统。它是用户用来将对象移动到界面的高级工具。
使用此软件,您将有机会探索在云上构建创新的,基于AI的应用程序的新技术。Azure还提供了创新工具,人工智能服务和可扩展基础架构的优势。此外,您还将获得构建智能解决方案所需的资源。
主要特点AzureMachineLearningStudio充当专业人员的交互式工作区。您可以借助从不同来源收集的数据来构建预测分析模型。它是一个交互式平台,可使用数据操作和统计功能来转换和分析数据。您可以轻松确定结果。将分析模块或数据集拖放到界面上,以链接和修改参数和功能,以设计能够在MLStudio中运行的合格且受过训练的模型。借助该软件,您可以通过编写R脚本来准备数据。6.TensorFlowTensorFlow是广受欢迎的开源软件,对于寻求高级数值计算工具的专业人员而言,它是一个完美的解决方案。它具有灵活的架构,可跨多个平台(包括TPU,CPU和GPU)进行计算部署。另外,它可以部署在台式机,服务器,移动设备和其他设备上。
这是Google的AI工程师和研究人员团队的创意。TensorFlow能够进行深度学习和机器学习。而且,它对可在多个科学领域中使用的核心数学表达式提供了强大的支持。
它的一些核心组件包括自然语言处理,决策,聊天机器人,图像识别,数据摄取,多语言,视觉搜索,语音识别,虚拟助手,机器学习和工作流自动化。
主要特点与多维数组有关的数值计算的理想选择为有关机器学习和神经网络的概念提供出色的支持使用CPU和GPU计算的用户受益,而两者需要一个代码用于数据集和各种机器的高度可扩展的计算7.Cortana
像GoogleNow和Siri一样,Cortana是一个智能的个人助理,可以帮助用户启动应用程序,安排约会以及许多其他虚拟任务。它还能够调整设备设置,例如将Wi-Fi切换为关闭和打开模式。该工具还可以回答您的查询,设置提醒,开灯,在线订购比萨等。
主要特点它在Bing搜索引擎上运行。它与XboxOS,iOS,Windows和Android兼容。该平台支持多种语言,包括日语,英语,法语,葡萄牙语,意大利语,德语,西班牙语和中文。使用其语音输入功能,您可以管理和安排会议/重要任务,查找定义,事实等。该工具甚至可以通过语音命令打开系统上的应用程序。8.IBM沃森这是一个基于AI的计算机系统,旨在回答用户的问题。IBMWatson与认知计算集成在一起-包括推理,机器学习,自然语言处理,人工智能等技术的融合。该工具以IBM首任首席执行官ThomasJ.Watson爵士的名字命名,可将人工智能集成到各种业务流程中。它有助于提高组织的生产率和效率,从而可以获得更好的结果。
通常,业务数据采用非结构化的形式,例如语音数据,段落等。借助IBMWatson,专业人员可以系统地整理和组织非结构化数据,以生成所需的信息。IBMWatson的处理速度约为80teraflops,是人类回答问题能力的两倍。
主要特点使用此工具,您将完全控制基本任务。它可以通过保护IP地址,维护数据所有权和保护数据洞察力来处理所有这一切。该软件经过培训,可以重新构想用户的工作流程,而不管他们的工作领域如何。它是运输,医疗保健,金融,教育(包括其他领域)的理想选择。它对几乎所有行业和企业都有深入的了解。该软件可以帮助您做出更快更好的决策。IBM甚至重视数据的最小单位。如果您的数据量很小,则可以分析并确定可能的结果。无需集成任何其他工具,它就可以使用大量数据。通过使用它,您可以轻松地从多个来源访问所需的数据。9.InfosysNia
InfosysNia是一款高度评价的商业智能软件,可以从旧版系统,人员和流程中收集信息。它将数据聚合到一个知识库中,并自动执行IT流程和业务任务。该软件旨在减少人工工作,并找到需要想象力,创造力和激情的客户问题的解决方案。
用户可以利用该平台来获得深入的见解,增强的知识以及探索机会,以简化,优化和自动化复杂的组织流程。
主要特点它有助于增强流程和系统,以增强组织及其员工的能力。它包括一个高级的对话UI。该工具具有用于编程和重复任务的自动化功能。它是结合认知自动化,RPA和预测自动化的自动化平台之一。它可以捕获,处理和重用知识,以更好地开展业务。该平台还能够为用户提供数据分析。它也可以用作机器学习工具。10.Playment它是一个数据标记平台,可以为机器人模型大规模生成训练数据。Playment增强了处理无人机,制图,自动驾驶和类似空间的业务。
该工具已由CYNGN,DriveAI和StarskyRobotics等多家知名研究机构和组织选择。
主要特点支付具有AI和人类智能的独特组合。它可用于映射输出质量。它是一种高质量的工具,能够以100%的准确性组织多个类别的图像。该平台与竞争对手分析和产品比较功能集成在一起。企业使用它来使用户意识到可以带来良好结果的事物以及可能被证明对他们的业务致命的事物。该工具附带一个图像注释套件,允许用户构建对计算机视觉技术有用的数据集。结论这些是当前可用的顶级人工智能软件。该软件非常方便,可以从头开始构建和开发智能应用程序。这些工具具有AI和机器学习的强大组合,个人可以用来改善和简化他们的业务流程。
简而言之,可以说人工智能(AI)已变成商业软件的主要元素。如今,机器学习和AI学习能力经常安装在软件应用程序中,以为客户提供无与伦比的预测和自动化功能等功能。
人工智能细分领域常用的开发软件是什么
链接:https://www.zhihu.com/question/421105005
编辑:深度学习与计算机视觉
声明:仅做学术分享,侵删
机器学习、NLP、CV、SLAM、机器视觉、人脸识别、图像识别、语音识别、推荐系统、知识图谱等人工智能领域常用的开发软件各是什么?它们都有深度学习的功能吗?
