博舍

人工智能论文3000字14篇 人工智能论文3000字有文献dox

人工智能论文3000字14篇

【www.ahwmw.com--综合论文】

智能机器人是人类智慧的结晶。它在一定程度上使人们从繁忙的工作中解脱出来。以下是为大家整理的关于人工智能论文3000字的文章14篇,欢迎品鉴!

人工智能论文3000字篇1

[摘要]经济全球化形势下,英语教学需求增长,尤其对于高校教育机构而言,传统英语教学模式的局限性弊端已逐渐显露,新型教学技术的引入与应用成为大势所趋。人工智能技术作为现代科技的重要产物,于近年来开始被尝试应用于教学工作当中,在语言类教学课堂中发挥着尤为重要的辅助作用。基于高校英语教学的现实需求,如何构建有益于提升教学实效性的教学模式,并由此实现人工智能技术在英语教学课堂中的有效利用,成为亟待解决的关键问题。现由人工智能视野出发,尝试在高校英语教学中拟建混合式课堂,以期实现教学效率及质量的优化。

[关键词]人工智能;高校英语;混合式教学;构建策略

从高校教育阶段的英语教学目的来看,其核心主要在于语言应用能力的培养,要达成这一目标,仅仅依靠单一的课堂内教学远远不够,在缺乏课外训练的情况下容易导致学生出现语义理解、口语表达方面的短板,不利于全面应用能力的构建。因此,以“线上+线下”为特征的混合式教学模式在高校英语课堂逐渐兴起,在很大程度上弥补了以往单一性教学模式的不足,也更有利于为人工智能等现代教学技术的引入与应用扩大空间。但由于长期受传统教学模式影响,人工智能与混合式教学模式在高校英语课堂中的融合构建容易受阻,需要以科学合理的策略加以推进,现提出相应方案。

一、人工智能与混合式教学模式的相关理论概述

(一)人工智能的概念及主要功能人工智能技术是建立在计算机信息处理基础上的一种智能化技术,能够对人类行为逻辑、方式及习惯做出相应的解析与模仿,使机器的运作能够在智能程序的驱使下更贴合人类的交互需求[1]。基于这一应用方向,人工智能技术主要由理论研究与工程研究两个方面共同推进完整体系的构建,其中,理论研究工作旨在为后续工程研究的实践奠定基础,重点一般放在对现有技术经验的总结探索、对相关理论体系的整合提炼等方向;工程研究工作则旨在利用现有人工智能技术独立完成产品的开发与设计,重点一般放在人工智能系统与设备的应用、新产品的研发实验与调整改进等。从人工智能目前的主要功能来看,大致可分为以下三类:一是通过智能系统完成信息的存储、提取及内部处理;二是通过智能化能力完成信息的符号化处理;三是建立与人类行为逻辑相近的程序逻辑,并利用这一能力对人类提出的问题予以解答或处理[2]。从语言学习的视角来看,人工智能的功能呈现更为具体,如语言解析技术、语言识别技术、语言翻译技术等均较为常见,随着人工智能普及率的增长,这些技术在语言教学课堂中的利用也更为广泛,且目前仍处于不断升级的进程当中,为语言教育方式的革新转变带来了巨大的契机。

(二)混合式教学模式的应用价值结合混合式教学模式在高校英语教学中的应用现状来看,其教学价值大致体现在以下两个方面:一是优势整合价值。语言学习中,传统课堂与网络信息课堂所能够提供的支持效果各不相同,且各有优势与短板。通过应用混合式教学模式能够有效提取并整合两种教学状态下的主要优势,使其相互补充、相互作用,进而发挥“1+1>2”的更优教学效果。二是范围拓展价值。语言类科目不仅对基础知识体系具有较高要求,同时也有着明显的实践需求,而单一的课堂教学模式很难将教学范围进行有效拓展[3]。在混合式教学模式支持下,这一问题得以解决,通过利用庞大的线上资源来突破线下教学范围的局限性,能够达到开辟新渠道、巩固认知结构的教学目的,有助于为学生跨文化交际能力的提升奠定基础。三是推进教学改革。混合式教学模式的深入开展,有助于实现教学方式的多元化和丰富性。充分借助于线上教学与线下教学的优势,综合运用多样化的教学手段,根据不同教学内容的要求来选择合适的混合式教学手法,这不仅可以为学生的学习活动提供良好的支持,同时还有助于调节课堂教学氛围,让教学实效性得以大大增强。

二、人工智能视野下高校英语混合式教学模式的应用路径

(一)听力训练———应用语料库完成自动化资源匹配及交互听力训练属于英语教学中的基础性部分,对于学生英语应用能力的构建有着决定性影响,且听力资源的广度及与学习需求的匹配度在很大程度上决定着学习效果。因此,在构建高校英语混合式教学模式时,可将人工智能技术作为打开听力训练资源广度的关键渠道,借助其特有的语料库储备来完成自动化匹配、交互,使学生能够快速在庞大的英语听力素材中获取与自身学习需求相符的听力资料,并根据资料内容,与人工智能设备展开具有针对性的自动化练习[4]。首先,学生可在线上人工智能系统中录入自己的年龄、学段、英语听力基础、重点训练方向等基本资料,由系统根据数据资料自动筛选、匹配相应的听力材料,从而省略手动搜集资料的繁琐工序。另外,为进一步增强线下课堂学习与情境的交互性,还可进一步利用人工智能的自动识别功能,由学生根据学习需求,随机选取某物体进行扫描,再由系统根据识别出的物品类别筛选出相关的听力练习资料,使学生能够在自动且随机的语言场景中获得更良好的学习体验。例如,当学生选择“手机”这一物品进行识别后,语料库便可自动筛选出与“手机”有关的听力材料,整理出类似主题:Therelevanceofmobilephonesandmodernlife,学生再根据听力内容展开自主练习,从而规避千篇一律的重复训练。

