人工智能的关键技术有哪些
从语音识别到智能家居,从人机大战到无人驾驶,人工智能的演变给我们社会的一些生活细节带来了一次又一次的惊喜。未来更多依靠智能产品的人工智能技术会发展成什么样?人工智能技术关系到人工智能产品能否成功应用于我们的生活场景。下面就由小编为您介绍一下人工智能的关键技术有哪些?
竹间智能01条点评咨询产品免费试用解决用户选型困难的好软件,有各维度的信息客户案例暂无合作品牌54人工智能的关键技术有哪些?
在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前,虚拟现实/增强现实面临的挑战主要体现在四个方面:智能获取、普通设备、自由交互和感知集成。在硬件平台和设备、核心芯片和设备、软件平台和工具、相关标准和规范等方面存在一系列科技问题。一般来说,虚拟现实/增强现实呈现虚拟现实系统智能化、虚拟现实环境对象无缝融合、自然交互全方位、舒适化的发展趋势。以上就是小编为您介绍的人工智能的关键技术有哪些?
6大人工智能应用关键技术,终于有人讲明白了
导读:我国《人工智能标准化白皮书(2018年)》中也给出了人工智能的定义:“人工智能是利用数字计算机或者由数字计算机控制的机器,模拟、延伸和扩展人类的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术和应用系统。”
人工智能的核心思想在于构造智能的人工系统。人工智能是一项知识工程,利用机器模仿人类完成一系列的动作。根据是否能够实现理解、思考、推理、解决问题等高级行为。
在未来,人工智能应用主要会体现如下几大核心技术特点。
作者:达观数据
来源:大数据DT(ID:hzdashuju)
01机器人流程自动化(RoboticProcessAutomation,RPA)
RPA(RoboticProcessAutomation,机器人流程自动化)的定义:通过特定的、可模拟人类在计算机界面上进行操作的技术,按规则自动执行相应的流程任务,代替或辅助人类完成相关的计算机操作。
与大家通常所认为的具备机械实体的“机器人”不同,RPA本质上是一种能按特定指令完成工作的软件,这种软件安装在个人计算机或大型服务器上,通过模拟键盘、鼠标等人工操作来实现办公操作的自动化。
▲图1-1RPA是未来办公创新和发展的趋势
RPA也被形象地称为数字化劳动力(DigitalLabor),是因为其综合运用了大数据、人工智能、云计算等技术,通过操纵用户图形界面(GUI)中的元素,模拟并增强人与计算机的交互过程,从而能够辅助执行以往只有人类才能完成的工作,或者作为人类高强度工作的劳动力补充。
自2015年以来,人工智能技术和RPA在同一时间大幅度发展和进步,恰好相辅相成,汇合在了一起。自然而然地,RPA和AI两者的结合运用,带来了一股非常独特的智能化应用的发展潮流,我们称之为智能RPA技术,或者IPA技术(IntelligentProcessingAutomation),即智能流程自动化技术(如图1-2所示)。
▲图1-2智能RPA的构成:RPA+AI=IPA
换句话说就是,RPA是基础,需要与其他技术手段整合在一起,方能实现IPA及其优势。
商业社会对流程自动化的功能的期望将与日俱增,将机器学习等AI技术运用到RPA中,将人工智能功能集成到产品套件中,以提供更多类型的自动化功能,已经成为未来RPA发展的主流趋势。
02光学字符识别(OpticalCharacterRecognition,OCR)
OCR技术是指利用电子设备(例如扫描仪或数码相机)将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。通俗地说就是,对文本资料进行扫描,然后对图像文件进行分析处理,以获取文字及版面信息的技术。
OCR技术一般可分为如图3-1所示的5个阶段。
▲图3-1OCR技术的5个阶段
下面具体说明OCR的识别流程。
1.图像处理
针对图像的成像问题进行修正。常见的图像预处理过程包括:几何变换(透视、扭曲、旋转等)、畸变校正、去除模糊、图像增强和光线校正、二值化处理等。
2.文字检测
检测文本所在位置、范围及其布局,通常还包括版面分析和文字行检测等。文字检测解决的主要问题是哪里有文字,文字的范围有多大。
文字检测采用的处理算法一般包括:Faster-RCNN、Mask-RCNN、FPN、PANet、Unet、IoUNet、YOLO、SSD。
3.文字识别
在文本检测的基础上,对文本内容进行识别,将图像中的文本信息转化为计算机可识别和处理的文本信息。文字识别主要解决的问题是每个文字是什么。
