博舍

人工智能产业发展现状与四大趋势 人工智能技术主要包括两层基础和什么

人工智能产业发展现状与四大趋势

随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。

一人工智能的内涵与产业链

(一)人工智能的内涵

人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。

图1:人工智能内涵示意图

来源:火石创造根据公开资料绘制

(二)人工智能的发展历程

从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。

第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。

第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。

第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。

图2:人工智能的三次发展浪潮

来源:火石创造根据公开资料绘制

(三)人工智能的产业链

人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。

图3:人工智能产业链

来源:火石创造根据公开资料绘制

二全球人工智能产业发展现状

(一)人工智能产业规模保持快速增长

近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。

图4:2017-2025年全球人工智能产业规模(单位:亿美元)

数据来源:火石创造根据公开资料整理

(二)全球主要经济体争相布局,中美两国占据领先位置

人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。

图5:全球人工智能企业数量分布

数据来源:中国信通院,火石创造整理

(三)公共数据集不断丰富,关键平台逐步形成

全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。

(四)人工智能技术飞速发展,应用持续深入

近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。

三全球人工智能产业发展趋势

(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎

算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。

(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点

随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。

(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临

在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。

(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识

随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。

       原文标题 : 全球视野下人工智能产业发展现状与四大趋势

人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么

人工智能主要包括哪些研究内容,人工智能现状和发展方向是什么?发布时间:2020-08-1313:42:01来源:ITPUB博客阅读:871作者:巴菲特的小秘栏目:互联网科技

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

随着20世纪中叶电子计算机产生以来,科学技术得到迅猛发展,人工智能也随之产生和发展。人工智能已经应用到我们生活的很多领域,伴随着研究的发展,人工智能会更加深入的影响我们的生活。

1.什么是人工智能

“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

2.人工智能的应用领域

今天,AI能力更倾向于应用到人类或其他动物智能的某一或某几方面,并用自动化替代,有时候也用于对其进行模拟。这些在高性能计算机调度之下的智能行为远远比人类的行为更为强大。

2.1路径查找和路径规划

在最小代价路径规划和路径查找系统中,可以使用专门的技术,它们中有一些非常灵巧微妙,另一些则仅仅是用蛮力解决:来模拟对理解的直觉迅速转换或者对普通人大脑生成过程的识别,结果有时非常令人惊讶!路径查找就是路径规划问题的一种变体。

不管怎样,当对真实世界中存在的问题应用AI技术的时候,您所遇到和需要克服的挑战有很多,但其中最令人烦恼的一个就是问题的规模和复杂度,即使在人类看来这些问题非常理所当然、简单和幼稚。早些年,AI研究的大部分工作是用于开发快速、高效、充分理解的查找方法。

2.2规则和专家系统

人工智能的发展到今天开始使用知识库来代替器官或机构记忆,多年来专家系统以及基于规则的决策系统在人类诊断和经验分析上一直处于主导地位。它用于在知识库中挖掘出问题的答案、寻找关联性、模式提取等等相关工作。

事实上,专家系统甚至可以用作游戏的一个可玩性特色。想象在一个实时战略游戏当中,您训练一个罗马士兵军团,让其攻击、抵御某种特定类型的敌人。然后,您又训练了敌人军队,让它再次抵御罗马军团的进攻,依次反复。

每一个历史军队所有的进攻和防御能力都包含在一个具有代表性的数据库中。当某一特定环境设置出现时,这些军队就需要找出一种策略来进行防御,这种需要由某种软件来提供,其中封装了这些环境作为一组参数,用于在专家系统中进行查找操作,从而寻找出抵御敌人的最佳方法。

3.人工智能的现状与发展方向

3.1人工智能的现状

20世纪90年代A.I.技术的发展在各个领域均展示长足发展——学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。到了90年代末,以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。

3.2人工智能发展的方向

关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。

在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。

另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。

于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。

霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。

库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。

由以上分析我们可以了解到,人工智能得到了全球从学术界到应用领域的高度重视,为了使我们的命题那更加美好,为了使我国在人工智能领域赶超国外先进行列,我们应该加大研究和投入力度,培养更多的超一流人才。

http://yyk.familydoctor.com.cn/21523/推荐阅读:数据库设计主要包括的内容是什么研究人工智能方面python用哪个版本更好

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

主要人工智能包括上一篇新闻:python中注释是什么意思下一篇新闻:Python中多重继承是什么猜你喜欢香港cn2的vps访问速度快吗香港cn2的vps适合搭建哪些网站便宜海外vps购买怎么选择便宜海外vps怎么租用便宜海外vps的ip被墙如何解决便宜海外vps选择要注意哪些问题香港vps访问速度变慢的原因有哪些怎么辨别真假香港vps企业网站怎么选择香港vps香港vps的IP为什么会被封

人工智能各学派简介:符号主义,连接主义,行为主义

Xshell登录不显示登录名框

gaojq007:亲测可用

智能医疗---医疗实体识别

LLOOOOPP:。。。医学生路过,真的苦逼,一个破题搜题都搜不明白,根本背不完

Xshell登录不显示登录名框

开心大猪蹄子:请教博主,我在虚拟机里面同时安装了centos和Ubuntu,采用的是NAT模式,都能和主机Ping通,网络也都正常,都设置了静态IP,但是在使用xshell连接时,centos可以正常连接(我先装的centos)关闭centos打开Ubuntu,进行连接,xshell不弹出用户密码框,请问您有遇到类似问题吗

Xshell登录不显示登录名框

weixin_45987347:666楼主牛逼

centos不小心把yum删除了的拯救办法

java后端指南:我也是一样

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