(二)写作指导———应用自动批改功能完成查漏补缺英语教学中,写作是用于锻炼学生词句表述水平、语法运用水平的重要环节,但传统英语写作教学课堂常受困于题材范围狭窄、批改过于主观等因素,既不利于学生创造能力的发挥,也容易导致学生对于自身英语写作的优缺点难以客观把握[5]。因此,在利用人工智能技术展开英语写作指导时,同样可由线上、线下两个不同角度出发,分别借助框架搭建功能与自动批改功能完成的自我审视与查漏补缺,进一步夯实英语书面表述能力。线上教学中,首先可由教师向学生布置以某一话题或某一词汇为主题的写作任务,如“Economicglobalization”,学生根据自身思路,在人工智能技术支持下的作文系统中进行写作,系统则由此发挥框架搭建功能,结合主题与基本思路提供大致的框架模板,以及用作参考的相关词汇、句式,使学生能够跟随框架的指导,形成更为清晰的写作逻辑链条,达到深化表达的训练目的。线下教学中,首先可针对经过系统自动批改后的写作内容与批改意见进行回顾,找出系统评测下的亮点与不足所在,梳理出写作过程中的存疑之处,通过与他人交流和询问教师的形式找出解决办法,并于课堂上完成习作修改,最后由教师根据写作主题,给出主观意见,从而达到主客观相结合的综合评定目的,使反馈成果更具辅助改进意义。

(三)翻译练习———应用云平台技术实现重难点突破英语翻译是以足够的词句积累、听力练习为基础的语言转换过程,对于学习者的语法运用水平、实时解析能力、组织表达能力都具有较高要求,因此学习过程中的重、难点也相对更多,如何提高翻译精准性成为教学过程中的重要问题[6]。人工智能支持下的云平台应用能够为英语翻译教学带来新的渠道,一方面可通过创设翻译情境来使学生快速投入到语言环境当中,另一方面也可透过知识模块拆分功能来理顺语句间的联系,从而使得翻译精确性提升。首先,可在线下课堂当中借助人工智能技术来营造身临其境的语言氛围,如通过追踪文本内容,自动化匹配并呈现与之相关的场景,给人以身临其境之感,如在进行“Foratime,theweatherchangedsud-denly,heavyrainandthunder,pedestriansontheroadwerelookingforeavestoavoid.”一句的翻译时,系统可自动提取“Thunderstorm”这一关键词,并在设备中播放关于“暴雨雷鸣”的音像,将学生引入语言情境当中[7]。在情景背景下完成翻译练习后,学生可各自将翻译成果上传至线上云平台,由云平台根据翻译内容,出具动态的评价链条,对翻译结果进行量化评定,使学生更快地从中厘清重点、难点,并结合不同的知识模块展开针对性补充练习。

(四)口语对话———应用人工智能机器人展开一对一对话高校教育阶段,英语教学的最终诉求在于实际语言应用能力的构建,因此,口语对话练习成为贯穿教学始终的必要环节,关系着学生最终能否将课堂学习成果转化为语言应用基础。人工智能技术的出现,在很大程度上打破了以往英语课堂中对话组织困难的僵局,学生可通过与人工智能机器人建立起一对一的对话关系,来解决师资有限而同学指导能力不足的问题,同时取得训练成效与查漏补缺成效。学生在进行线上自主练习时,可根据想要练习的方向设置关键词或主题,再将人工智能机器人作为对话对象,围绕主题展开聊天式对话,从而达到口语训练目的,同时还可避免与真人对话时羞于启齿的情况,有助于在放松状态下激发出更良好的表达水平[8]。线下课堂教学中,同样可利用人工智能机器人来催化练习效果,例如,在组织小组口语练习时,为避免话题匮乏、接话困难的情况,可利用智能机器人来提供一些固定的框架或句式搭配,并根据不同成员的薄弱点,对对话的层级与难度进行适当智能化调整,从而实现对话练习效果的提升。

三、人工智能视野下完善高校英语混合式教学模式的主要策略

(一)完善教学管理系统,拓宽混合式教学范围无论是人工智能技术还是混合式教学模式的利用,都需要以完善的教学管理系统作为依托,才能够最大限度发挥其价值与成效,真正在教育工作中起到支持作用。因此,在构建高校英语混合式教学模式的同时,还需要紧密结合内部教学需求与教学现状,组织校内各部门共同参与到教学管理工作中来,积极发挥监督与合作职能,在寻求改革发展契机的同时进一步拓宽混合式教学的应用范围[9]。一方面,打造以融入人工智能技术为核心的混合式教学方案,将其应用于英语教学工作当中,动态化观察各阶段教学成果,并用作后期修改教学管理方向的依据,同时积极举办教学比赛及教学研讨会议,以便及时发现方案中的问题所在;另一方面,将混合教学范围逐步扩大,如尝试通过校外拓展实践来探索人工智能的新应用渠道,同时建立综合线上、线下两个教学环节评价指标的教学反馈体系,以便于及时由反馈体系当中获取新的教学动向,并由此探索更利于发展的新模式。可以说,人工智能背景下的英语混合式教学,是以完善的教学管理系统为先导的,必须要不断地对教学管理系统进行完善,有效地拓展并延伸混合教学范围,才能够最大化地提升混合式英语教学的实际意义,真正促进教学质量的提升,为学生的成长和发展奠定坚实的基础。