文字识别常采用的处理算法包括:CRNN、AttentionOCR、RNNLM、BERT。
4.文本抽取
从文字识别结果中抽取出需要的字段或要素。
文本抽取常采用的处理算法包括:CRF、HMM、HAN、DPCNN、BiLSTM+CRF、BERT+CRF、Regex。
5.输出
输出最终的文字识别结果或者文本抽取结果。
03机器学习/大数据分析
机器学习/大数据分析是一种用于设计复杂模型和算法并以此实现预测功能的方法,即计算机有能力去学习,而不是依靠预先编写的代码。它能够基于对现有结构化数据的观察,自行识别结构化数据中的模型,并以此来输出对未来结果的预测。
机器学习是一种通过“监督”和“无监督”学习来识别结构化数据中的模式(例如日常性能数据)的算法。监督算法是指在根据自己的输入做出预测之前,会从输入和输出的结构化数据集来进行学习。无监督算法是指观察结构化数据,并对已识别的模式提供相关见解。
机器学习和高级分析可能会改变保险公司的游戏规则,例如,在提高合规性、降低成本结构,以及从新的见解中获得竞争优势。高级分析已经在领先的人力资源部门中得到了广泛应用,主要用于确定和评估领导者和管理者的核心品质,以便更好地预测行为、规划职业发展道路和下一任领导岗位归属。
04自然语言生成(NaturalLanguageGeneration,NLG)
计算机具有与人一样的表达能力和写作能力,它遵循某种规则,将从数据中观察到的信息转换成高质量的自然语言文本。例如,自动识别会议邮件中的主题、数字地名、人名地址并生成行程表备忘录,或者识别出合同条款的关键内容并将摘要的重点生成列表。
关于自然语言生成及自然语言处理的详细介绍,请阅读《详解自然语言处理5大语义分析技术及14类应用(建议收藏)》
05智能工作流(SmartWorkflow)
智能工作流是一种用于流程管理的软件工具,其中集成了由人和机器共同执行的工作,允许用户实时启动和跟踪端到端流程的状态,以便于管理不同组之间的切换,包括机器人与人类用户之间的切换,同时还能提供瓶颈阶段的统计数据。
随着社会和科技的不断进步,各个领域都开始逐步朝着自动化、智能化的方向快速发展。工作流相关技术的研究也越来越受重视,并广泛地应用于制造业、软件开发、银行金融、生物医学等不同领域。
工作流不但能够自动化地处理相关的活动和任务,减少人机交互处理过程中带来的潜在错误,而且能够精确化每一个处理步骤,最大化地提高生成效率,并且将工作流应用到动态、可变且灵活的应用场景当中。
近年来,在大数据、人工智能的背景下,工作流中的业务流程日趋复杂,所面临的环境和数据也日趋复杂,由需求分析引起的业务过程重新建模或由维护升级引起的过程模式变更和改进也变得越来越频繁。
在这种动态多变的复杂环境下,如何快速识别出任务,然后快速高效并有针对性地处理工作流问题,已成为目前工作流任务研究的关键问题。
RPA软件机器人在工作过程中,也会遇到很多类似的情况。工作流的复杂多变,会导致RPA作业流程的复杂多变,使其无法做到自适应,这将会大大影响RPA软件机器人的作业效率。
因此,需要通过智能工作流的技术,实现动态地调整RPA里的任务设定,以及RPA业务流程的自动变更和自动升级,在智能工作流的指导下实现自适应作业模式。
实现智能工作流的方法有很多,比如,美国J.H.Holland教授提出的基于遗传算法的工作流调度,PandeyS等提出的基于粒子群优化算法的启发式算法(PSO)可用于不同资源的智能调度。除此之外,还有很多基于自然界和仿生学的智能算法,比如,混合蛙跳算法、布谷鸟搜索算法、蝙蝠算法、人工蜂群算法等。
目前比较常见的方法是实现一种基于智能规划的工作流处理模式,该模式不再是单纯地将不同的活动当作对彼此没有影响的单独事件,而是有针对性地考虑多个事件的共同影响。
该模式充分考虑了工作流和智能规划之间的相似之处,通过智能规划推导出不同工作流任务之间的内在逻辑关系,并从其他的渠道和外部信息中充分挖掘潜在的关系。
逐步改进传统工作流中的问题,使用全新的智能规划的手段,从表面动作中挖掘出潜在的信息,过滤噪声数据,进而实现流程的自动修正,最后,通过前面得出的结论,有针对性地修改之前的RPA作业流程,实现自适应性的作业模式和作业过程。
06认知智能体(CognitiveAgent)
认知智能体是一种结合了机器学习和自然语言生成的技术,并在此基础上加入情感检测功能以做出判断和分析,使其能够执行任务,交流沟通,从数据集中学习,甚至根据情感检测结果作出决策。换句话说,机器会像人一样产生“情感共鸣、精神共振”,真正成为一个完全虚拟的劳动力(或者智能体)。
