博舍

人工智能研究主要有哪三大学派,其特点是什么 人工智能的主流学派包括哪些内容

人工智能研究主要有哪三大学派,其特点是什么

人工智能研究主要有哪三大学派,其特点是什么?

(1)符号主义:又称为功能模拟学派,主要观点认为智能活动的基础是物理符号系统,思维过程是符号模式的处理过程。其特点:(a)立足于逻辑运算和符号操作,适合模拟人的逻辑思维过程,解决需要逻辑推理的复杂问题。(b)知识可用显示的符号表示,在已知基本规则的情况下,无需输入大量的细节知识。(c)便于模块化,当个别事实发生变化时,易于修改。(d)能与传统的符号数据库进行连接。(e)可对推理结论进行解释,便于对各种可能性进行选择。(2)连接主义:又称为结构模拟学派,是基于神经网络及网络间的连接机制和学习算法的人工智能学派。主要观点认为大脑是一切智能活动的基础,因而从大脑神经元及其连接机制出发进行研究,渴望揭示人类智能的奥秘,从而真正实现人类智能在机器上的模拟,其特点:(a)通过神经元之间的并行协作实现信息处理,处理过程具有并行性,动态性,全局性。(b)可以实现联想的功能,便于对噪声的信息进行处理。(c)可以通过对于神经元之间连接强度的调整实现学习和分类等。(d)适合模拟人类的形象思维过程。(e)求解问题时,可以较快的得到一个近似解。(3)行为主义:又称模拟学派、进化主义或控制论学派,认为智能行为的基础是“感知行为”的反应机制。基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。其特点:(a)知识和形式表达和模型化方法是人工智能的重要障碍之一。(b)智能取决于感知和行动,应直接利用机器对机器环境作用后,以环境对作用的响应为原型。(c)智能行为只能体现在世界中,通过与周围环境交互而表现出来。(d)人工智能可以像人类智能一样逐步进化,分阶段发展和增强。

人工智能的三大学术流派有哪些

今天无意间听到了一位同事说起人工智能的三大流派,这个也有流派?想先了解一下,就在网上搜索了一下相关的基础知识进行补充。

前世今生

人工智能在其学科发展的60余年历史中,有许多不同学科背景的学者都曾对人工智能做出过各自的理解,提出不同的观点,由此产生了不同的学术流派。这其中,对人工智能研究影响较大的主要有符号主义、联结主义和行为主义三大学派。

三大学派一、符号主义(symbolicism)-数理逻辑

符号主义学派认为人工智能源于数学逻辑,人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一种运算。

符号主义致力于用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,从而模拟人类的认知过程,实现人工智能。

符号主义的发展大概经历了几个阶段:推理期(20世纪50年代–20世纪70年代),知识期(20世纪70年代—-)。“推理期”人们基于符号知识表示、通过演绎推理技术取得了很大的成就;“知识期”人们基于符号表示、通过获取和利用领域知识来建立专家系统取得了大量的成果

二、联结主义(connectionism)-仿生学

连接学派通过算法模拟神经元,并把这样一个单元叫做感知机,将多个感知机组成一层网络,多层这样的网络互相连接最终得到神经网络。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。联结主义学派从神经生理学和认知科学的研究成果出发,把人的智能归结为人脑的高层活动的结果,强调智能活动是由大量简单的单元通过复杂的相互连接后并行运行的结果。我们可以根据要解决的实际问题来构建神经网络,进而用数据不断训练这一网络,调整连接权重来模拟智能。

20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播算法(BP)算法。进入21世纪后,连接主义卷土重来,提出了“深度学习”的概念。

三、行为主义(actionism)-控制论

是一种基于“感知—行动”的行为智能模拟方法。行为主义学派认为,行为是有机体用以适应环境变化的各种身体反应的组合,它的理论目标在于预见和控制行为。

行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作首推布鲁克斯(Brooks)的六足行走机器人,它被看作新一代的“控制论动物”,是一个基于感知-动作模式的模拟昆虫行为的控制系统。

备注:https://www.toutiao.com/a6639167420290302467/

人工智能的研究热点和应用,主要包含哪几个方面

现在,人工智能已逐渐形成了诸如专家系统、机器学习、模式识别、自然语言理解、机器人学、博弈、人工神经网络等多个研究领域。而目前人工智能研究的热点和应用包含以下几个方面:1、智能接口智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。2、数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。3、主体及多主体系统主体是具有信念、愿望、意图、能力、选择等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自主地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前,对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:网络人工智能的六大应用方向http://www.duozhishidai.com/article-9314-1.html哪些是人工智能应用最多的场景?http://www.duozhishidai.com/article-6786-1.html百年来人工智能的应用实例,主要有哪些?http://www.duozhishidai.com/article-2464-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

人工智能技术的三大学派

人工智能的发展,在不同的时间阶段经历了不同的流派,并且相互之间盛衰有别。目前人工智能的主要学派有下列三家:

符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统,即符号操作系统,假设和有限合理性原理。连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。

会发现三者的根源依据存在着较大的差异性,也为后世的学派发展产生了较为深远的影响。

符号主义(优秀的老式人工智能)

认为人工智能源于数理逻辑,主张用公理和逻辑体系搭建一套人工智能系统。代表的有支持向量机(SVM),长短期记忆(LSTM)算法。

数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。

正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