(二)优化课件制作体系,突出合作互动功能除混合式教学方法的应用外,英语教学课件的制作也直接影响着最终教学成效。为突出人工智能技术的教学优势,在后期英语混合式教学课件的制作中,可进一步强调学习过程中的合作与互动,通过留置更大的交互空间来激发个体的主观能动性,从而达到强化训练效果的目的。一方面,高校可组建精于网课制作的教师队伍,在分析人工智能教学数据、总结以往经验的基础上,尽可能地丰富素材、去粗取精,使学生在线上学习中获得更优体验;积极打造线上精品网课,带给学生专业化的网络课程内容,使之可以从中收获知识的积累和能力的提升,此外还可以将精品网课作为范本在其他高校进行推广,这既可以进行课程推广还能够实现学术交流,以此来更好地强化课件制作效果;另一方面,在线下课件的制作中,更多地增加由学生作为主导的实践板块,如互动对话环节、实时翻译环节等,从根源上提高学生在混合式课堂中的参与度[10]。总而言之,在人工智能背景下,积极开展英语混合式教学,必须要以优质课件制作体系为先导,以课件优势来促进学生对于知识的吸收,这样有助于最大化发挥混合式英语教学的意义,强化教学实效性。

(三)重建教学评价制度,设置多元考核指标在混合式教学模式践行基础上,可通过重建教学评价制度、设置多元化考核指标来进一步倒逼教学质量的提升。例如,除了平时表现,期末考试成绩作为基础考核以外,可另外增加线上教学评价板块,即将学生在线资源学习情况、线上线下课堂活跃度以及师生互动情况等都纳入评价考核范围。借助人工智能技术及网络平台,将学生的学习情况细化为多个考核内容,如听、说、读、写能力的构建情况等,从而保证考核结果更加公正、有效,能够真实反映学生的学习情况以及英语应用水平,并帮助学生完成针对性改进。此外,为了进一步延伸教学评价效果,可以通过线上师生互评、学生互评、小组评价、学生自我评价等方式来实施多元化评价,这样通过多维度、多元化的混合式评价,有助于实现最真实、最客观、最全面的教学评价,能够全面衡量教学质量和教学效果,以便于为后续的教学改进创造基础。

参考文献:

[1]刘凡.高校英语教学线上+线下混合式模式的构建研究[J].吉林广播电视大学学报,2019(9):62-63.

[2]安琦.民族高校英语专业课程混合式教学模式初探———以内蒙古民族大学为例[J].民族高等教育研究,2019,7(5):90-92.

[3]郭玺平.混合式教学模式下的高校英语演讲课程设计与实践———以内蒙古师范大学为例[J].内蒙古师范大学学报(教育科学版),2018,31(3):87-90.

[4]陈洁.混合式教学法在高校英语专业《基础英语》课程中的应用[J].黑河学院学报,2020,11(2):107-109.

[5]贺红艳.混合式教学模式下课堂评价体系改革对高校英语教师评价素养的挑战[J].国际公关,2020(5):41-42.

[6]毛为慧,余庆泽.基于AI语音识别平台的英语混合式教学模式探讨[J].河南教育(职成教),2020(3):28-30.

[7]王艳红.人工智能背景下英语写作教学中混合式教学模式的应用[J].西部素质教育,2020,6(12):122-123.

[8]阚常娟.多模态视域下的英语教学云平台建设研究[J].江西电力职业技术学院学报,2020,33(3):37-38.

[9]王璐.浅议人工智能背景下的大学英语口语教学与评价[C].外语教育与翻译发展创新研究(第九卷).四川西部文献编译研究中心,2020:44-46.

[10]季燕.5G+人工智能视角下的英语教学创新探索[J].创新创业理论研究与实践,2020,3(7):67-68.

作者:王欣单位:陕西警官职业学院

人工智能论文3000字篇2

人脸识别考勤、GPS定位、无现金支付……近日,一款智能校服被曝出正在西南地区十余所中小学试用。厂商介绍,在校服两侧肩部置入芯片后,这款智能校服兼具了无感考勤、教务管理、家校沟通等功能,旨在打造智慧校园。但另一方面,“监测限制越来越多,侵犯学生隐私”“收集的敏感数据将如何使用”的质疑也随之而来。

(2月17日《经济日报》)

@武冈市龙田中心小学刘雪婷根据官方提供的信息,在学生遇到意外时可拍打或敲击这款校服的特定部位,向校园安保人员和家长发出求救信号。试问,这难道不正是家长和老师期待的效果么?此外,就现有信息看来,智能校服结合人脸识别、摄像头等组合应用后,学校可以适时了解学生是否迟到、早退,是否按时进入宿舍,上课是否在打瞌睡等。而家长则可以及时掌握学生在校情况、实时位置与动态轨迹等。可以说,智能校服让学生处于学校、家长全方位、动态化的监控之中,对学生的管理有着诸多便利。

@麻阳二中张圣霖智能校服粗看似乎有创意,但其最大的问题是与“以人为本”的教育理念背道而驰。智能校服记录学生一切行动轨迹,学生仿佛时刻被一双看不见的眼睛窥视着,这种做法涉嫌侵犯个人隐私。未成年人长期在这种环境下生活,心理承受的压力恐怕难以估量,还谈什么自由快乐健康的成长呢?假如学生不知情的话,这种做法无异于一个现实版的《楚门的世界》。再则智能校服收集的相关数据并不能确保不被泄露。如果未成年人的消费、位置等信息被有意无意泄露,将会给违法犯罪分子提供可乘之机,让拐骗、性侵等犯罪行为更加防不胜防。

@邵阳学院劉运喜科技是一把双刃剑,在给我们带来一系列利好的同时,也让我们成了全透明的“玻璃人”,电子监控无处不在,几乎毫无隐私可言。这是十分可怕的,也是很危险的。在互联网时代,推进智慧校园建设是人心所向、大势所趋,是完全必要的,也是确实必须的。然而,我们不能借口智慧校园建设,完全无视学生的合理诉求,肆意侵犯学生的隐私权。所谓智慧校服具有无感考勤、教务管理、家校沟通等功能,其实只是商家的一种营销策略,实际并没有那么神乎其神,更没有那么重要。