在客服领域,英国某汽车保险公司通过使用认知智能体技术,将客户转化率提高了22%,验证错误率降低了40%,整体投资回报率达到了330%。
当然,德勤、安永等咨询公司也坦然表示,就现阶段许多企业的流程管理与系统的基础能力来看,仍存在着大量的基础建设工作有待开展。而打造智能流程自动化所需的部分核心技术(例如认知智能体等)也还停留在雏形阶段。
智能包含三个方面,分别是计算智能、感知智能和认知智能。
在计算智能方面,计算机的速度早已远远超过人工的效率。
在感知智能方面,随着OCR、NLP等技术的发展,目前也已经能够实现很多的效果。
但是在认知智能方面,即使在某些特定领域,自然语言的处理也已经可以得到比人工更好的成绩,但是在某些领域,特别是知识理解、知识推理、知识判断等方面,还有很多需要逐步积累、逐步完善的地方。
按照机器能否产生自我认知和机器人的适用范围,人工智能分为弱人工智能和强人工智能,其中弱人工智能里的机器没有自我意识,不具备真正的推理和独立解决问题的能力,通常只适用于解决特定条件下的某种问题。当前人工智能的研究主要在弱人工智能领域。
而在强人工智能方面,机器具有一定的自我意识,能够通过学习拓展功能。对于当前不具备的功能或者当前不了解的知识,能通过自行学习获得。
当前条件下,全面的强人工智能还面临技术能力、社会伦理等多方面的挑战,但是在某些领域的特定场景下,具备认知智能能力和学习能力的人工智能软件,不仅能够优化作业流程、快速响应、覆盖更多不同的情况,同时还能够最大限度地避免技术风险和应用风险,是一个非常有价值的研究方向。
认知智能有很多种定义,其中,复旦大学肖仰华教授曾经提到过,所谓让机器具备认知智能是指让机器能够像人一样思考,而这种思考能力具体体现在如下几个方面。
第一,机器具备能够理解数据、理解语言进而理解现实世界的能力。
第二,机器具备能够解释数据、解释过程进而解释现象的能力。
第三,机器具备推理、规划等一系列人类所独有的认知能力,也就是说认知智能需要解决推理、规划、联想、创作等一系列复杂任务。
智能体是指驻留在某一环境下,能够持续自主地发挥作用,具备驻留性、反应性、社会性、主动性特征的计算实体。根据著名人工智能学者,美国斯坦福大学Hayes-Roth教授的理论“智能体能够持续执行三项功能:感知环境中的动态条件、执行动作影响环境、进行推理以解释感知信息、求解问题和决定动作”。
从前面的定义我们可以看出,认知智能体能够感知到环境中的动态条件,然后根据这些条件执行相应的动作来影响现有的环境,同时其还能够用推理来解释感知信息,求解相关问题,决定后续动作。
将认知智能体与RPA相结合,我们能够得到一个具备认知智能的机器人,它可以根据所涉及的应用系统和其他环境的变化动态感知下一步需要做的事情,同时执行相应的动作来影响对应的环境信息,实现智能录入、智能监控、智能文档处理和辅助判定。
与此同时,认知智能体通过RPA技术在处理业务的同时,还能够学习到相关的经验和知识,逐步掌握识别重点的能力。
认知智能体的研究包含了多种不同的方法,近年来,随着分布式人工智能、信息科学和网络科学的不断发展,面向动态环境下的分布式协同决策已经成为认知智能体的一个重要的研究方式。这种方式在以多无人机系统、多机器人系统为代表的典型无中心式多智能体系统中得到了广泛的应用。
与此同时,受限于自身设计,智能体对所在环境和系统常呈现出信息的部分可观测特征,而有限的智能体之间的交互和外部的约束也使得获得全局信息需要付出极高的代价。
同时,无中心式的多智能体系统在应用中呈现出了与社会网络相类似的自组结构和相应的复杂网络特征,即网络中单个智能体通常仅能连接/交互所在局部网络中的小部分智能体,传统的集中式协同模型则不再适用。
此外,类似于社会网络中人与人之间的有限信息交换便可大大提升个体的决策效率,同样的方法能否应用到相应的研究当中,也处于不断的尝试过程中。
关于作者:达观数据,中国智能RPA领域的龙头企业,独立开发了全套“RPA+AI”系统,拥有核心知识产权。达观智能RPA产品是业界不依赖微软底层开发框架、未使用第三方开源框架的RPA产品。
本文摘编自《智能RPA实战》,经出版方授权发布。
延伸阅读《智能RPA实战》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部从实战角度讲解“AI+RPA”如何为企业数字化转型赋能的著作,从基础知识、平台构成、相关技术、建设指南、项目实施、落地方法论、案例分析、发展趋势8个维度对智能RPA做了系统解读,为企业认知和实践智能RPA提供全面指导。
划重点????