作者:金天
https://www.zhihu.com/question/421105005/answer/1486192914
人工智能常用的开发软件?我猜测你指的是框架,当然也可能包括IDE,没关系,我将统统给予解答。
首先我认为人工智能已经变成了一个十分成熟的领域,就跟四五年前各种Java培训班,前端培训班,.NetC#等语言培训班一样,现在随处可见的人工智能速成班依旧重蹈着昔日开发领域的步伐。这并非偶然,都是市场驱动导致。
1年前我们还在苦恼一些好用的模型无法部署到更低端的芯片上,而现在我们已经有了很厉害的各个精度的量化算法,各大硬件的前向推理框架已经把速度做到了前所未有的快,甚至大家已经在思考如何做图优化,如何把深度学习模型当成是编译器来做等等;2年前我们还在纠结用什么训练框架,我们还在纠结如何用tensorflow生成需要的数据格式,而现在,我们有超过五种深度学习训练框架可供选择,有超过数十个甚至更多的深度学习周边辅助库来帮助你完成目标...
可以说,深度学习的发展之快速,领域之深入,应用之广阔,可能远超乎你的想象,它正在成为新一代的技术基石,就如同上个世纪八十年代的DOS操作系统一样。
话说回来,就我们通常什么软件,分为几个方面来阐述:这篇回答即是回答题猪的问题,同时也希望给后来者一个锦囊
深度学习模型的训练框架
这个你可以选择的很多,比如Pytorch,比如TensorFlow,比如PaddlePaddle,甚至是天元。这些都有各自的优点和缺点。在这里我只告诉大家最好的选择,至于为什么还需要大家自己去探索,或者自己去踩坑,当然这个最好永远是相对的,不是绝对的答案,我建议选择pytorch。
部署框架
我很建议每一位学习人工智能的同学,合理的选择自己的方向,在我看来,当你入门之后,摆在你面前的有两条路,一条路是学术路线,一条路是工业路线。不管你选择哪一条,我认为都有不错的前景。如果你思路开阔,喜欢阅读英文文献,我建议你深入的选择学术路线,那么就不需要过多的关注或者触碰部署方面的东西;如果你喜欢实践,你不喜欢论文里面那些不告诉输入尺寸就对比时间的傻逼,你不喜欢做一个牛逼的东西但是用不起来,那你可以深入部署,往工程方面靠。不管怎样,这两个方向其实也不冲突,关键是看个人精力是否允许你可以两条腿走路。
说道部署框架,其实现在用的比较多的是透过ONNX的方式进行转换。这在很多框架里面支持的已经很好了,比如pytorch,就可以通过onnx部署到GPU上,通过TensorRT加速可以让网络模型提速很多,也可以通过ONNX转到ncnn或者mnn,部署到移动端不在话下。
这里面其实有一个很有意思的逻辑,大家可以想一下为什么需要有一个ONNX的角色存在?不得不说微软是很有先见之名的。随着ONNX的发展,它确实已经发展成了比较标准的网络模型定义格式。未来毫无疑问也会有更多的东西在这上面构建。比如以后会极大发展起来的深度学习编译器等。
总结来说,部署框架分为CPU和GPU,GPU毫无疑问,你不管哪个公司做的,哪个人做的,都做不过英伟达,毕竟芯片是人家做的。所以说这里面有一个很确定的第一性原理在里面。CPU的就八仙过海各显神通了。业内用的比较多得是ncnn和mnn。ARM旗下主导的Tengine也是一个不错的推理框架。
数据处理
鲁迅曾经说过:数据科学家80%的工作是在数据处理上。其实没有错的,数据的准备,清洗,标签制作,数据集格式的转换等等,你将会有很大一部分工作是做这个。
那么这一部分我也推荐一些工具给大家。首当其冲的,当然是自家的库了。
pipinstallalfred-py这个库干什么的?有什么用?简单来说它就是,我直接贴github链接吧:
https://github.com/jinfagang/alfred
感兴趣的同学可以去看看。
当你需要可视化VOC的数据,coco的数据,你需要从voc转到coo,coco转到voc,voc转yolo,yolo转coco等等,你自己写脚本会累死的。有了他,你就可以找到归属感。
IDE
最后说一下写代码不能不说IDE。到目前为止,我一般只用vscode。
作者:SunArieshttps://www.zhihu.com/question/421105005/answer/1473432606
主流TensorFlow和PyTorch生态肯定少不了了。一般还会配合其他各种小工具,如sklearn、opencv、numpy等等,甚至还有按键精灵的。因为人工智能是一个大课题,不可能仅一到两个工具软件就能完解所有问题,所以工具也在发展,自己也要会写些辅助工具帮助研究。