人工智能论文3000字篇3

摘要:随着社会信息技术和计算机网络技术的发展,人们对网络应用的需求也原来越多,这就需要不断研究计算机网络技术,由于人工智能在一定程度上成为科学技术前言领域,所以世界上各个国家对人工智能的发展越来越重视。本文首先分析其所具有的重要意义,然后研究其在应用过程中的作用,提出以下内容。

关键词:计算机人工智能应用分析

目前由于人工智能的不断成熟,人们在生活方面以及工作的过程中,智能化产品随处可见。这不仅对人们在工作中的效率进行提高,同时还对其生活质量进行加强。所以人工智能的发展在一定程度上离不开计算机网络技术,只有对计算机网络技术进行相应的依靠,才能够让人工智能研究出更多的成果。

1计算网络技术应用人工智能所具有的重要意义

由于计算机技术的快速发展,网络信息安全问题在一定程度上是人们目前比较关注的一个重要问题。在网络管理系统应用中,其网络监控以及网络控制是其比较重要的功能,信息能够及时有效的获取以及正确的处理对其起着决定性作用。所以,对计算机技术智能化进行实现是比较必要的。由于计算机得到了不断的深入以及管广泛的运用,在一定程度上导致用户对网络安全在管理方面的需求比较高,对自身的信息安全进行有效的保证。目前网络犯罪现象比较多,计算机只有在具备较快的反应力和灵敏观察力的状况下,才能够对用户信息进行侵犯的违法活动进行及时遏制。充分的利用人工智能技术,建立起相对较系统化的管理,让其不仅对信息进行自动的收集,同时还能够对网络出现的故障进行及时诊断,对网络故障及时遏制,运用有效的措施对计算机网络系统进行及时的恢复,保证用户信息的安全。计算机技术在发展的过程中对人工智能应用起着决定性作用,人工智能技术也在一定程度上对计算机技术的发展起着促进作用。不断的跟踪动态化信息,为用户提供准确的信息资源。总的来说,计算机网络在管理的过程中有效的运用人工智能,对网络管理水平进行不断的提高。

2应用分析

2.1安全管理应用

网络安全所具有的漏洞相对比较多,用户在网络中自身的资料信息安全是现阶段人们比较关注以及重视的主要问题。在对网络安全进行管理时,可以对人工智能技术进行充分的运用,在一定程度上能够对用户自身的隐身进行有效的保护。主要表现为:一是,智能防火墙的应用;二是,智能反应垃圾邮件方面;三是,入侵检测方面等。智能防护墙主要应用的就是智能化识别技术,通过概率以及统计方式、决策方法和计算等对信息数据不仅进行有效的识别,同时还能对其相应的处理,对匹配检查过程中需要的计算进行消除,充分认识网络行为特征值,访问可以直接进行控制,把存在的网络及时发现,拦截以及阻止有害信息的弹出。智能防火墙能够在一定程度上避免网络站点受到黑客的攻击,遏制病毒传播,对相关局域网进行相应的管理和控制,反之就会导致病毒以及木马的传播。在智能防火墙中,比较重要的就是入侵检测,它属于防护墙后的第二安全闸门,在对网络安全保证方面起着重要的作用。针对入侵检测技术而言,主要能够在一定程度上对网络中的数据进行有效的分析,并且对其进行及时的处理,把部分数据过滤出去,数据检测后的报告分析报告给用户。入侵检测在对网络性能不产生影响的前提下监测网络,为操作上的失误以及内外部攻击提供一定的保护。针对智能型反垃圾而言,其自身的邮件系统能够对用户邮箱进行有效的监测,对邮箱进行相应识别,把邮箱中存在的垃圾充分的筛选出来。如果邮件进入邮箱后,就会进行扫描邮箱,在一定程度上把垃圾邮箱的分类信息发给用户,提醒用户要对其进行及时的`处理,避免给邮箱安全带来影响。

2.2人工智能Agent技术应用分析

针对人工智能Agent技术而言,它属于人工智能代理的一种技术,属于不同部分所组成的软件实体,包括:一是,知识域库;二是数据库;三是解释推理器;四是各个Agent之间的通讯部分等。人工智能Agent技术通过任何一个Agent域库对新数据的相关信息进行处理,并且沟通以至完成任务。人工智能Agent技术能够在一定程度上通过用户自定义对信息获得自动搜索,然后将其发送到指定位置。人们通过Agent技术得到人性化服务。例如:用户在用电脑查相关信息时,该技术不仅能对信息进行处理,同时还能够进行有效的分析,最后把有用的信息出题给用户,充分节省用户的时间。Agent技术为用户在日常生活中提供相应的服务,例如:在网上进行购物以及会议等方面的安排。它不仅自主性以及学习性,让计算机对用户所分配的任务自动完成,进一步推动机计算机网络技术的发展。

2.3在网络系统管理以及评价过程中的应用分析

针对网络管理系统来说,其智能化在一定程度上需要人工技能的不断发展。在对网络综合管理系统进行建立的过程中,不仅可以对人工智能中的专家知识库进行充分的利用,同时还能够对存在的技术问题进行有效的解决和处理。网络存在着动态以及变化性,所以,网络在管理的过程中会面临着困难,这就需要对网络管理技术人工智能化进行实现。在人工智能技术中,其专家知识库主要指的就是把各个相关领域专家的知识以及经验进行相应的结语出来,录入系统中,只有这样才能形成比较完善的知识库系统,促进智能计算机程序的发展和提高。如果遇到某个领域问题的过程中,要充分利用专家经验程序对其进行及时的处理。专家知识经验系统促进计算机网络管理得到顺利开展的同时,对系统评价相关进行工作不断的提高和加强。

3结语

科学技术在发展的同时,也促进人工智能技术的提高,计算机在网络技术中得到了比较多的需求,在一定程度上提高其应用范围和领域,因此可以看出,人工智能其应用发展前景是比较广泛的,人类对人工智能技术的进一步研究,会在未来开创出更多的应用领域。

参考文献

[1]周晶.面向产品全生命周期的网络化技术服务研究[D].东北大学,2009.12(08):123-124.