干货直达????
西安交大送大一新生这本书,你读过吗?12本有趣有料的科普书盘点
终于有人把AI、BI、大数据、数据科学讲明白了
监督学习、非监督学习、强化学习都是什么?终于有人讲明白了
一条SQL引发的“血案”:与SQL优化相关的4个案例
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
人工智能技术包含七个关键技术(人工智能技术优势)
导读人工智能技术包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。近来随着深度学习的发展,预处理、特征提取与算法处人工智能技术包括七大关键技术:机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物识别、AR/VR。
1.机器学习
机器学习是一门交叉学科,涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域。新的知识或技能,重组现有的知识结构以不断提高自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术的重要方法之一。研究从观测数据(样本)开始寻找规律,并利用这些规律来预测未来的数据或不可观测的数据。机器学习根据不同的学习模式、学习方法和算法有不同的分类方法。
2.知识图谱
知识图谱本质上是一个结构化的语义知识库,是由节点和边组成的图数据结构。它以符号形式描述物理世界中的概念及其相互关系。基本单位是“实体-关系-实体”三元组,以及实体及其关联的属性-值对。不同的实体通过关系相互连接,形成网络化的知识结构。在知识图谱中,每个节点代表现实世界中的一个“实体”,每条边都是实体之间的“关系”。通俗地讲,知识图谱就是将所有不同类型的信息连接起来形成的关系网络,提供从“关系”的角度分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、群体欺诈等公共安全领域。需要异常分析、静态分析、动态分析等数据挖掘方法。尤其是知识图谱在搜索引擎、可视化展示、精准营销等方面具有很大优势,已成为业界流行的工具。但是,知识图谱的开发仍然存在很大的挑战,比如数据噪声问题,即数据本身存在错误或数据冗余。随着知识图谱应用的深入,还有一系列关键技术需要突破。
3.自然语言处理
自然语言处理是计算机科学和人工智能领域的一个重要方向。它研究能够利用自然语言实现人与计算机之间有效交流的各种理论和方法。它涉及的领域很多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译技术是指利用计算机技术实现从一种自然语言到另一种自然语言的翻译过程。基于统计的机器翻译方法突破了以往基于规则和基于实例的翻译方法的局限,翻译性能有了很大的提升。基于深度神经网络的机器翻译在日常口语等一些场景中的成功应用已经显示出巨大的潜力。随着上下文表示和知识逻辑推理能力的发展,以及自然语言知识图谱的不断扩展,机器翻译将在多轮对话翻译和文本翻译领域取得更大的进步。
语义理解技术是指利用计算机技术来理解文本并回答与文本相关的问题的过程。语义理解更侧重于理解上下文和控制答案的准确性。随着MCTest数据集的发布,语义理解得到了更多的关注并取得了快速的发展。相关数据集和相应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答和对话系统的准确性。
问答系统分为开放域对话系统和特定领域问答系统。问答系统技术是指让计算机能够像人类一样以自然语言与人交流的技术。人们可以向问答系统提交自然语言问题,系统会返回高度相关的答案。问答系统的应用产品虽然出现了很多,但大多应用在实用信息服务系统和智能手机助手等领域。问答系统的鲁棒性仍然存在问题和挑战。
自然语言处理面临四大挑战:
一是在词汇、句法、语义、语用、语音等不同层次上存在不确定性;
二是新的词汇、术语、语义和语法造成的未知语言现象的不可预测性;
第三,数据资源不足,难以覆盖复杂的语言现象;
第四,语义知识的模糊性和错综复杂的相关性很难用简单的数学模型来描述,语义计算需要大量参数的非线性计算
4.人机交互
人机交互主要研究人与计算机之间的信息交换,主要包括人与计算机之间和计算机与人之间的信息交换两个部分。它是人工智能领域的一项重要外围技术。人机交互是一门与认知心理学、人机工程学、多媒体技术、虚拟现实技术密切相关的综合性学科。传统的人与计算机之间的信息交换主要依靠交互设备,主要包括键盘、鼠标、操纵杆、数据衣、眼动仪、位置追踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔显示器、扬声器和其他输出设备。