作者:西涛
https://www.zhihu.com/question/421105005/answer/1511837167
开发框架tensorflow,pytorch,numpy,pandas,sklearn,开发IDEpycharm,vscode,jupytornotebook等
作者:marsggbohttps://www.zhihu.com/question/421105005/answer/1497062214
1.写代码VSCode用来写代码
Vscode超级推荐的快捷键:Ctrl+D
比如一个文件里一共有10个myname字符,你想把前面5个替换成youname,那么你就可以首先鼠标选中第一个myname,然后按五次 Ctrl+D后就可以选中前面5个myname,之后你只需要在键盘上写入youname,就完成了替换。
其他快捷键想到再补充
2.框架框架推荐Pytorch,或者TensorFlow>=2.0
很多人都基于Pytorch做了封装,更进一步简化框架使用门槛,比如Pytorch-lightning,fast.ai,还有我自己写的裁缝库(各种封装哈哈哈,不过感觉挺好用的)torchline
3.调试调试代码很多人都用Pycharm,但是在服务器上你怎么办呢?这里强烈推荐ipdb
pipinstallipdb用法很简单
首先运行py文件
python-mipdbmain.py之后就会进入命令调试
bmain.py:15 这个表示在第15行设置一个断点
butils/other_file.py:66同理你也可以在其他文件里设置断点,只要指定路径就好了
clear1 取消第一个断点
c运行到下一个断点
n运行到下一行代码
s 这个命令可以进入某一个函数进行调试
r这个命令是直接跳转到return语句,一般用在函数里或者for循环语句
ipdb常用的命令就是这些,欢迎补充。
4.Windows下命令行工具Cmder超级推荐,用过的都说好,比Windows自带的命令行窗口好用很多,同时支持Linux下的很多命令,用起来很顺滑。https://cmder.net/
5.代码版本控制Vscode的插件库里宝库非常多,这里推荐安装Gitgraph,有了这个后你不用再记忆那么多git命令了
6.Markdown写笔记推荐小书匠软件,好看免费还好用
其他可选:
印象笔记
OneNote
有道笔记
7.论文阅读软件还在用阿逗比的Acrobat或者福昕阅读器吗?学术论文用这些看的话各种知识点七零八落的,这个时候你需要。http://www.bookxnote.com/
是的,这个软件也是免费的哦,这个软件是Windows版本的Marginnote,关键目前是免费的,而且你可以通过搭配坚果云完成文档和笔记的云同步,简直香到不行,都舍不得推荐给你们,生怕用的人多开始收费。
8.知识脑图这里强推Xmind,懂的都懂哈哈哈
9.Visio替代品Visio常用来话流程图,但是除非你下载盗版的,不然穷逼用不起,所以我当然还是推荐几个免费的。
坚果云自带这个功能,但是好像目前版本不支持导出PDF了,所以不爱ta了
ProcessOn在线流程图画图工具,免费用户好像可以创建10个文档,其实也是够用了
重磅来了!!!Drawio最好没有之一!!!
免费、功能强大、支持导出各种格式、还可以备份到谷歌云、GitHub、gitlab、本地等,好用到想哭啊。https://app.diagrams.net/
10.Mathpix
Mathpix可以非常方便地将图片中的数学公式转化成latex代码,写论文超级方便。每个月好像只有一定数量的免费使用次数,如果你使用频率很高,可以去闲鱼买账号https://mathpix.com/
11.Mobaxterm跑实验肯定要用到服务器,这里强烈推荐MobaXterm,ssh和ftp等功能这个软件都有,用起来非常方便。12.OneCommander超级好用的文件管理器,可以以树形结构展示不同层次文件夹的内容,不用在不同文件夹里来回切换了
☆END☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「mthler」,每日朋友圈更新一篇高质量博文。
↓扫描二维码添加小编↓