[2]任巍.人工智能技术在计算机游戏软件中的应用[D].西安电子科技大学,2006.13(07):145-147.

[3]黄丽萍.人工智能技术在计算机网络教育中的应用[J].计算机光盘软件与应用,2014,10(12):134-135.

人工智能论文3000字篇4

摘要:智能化是人类的梦想,未来必然会是人工智能的世界。城市智能化将通过有线、无线或混合数据传输方式,实现区域城市内多个子系统辅助管理中心,然后再到智能化管理服务决策的有效技术结合,实现区域城市管理的智能化服务,让人们畅享智能化生活。智能城市的建设是城市信息化建设的新境界。

关键词:人工智能智能化发展

1人工智能的含义

人工智能(ArtificialIntelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。人工智能是研究用计算机来模拟人在各个过程中的智力活动(如分析、推理、判断、构思和决策),从而扩大、延伸和部分替代人类的脑力劳动,实现知识密集型生产和决策自动化。目前城市规划发展领域中的城市设计、控制性详细规划、土地利用分区规划与管理、系统工程与规划决策支持系统的发展与实施,给人工智能技术的应用带来了广泛的前景。

2当前城市发展中面临的挑战

随着城市的迅速发展,城市经济发展面临着日益严重的资源和环境压力。城市人口规模增长过快、城市供配电压力沉重、环境污染与生态破坏严重、交通拥堵治理困难、安全生产形势严峻、城市部门管理中的违法违规现象屡禁不止等等,这些都成为城市发展中最为突出的矛盾,成为城市管理中必须重视的问题,迫切需要采用新的管理方法和科技手段来加以解决。

城市供配电压力沉重,节能减排问题凸显。随着城市发展,各式宾馆、办公大楼、商场超市、医院、写字楼等大型建筑日益增多,使得供电负荷越来越大,节约能源和能效管理问题日益突显。在我国城市化建设进程中,如何与能源低消耗、大环境保护相适应,正在成为建设资源节约型、环境友好型社会亟待解决的问题。

环境污染使得城市从传统公共健康问题转向现代的健康危机。环境污染包括工业和交通造成的空气污染、噪音、震动、精神压力导致的疾病等,已成为制约城市经济发展的因素之一。随着城市垃圾处理量不断增加,针对居民区垃圾堆放、垃圾填埋焚烧场周边的环境投诉日益增多,尤其是垃圾焚烧产生的一级致癌物“二恶英”(Dioxin)浓度的增加引起了群众极大关注。

城市交通需求与交通供给矛盾日益突出。随着经济的发展,城市交通需求不断扩大,城市中可用于交通的土地资源极其有限,密集的车流、拥挤的街道、效能低下的交通系统不仅导致了运输成本的增加,还产生了污染和能源的浪费问题。此外,交通拥挤导致了事故增多,事故增多又加剧了拥挤,这直接影响了居民的出行时间和成本;出行成本的增加不仅影响了工作效率,而且也会抑制人们的日常活动,从而影响居民的生活质量。

公共安全监管难度逐步加大。面对有限的自然资源,人们对抵抗自然灾害、事故灾难、社会安全等风险源的监控与预防越来越关注,迫切要求建立和完善公共安全日常管理体系和应急处置机制,应对面临的气象灾害、地下空间事故、危化品事故、重大刑事和恐怖事件、公共场所治安等突发事件进行预防和应急处理。

3人工智与城市智能化

智能城市是在信息港和数字城市的基础上发展起来的新方向。在智能城市中,主要的资源用于使城市的信息网络实现自动监控,信息自动采集,自动分析处理,自动决策反应等等。智能城市是把城市看作一个有机体培养它的监控、学习、反应、调整和适应能力,信息的控制和利用能力是智能城市的基础。

从技术层面来看,“智能城市”是以网络信息为基础的城市信息体系,即综合运用地理信息系统、全球定位系统、遥感系统、宽带网络、多媒体及虚拟仿真等技术,对城市的基础设施,功能机制进行信息自动采集,动态监管和辅助决策服务的技术系统。城市智能化的水平往往体现在以下几个方面:城市决策的智能化;城市交通的智能管理与控制;城市资源的监测与可持续利用;城市应急反应和灾难的预防治理;城市人口管理;城市生活的网络化和智能化等等。

新的智能化信息技术构架将由以无线网络为主体的基础设施、以无界面计算机为主体的硬件、以信息分析和决策支持为主的软件、以功能实现为主的网络应用这几部分组成。这种新的信息化基础设施将以实现“三无”为目标,即无线网络、无界面计算机和无键盘输入。让计算机和网络的使用不受时间和地点的限制,不受文字输入的限制,也不受固定使用方式的限制。

从现实操作来看,政府应该加强与企业联系,加快实现城市智能化发展。政府借助企业创新的网络技术,加强合作,加快信息化建设进程,助推城市智能化发展,打造智能城市的全新商业模式,从而建设可持续发展的现代化城市。科技企业与政府双方将以“激励创新、合作共赢”为原则,发挥各自的优势和力量携手推动本土创新,加速实现城市智能化发展。