5.计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,赋予计算机类似人类的能力来提取、处理、理解和分析图像和图像序列。自动驾驶、机器人、智能医疗等领域都需要通过计算机视觉技术从视觉信号中提取和处理信息。近年来,随着深度学习的发展,预处理、特征提取和算法处理逐渐融合,形成端到端的人工智能算法技术。根据要解决的问题,计算机视觉可以分为五类:计算成像、图像理解、3D视觉、动态视觉和视频编解码。
目前人工智能技术优势,计算机视觉技术发展迅速,已初步形成产业规模。计算机视觉技术未来的发展主要面临以下挑战:
一是如何更好地与不同应用领域的其他技术相结合。计算机视觉可以广泛利用大数据解决某些问题,并逐渐成熟,可以超越人类,但在某些问题上无法达到高性能。精确;
二是如何减少计算机视觉算法的开发时间和人力成本。目前,计算机视觉算法需要大量的数据和人工标注,需要较长的研发周期才能达到应用领域的准确性和耗时要求;
三是如何加快新算法的设计和开发。随着新型成像硬件和人工智能芯片的出现,针对不同芯片和数据采集设备的计算机视觉算法的设计和开发也是挑战之一。
6.生物识别
生物特征识别技术是指通过个人的生理或行为特征识别和认证个人身份的技术。从申请流程来看,生物特征识别通常分为注册和识别两个阶段。在注册阶段,通过传感器采集人体的生物表征信息,如使用图像传感器采集指纹、人脸等光学信息,使用麦克风采集语音、数据等声学信息预处理和特征提取技术用于处理收集的数据。,得到相应的特征进行存储。
识别过程采用与注册过程相同的信息采集方法,对被识别的人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比较分析,完成识别。从应用任务来看,生物特征识别一般分为识别和确认两个任务。识别是指从存储库中确定待识别人身份的过程,是一个一对多的问题;确认是指识别待识别的人的过程。比对图书馆中特定个体的信息以确定身份的过程是一对一的问题。
生物特征识别技术涉及广泛的生物特征,包括指纹、掌纹、面部、虹膜、手指静脉、声纹、步态等生物特征。识别过程涉及图像处理、计算机视觉、语音识别、机器学习和许多其他技术。目前,生物特征识别作为一项重要的智能身份认证技术,已广泛应用于金融、公安、教育、交通等领域。
7.虚拟现实/增强现实
虚拟现实(VR)/增强现实(AR)是一种以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触觉等方面高度相似的数字环境。用户借助必要的设备与数字环境中的物体进行交互,相互影响,获得与真实环境相似的感觉和体验。
从技术特点来看,根据处理阶段的不同,虚拟现实/增强现实可分为采集与建模技术、分析与利用技术、交换与分发技术、显示与交互技术、技术标准与评价五个方面。系统。采集和建模技术研究如何对物理世界或人类创造力进行数字化和建模。难点在于三维物理世界的数字化建模技术;分析利用技术侧重于对数字内容的分析、理解、搜索和认识。难点在于内容的语义表示和分析;交换分发技术主要强调在各种网络环境下为不同终端用户提供大规模的数字内容流通、转换、集成和个性化服务,其核心是开放的。内容交换和版权管理技术;显示与交换技术侧重于数字内容符合人类习惯的各种显示技术和交互方式,为提高人们对复杂信息的认知能力,难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。为各种网络环境下的不同终端用户提供转换、集成和个性化服务人工智能技术优势,其核心是开放的。内容交换和版权管理技术;显示与交换技术侧重于数字内容符合人类习惯的各种显示技术和交互方式,为提高人们对复杂信息的认知能力,难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。为各种网络环境下的不同终端用户提供转换、集成和个性化服务,其核心是开放的。内容交换和版权管理技术;显示与交换技术侧重于数字内容符合人类习惯的各种显示技术和交互方式,为提高人们对复杂信息的认知能力,难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。它的核心是开放的。内容交换和版权管理技术;显示与交换技术侧重于数字内容符合人类习惯的各种显示技术和交互方式,为提高人们对复杂信息的认知能力,难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。它的核心是开放的。内容交换和版权管理技术;显示与交换技术侧重于数字内容符合人类习惯的各种显示技术和交互方式,为提高人们对复杂信息的认知能力,难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。为了提高人们对复杂信息的认知能力,难点在于建立一个自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。为了提高人们对复杂信息的认知能力,难点在于建立一个自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、源编码等规范标准以及相应的评价技术。
免责声明:本文由用户上传,如有侵权请联系删除!