新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
人工智能概论
为积极响应国家低碳环保政策,2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。
电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问https://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。
完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。
认证证书申请注意事项:
1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。
2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。
人工智能:模型与算法
人工智能(ArtificialIntelligence,简称AI)是以机器为载体所展示出来的人类智能,因此人工智能也被称为机器智能(MachineIntelligence)。对人类智能的模拟可通过以符号主义为核心的逻辑推理、以问题求解为核心的探询搜索、以数据驱动为核心的机器学习、以行为主义为核心的强化学习和以博弈对抗为核心的决策智能等方法来实现。
本课程成体系介绍人工智能的基本概念和基础算法,可帮助学习者掌握人工智能脉络体系,体会具能、使能和赋能,从算法层面对人工智能技术“知其意,悟其理,守其则,践其行”。课程内容包括如下:人工智能概述、搜索求解、逻辑与推理、监督学习、无监督学习、深度学习、强化学习、博弈对抗。
来而不可失者,时也;蹈而不可失者,机也。人工智能不单纯是一门课程、一手技术、一项产品或一个应用,而是理论博大深厚、技术生机勃勃、产品落地牵引、应用赋能社会的综合生态体(AIecosystem)。为了加强实训,课程中安排了以搜索求解为核心的黑白棋AI算法、以线性回归为核心的图像恢复、以深度学习为核心的垃圾分类等实训题目。
注:
1)课程相关资料可访问“智海(www.aiplusx.com.cn)”和“智海-Mo平台(momodel.cn)”。
2)本课程对应ppt可以如下免费下载
链接:https://pan.baidu.com/s/1gIweAOKUDAnON5SZat03Kg
提取码:ai22
人工智能导论教学大纲
《人工智能导论》课程教学大纲
英文名称:IntroductiontoArtificialIntelligence课程编号:38150216适用专业:计算机科学与技术(考查),信息安全(考查)学时:46学分:2.5课程类别:信息安全方向、软件方向课程性质:指选课
一、课程的性质和目的
人工智能是计算机科学与技术的一个前沿学科,它也是一个综合性的交叉学科。《人工智能导论》为计算机科学技术专业和信息安全专业的一门指选课,其目的是使学生初步了解人工智能的基本原理,初步学习和掌握人工智能的基本技术,以便拓宽知识面,并为进一步学习和应用奠定基础。
二、课程教学内容
第一章人工智能概述
基本内容和要求:1.人工智能的概念与目标;2.人工智能的研究内容与方法;3.人工智能的分支领域;4.人工智能的发展概况。
第二章逻辑程序设计语言Prolog
基本内容和要求:1.掌握Prolog语言的语句特点、程序结构和运行机理;2.能编写简单的Prolog程序,能读懂一般的Prolog程序。教学重点:Prolog程序设计。教学难点:表与递归,回溯控制
第三章基于图搜索的问题求解
基本内容和要求:1.掌握状态图的基本概念、状态图搜索基本技术和状态图问题求解的一般方法,包括穷举式搜索、启发式搜索、加权状态图搜索和A算法、A*算法等;2.掌握与或图的基本概念、与或图搜索基本技术和或图问题求解的一般方法;3.理解一些经典规划调度问题(如迷宫、八数码、梵塔、旅行商、八皇后等问题)的求解方法;教学重点:1.状态图搜索常用算法和问题的状态图表示;2.与或图搜索常用算法和问题的与或图表示。教学难点:问题的状态图、与或图表示。
第四章基于遗传算法的随机优化搜索
基本内容和要求:1.了解遗传算法的基本概念和特点;2.理解基本遗传算法的基本原理和应用技术。教学重点:选择-复制、交叉和变异等三种遗传操作。教学难点:遗传算法的应用。
第五章知识表示与推理
基本内容和要求:1.了解知识表示的基本概念;2.理解和掌握常用知识表示方法,包括:一阶谓词逻辑、产生式规则、框架和语义网络的基本原理和语言实现;3.理解不确定性知识的表示及其推理方法。教学重点:1.基于一阶谓词逻辑和产生式规则的推理模式。2.不确定性知识的表示及其推理。教学难点:不确定性知识的表示及其推理。
第六章机器学习与知识发现基本内容和要求:1.理解符号学习的基本原理,包括:记忆学习、演绎学习、类比学习、示例学习、发现学习等;2.理解连接学习的基本原理,包括:人工神经网络的概念和类型、神经网络学习方法等;3.了解知识发现与数据挖掘的概念、对象、任务和基本方法等。教学重点:1.符号学习中的归纳学习;2.神经网络学习。教学难点:BP神经网络及其学习举例。
第七章专家系统基本内容和要求:1.理解专家系统的概念和结构;2.初步掌握专家系统设计与实现方法;3.了解专家系统的发展。教学重点:1.专家系统的概念和结构;2.专家系统的设计与实现。教学难点:专家系统的设计与实现。
第八章Agent系统基本内容和要求:1.理解Agent的概念、类型和结构;2.理解多Agent系统的原理、结构和应用;3.了解Agent的实现语言工具。教学重点:Agent和多Agent系统的概念和结构。教学难点:多Agent系统的结构。
第九章智能化网络基本内容和要求:1.了解智能网络的概念和原理;2.理解网络的智能化管理与控制基本技术;3.了解网上信息的智能化检索基本原理和方法。教学重点:网络的智能化管理与控制。教学难点:网上信息的智能化检索。
三、课程教学的基本要求1.本课程的教学包括课堂讲授、课外作业、辅导答疑、上机实验和期末考试等教学环节。2.课堂教学采用启发式教学方法,理例结合,多媒体并用,引导学生加深对课程内容的理解,提高学生的学习兴趣和效果。3.理论联系实际,通过本课程的教学,力争使学生在理解和掌握大纲所要求的知识内容的基础上,能正确地运用这些知识解决有关实际问题。
四、课程学时分配
讲课内容学时人工智能概述2逻辑程序设计语言Prolog4基于图搜索的问题求解6基于遗传算法的随机优化搜索2知识表示与推理10机器学习与知识发现6专家系统4Agent系统2智能化网络2上机实验8合计46五、建议教材与教学参考书
教材:《人工智能技术导论》(第三版),廉师友,西安电子科技大学出版社,2007。
教学参考书:[1]人工智能,(美)NilsJ.Nilsson,(郑扣根,庄越挺译),机械工业出版社,2000;[2]人工智能――一种现代方法(第二版),[美]StuartRussell,PeterNorvig,姜哲等译,人民邮电出版社,2004;[3]人工智能,[日]沟口理一郎,石田亨编,卢伯英译,科学出版社,2003;[4]ArtificialIntelligence:AGuidetoIntelligentSystems,SecondEdition,MichaelNegnevitsky,PearsonEducation,2005;[5]高级人工智能,史忠植,科学出版社,2006。