在这方面,成都市政府走在了部分前列。据悉,在2009中国西部国际博览会上,思科与成都市政府双方结为战略合作伙伴关系,就“天府智能互联新城”试点建设及发展与“智能+互联城市”技术相关的“产学研”一体化产业链等方面展开深度合作,以推动成都信息产业的本土创新并提升产业竞争力,实现城市经济、社会与环境等领域的可持续发展。

信息化是城市发展的重要推动力,是目前城市发展中面临的一系列问题和挑战的重要解决途径。以金融行业举例来说,信息技术同样是业务创新、服务创新的重要手段和推动力,以技术改良为载体的金融服务创新不仅是现代商业银行提升核心竞争力的重要手段,也体现了城市生活发展进步的历程。基于互联网、通讯、语音等技术的新兴智能金融服务方式的出现,改变了居民的生活、消费习惯,使金融服务更为方便快捷。

可见,在城市发展过程中,通过运用现代化科学技术手段,有针对性地展开试点应用,通过技术与经验的积累,以“先易后难,从点到面,逐步推进”的方式,逐步实现政府信息资源的共享,能够有效提高政府为百姓服务的质量,从而全面提升城市智能化管理水平。

4城市发展展望

智能城市的建设是城市建设发展的新境界。我国许多城市的信息化基础设施已经不差,急需改进的是应用。而智能城市正是以应用为核心的信息化发展思路,在已有的信息化基础上,为市民提供更加综合的服务,为政府部门提供更加有效的信息分析和更符合实际的决策,对包括民生、环保、公共安全、城市服务、工商业活动在内的各种需求做出更智能化的响应,加快城市智能化建设,将带来未来城市的全新面貌,推进城市和谐发展。

参考文献:

[1]第二届2010(3G)暨信息新技术国际峰会论坛,2010年4月.

[2]黄孝斌,魏剑平.物联网助力城市信息化发展—探索城市管理新模式[J].中国科学院院刊,2010年1期.

人工智能论文3000字篇5

摘要:时代是不断发展的,对于电气信息类专业的学生来说,社会岗位在综合素质和专业能力方面提出了对学生诸多新的要求。因此为了促进学生能够在毕业之后获得良好的发展,在电气信息类专业教育教学中,教师要对原有课程教育模式和课程教育手段进行有效的改革以及创新,从而促进学生专业能力的提高。为了使学生更加积极地进行知识内容的学习,教师要在电气信息类专业教育教学中充分的发挥人工智能的优势,提高课堂教学的效果。

关键词:人工智能;电气信息类;教学应用

教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。

一、人工智能时代的概述

人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰•麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯•卡普兰(AndreasKaplan)和迈克尔•海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时代发展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。

其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业•2•本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。

二、人工智能对电气信息类专业人才需求的影响分析

人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。

三、人工智能给电气信息类专业提供的机遇

在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。

四、人工智能技术在电气信息类专业教育教学中的应用路径

(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。

(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。

(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。

(四)利用人工智能技术进行辅助性的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。

(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。

五、结束语

在电气信息专业教学课程中,开展人工智能技术的教学方法是非常重要的,教师要加强对这一问题的重视程度,充分的发挥人工智能技术的优势。在原有课程育人目标的基础上,制定信息化人才培养目标,并且对原有课程教育体系进行不断的完善和优化,从而使得电气信息类专业教学课堂和教学效果能够在人工智能的运用下得到有效的改善,促进学生专业素质的提高。

参考文献:

[1]周利.人工智能与中国高校教育的冲击和应对对策[J].教育现代化,2019(9):185-186.

[2]黄天元.人工智能时代的高等教育与变革分析[J].复旦教育论坛,2019(4):18-22.

[3]杨洋.人工智能技术的发展及其在教学中的运用[J].软件导刊,2018(10):86-88.

[4]潘克明.利用人工智能技术推进信息技术与教育教学的融合创新[J].教育信息技术,2018(2):13-15.

人工智能论文3000字篇6

摘要:随着人工智能技术不断更新,人工智能与实体经济融合的趋势无法避免,实现人工智能产业化成为核心问题。目前,人工智能产业运作模式分为基础层、技术层、应用层,依据不同的场景区分应用模式,其中技术层是关键,体现了创新能力与核心竞争力。本文从产业经济学与技术革命的视角分析人工智能产业化的运作模式及其可能带来的冲击,认为当前人工智能正在影响产业经济的整体布局,其中人工替代率增长和社会不平衡加剧的问题值得关注与思考。关键词:人工智能;产业经济;技术革命“人工智能”作为一个专业术语,可以追溯到20世纪50年代。美国计算机科学家约翰·麦卡锡及其同事在1956年达特茅斯会议上提出:“让机器能够做出与人类相同的行为”,这便是人工智能定义的开端。随后的60年中,人工智能经历了三次发展浪潮,与我们的经济社会生活愈发贴近。人工智能与实体经济的融合无法避免,人工智能技术的应用正在悄悄改变产业布局,如何更好地实现人工智能产业化是当今科技社会必须面对的问题。1人工智能产业概述1.1产业定义从概念上看,人工智能是计算机科学的一个分支领域,致力于让机器人模拟人类思维,从而执行学习、推理等工作。人工智能分为强人工智能和弱人工智能,强人工智能侧重于思维能力,指机器不仅是一种工具,而且本体拥有知觉和自我意识,能真正地推理和解决问题。在弱人工智能阶段,由于人工智能仅限于处理相对单一的事务,尚未发展到“模拟人脑”的程度,该类人工智能依旧被视为一种法律上的客体或物,属于“工具”的范畴。人工智能产业是指群体、团队、个人针对人工智能本身基础理论、技术、系统、平台以及基于人工智能技术的相关产品和服务的研发、生产、销售等一系列经济活动的集合。1.2产业环境人工智能作为第四次工业革命的核心驱动力,在很大程度上能够影响未来社会的经济发展。目前,苹果、谷歌、微软、亚马逊、脸书,这五大企业巨头无一例外都投入了越来越多资源来抢占人工智能市场,甚至整体转型为人工智能驱动型公司。2019年,“智能+”首次出现在中国的政府工作报告中,要求坚持创新引领发展,培育壮大新动能。人工智能在金融、教育、工业、安防、医疗等众多领域扮演着越来越重要的角色。2020年,5G技术发展进一步深入,5G技术的高性能传输通信能力将为人工智能更高速率的应用提供可能性。高端制造、无人驾驶、智慧医疗等领域将伴随5G与人工智能的紧密结合衍生出更丰富的应用场景。目前,人工智能技术的产业环境优势十分明显,不论是企业巨头的大力投入,市场导向的迅速普及,还是各国政府的政策扶持(见表1),都为人工智能产业化开辟了道路。2人工智能产业化运作模式人工智能的产业生态可以分为基础层、技术层、应用层。其中,基础层侧重基础支撑平台的搭建,例如人工智能芯片、算法和数据;技术层侧重核心技术的研发,例如计算机视觉与图像、自然语言处理、语音识别;应用层更注重应用发展,包括人工智能行业应用方案、消费类终端或服务等。根据目前人工智能产业化形态的现状和发展,人工智能在不同类型产业中的应用模式和应用前景差别很大。例如,人工智能与制造业融合的发展方向是减少劳动成本和提高效率,与服务业融合的发展方向是精准化市场需求和制定最优方案。所以,人工智能产业化运作模式需要依照产业类型分类讨论。2.1基础层产业基础层产业的关键词是“感知”与“计算”。基础层典型产业有摄像头、传感器、云端计算、芯片等。以摄像头为例,2020年因疫情防控的需要,安防行业相继研发新产品,例如人体测温双目摄像机、智能测温一体化安检门、热成像人脸测温一体机等。通过前端设备进行图像数据采集,经产品内置芯片进行数据处理和智能分析后上传至存储服务器,再通过网络及云端传输至后端供平台使用。其中,芯片是设备性能及技术处理的核心要件。从产业经济学的角度看,产业经济学的研究对象聚焦于市场主体:产业组织和劳动组织,人工智能在基础层产业的分布十分契合这一点,例如智能摄像头以传统摄像头硬件为载体,但此时传统的市场主体已经具备全新的基础和平台。在人类文明进步的历程中,生产力是关键。人工智能所搭建的数据平台是生产力发展的产物,芯片的处理能力和处理效率是人脑无法企及的,这是生产力的革新,产业结构逐渐开始了以数据为基础的全新布局。2.2技术层产业技术层产业的关键词是“人工智能系统平台”与“人工智能基础服务”。技术层的典型产业有数据处理系统、智能语音识别、文字和图像识别等。技术层产业是人工智能产业的核心部分,体现为核心技术能力的竞争。以腾讯为例,腾讯在技术层建立了人工智能技术开发平台,包括语音识别、计算机视觉、自然语言处理和机器学习。从技术革命的角度看,产业升级的基础是创新,传统产业能够成功转型升级的关键也在于创新。产业竞争环境和产业创新能力是产业竞争力的主要来源,技术革新是创新能力的关键要素。2.3应用层产业应用层产业的关键词是“场景服务”与“硬件产品”。近年来兴起的无人驾驶汽车、智慧医疗、智能家居、智慧城市、工业机器人等都是人工智能应用层产业的典型代表。以智慧医疗为例,数字化医疗的整个产业链以大数据资源库为共享平台实现产业集聚,医疗机构、患者、医疗设备研发机构和产品制造商多端实时共享和有效互动。人工智能的应用层场景布局正在悄悄地改变产业布局,整个社会逐渐成为以数据资源库为轴心的相互连通的复合体。追本溯源,产业是社会分工的产物,随着经济发展,社会分工越来越精细,人工智能的应用层场景以一种新兴的方式实现产业链的“互联互通”,让不断细化的社会分工和产业结构以一种全新的智能方式进行融合,强化了产业组织的内部联动及共生关系。2.4产业运行准则有学者认为,人工智能需要依据封闭性准则来加以应用,规避人工智能技术失控风险。以AlphaGo为例,虽然围棋机器人在与人类的对弈中获胜,似乎表现出“超强大脑”的水准,但终究是训练方法的胜利。此时,围棋的规则和训练机制对AlphaGo而言便是它的封闭边界。“我们需要某种准则,以便客观地判断:哪些场景中的应用是现有人工智能技术能够解决的,哪些问题是不能解决的。这个准则就是封闭性准则。”3人工智能产业化带来的冲击3.1人工替代率增长有学者从经济学角度研究人工智能是否导致失业时,发现对于这个问题经济学家的总体判断是相对悲观的。回顾历史上工业革命带来的冲击,技术革命导致大量工人失业,导致工人背后的家庭整体生活水平下降,对工人阶层非常不利。直到工业革命逐渐扩散和技术普及,经济发展水平趋高维稳,工人阶层的生活水平才逐渐好转。但是,人工智能技术能够代替的是更复杂的人类劳动,会计师、理财顾问、律师助理和新闻记者已经在与某种形式的人工智能竞争。对企业来说,雇佣劳动力需要更多的成本,而使用机器人的成本显然更低,效率更高,不可避免地出现岗位减少,工人失业的情况。例如,经合组织估计,经合组织国家中有46%的工人处于被替换或需要从根本上转型的高风险中。3.2社会不平衡加剧由工人大量失业引发的一个问题是,贫富差距的两级分化更加剧烈。人工智能技术的发展演变,是迅速且具有爆发力的,作为和平年代的技术革命,它看似无声响却更有冲击力。技术变革对社会财富分配和阶层结构的后续演化产生冲击,导致社会不稳定不平衡加剧。类比市场垄断,多家规模不均的同类企业竞争往往具有市场活力,一旦出现一家独大,这些企业的市场竞争力就会被削弱,甚至难以存活以致被吞并。当一个行业逐渐被行业巨头垄断,这个行业就会被这股强大的力量主导,资源不断聚集,力量弱小的主体自身难保,谈何竞争?对劳动者来说,收入差距拉大有一定的激励作用,对高薪和社会地位的追求能够激发人们的斗志,带动经济发展。但是当这个差距被拉大到一定程度,富者恒富,底层人民望尘莫及,看不到向上走的希望,努力失去意义,就会产生落差与不满。这种大规模人群的不满会成为社会中值得关注的不稳定因素。4结语人工智能以超凡的能力和效率改变着社会产业布局,不只是人工的替代,也不仅仅是技术的革新,更是社会生产力、经济运行方式和人类生活方式的全新搭建与构思,具有无限可能。人工智能的产业化发展依据不同的特征应用于不同的场景,与不同类别的传统产业和实体经济相融合,并以数据为轴心创造了一个互联互通的生态系统和共建共享的动力系统,为经济发展注入了活力与生命力。人工智能的产业化发展也会带来一些问题,有学者认为,我们正在见证全球经济的骄人变化,并且很难知道这些变化的广度,或者说几十年之后全球财富在一国内或多国内将如何分配。经济学中有一种“理性人假设”,这种假设易令经济学家忽视财富分配的必要性,认为平衡能够自动达成。然而,收入与分配的长期演变是必须面对且至关重要的社会经济问题。人工智能时代,收入与分配不均现象更为严重,社会财富可能会集中在少部分掌握技术的人手中,社会不稳定因素增多,需要政府一定程度的干预,从宏观层面把握收入与分配的平衡。

人工智能论文3000字篇7

《基于当前社会的人工智能初探》

本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。

人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。

强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。

人工智能论文3000字篇8

《电脑人工智能日趋成熟》

电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。

现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。

舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。

一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。

舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。

人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”

舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。

舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。

舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?

讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。

一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。

换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”

微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。

舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。

从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。

显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”

在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。

舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。

目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。

日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。

除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。

舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。

人工智能论文3000字篇9

【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。

【关键词】STEM教育;人工智能;机器人;编程创新

随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。

一、开展人工智能教育的背景

国务院在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。

二、以课程建设为核心,提升学生的STEM素养

机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。

如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。

以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。

三、以课题研究为引领,推动师生专业化成长

课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。

以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。

四、以参加机器人赛事为驱动,搭建学生个性成长的平台

雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。

通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。

未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。

参考文献:

[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.

[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.

人工智能论文3000字篇10

《电脑人工智能日趋成熟》电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。

人工智能论文3000字篇11

【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。

【关键词】STEM教育;人工智能;机器人;编程创新

随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。

一、开展人工智能教育的背景

国务院在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。

二、以课程建设为核心,提升学生的STEM素养

机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。

如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。

以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。

三、以课题研究为引领,推动师生专业化成长

课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。

以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。

四、以参加机器人赛事为驱动,搭建学生个性成长的平台

雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。

通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。

未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。

参考文献:

[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.

[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.

人工智能论文3000字篇12

摘要:本系统公开了智能交通控制系统,属于控制技术领域。智能交通控制系统,算法A与B按照规定执行,由于现实中的交通灯红绿交替致使并无绝对的A先执行或是B先执行,本说明中只取一个概述的形式来描述,在具体实施中会给出一个截断的时间点详细、有序的说明。A:车辆方向通行时间结束的3s前;执行算法A计算接下来给行人通过马路的预留时间。本系统可以有效地解决交通路口的人车拥堵现象。

关键词:交通;智能管理;物联网

中图分类号:TP393文献标识码:A

文章编号:1009-3044(2020)13-0004-03

目前,随着人们生活水平提高,越来越多的人具有私家车,这样带来交通拥挤现象,尤其在交通路口,人车矛盾加剧,这已成为亟待解决的一个交通问题。为了克服上述的不足,本系统提供智能交通控制系统、此交通系统能够很好地解决上述问题。

1智能交通控制系统

1.1工作原理

本系统设计主要针对行人穿越人行横道时的场景,主设计包括根据现场环境智能更改颜色的斑马线、实时监测的道路情况的摄像头、紧急情况语音提示系统和行车道上斑马线前的警示线以及人流量和车流量来控制红绿灯的时间。

1.2算法实现

本系统采取的技术方案如下:

智能交通控制系统,算法A与B按照规定执行,算法运行时机如下:

由于现实中的交通灯红绿交替致使并无绝对的A先执行或是B先执行,本说明中只取一个概述的形式来描述,在具体实施中会给出一个截断的时间点详细、有序的说明。

A:车辆方向通行时间结束的3s前;执行算法A计算接下来给行人通过马路的预留时间。

B:行人方向通行时间结束的3s前;执行算法B计算接下来给车辆通行的预留时间。

①算法A:

第一步:获取w1、W2、c2的值,其中W1、W2为道路两旁欲通过人行横道的人数,C2代表道路宽度,取值为车道数乘以3.5,如有小数则四舍五人;W1、W2通過的方向相反;

第二步:判断满足以下哪个情况

W1=W2=0;(此时道路两旁无行人通过)

W1≤P且w2≤P;(此时道路两旁欲通过行人数量均在某一特定行人数量级以下时)

WI>P或W2>P;(此时道路两旁欲通过行人数量有一方多于某一特定行人数量级时)

其中,P代表行人数量级,取值为10,20,30;

第三步:

若满足第二步的条件1则T2=0,执行算法B;(此时道路两旁无行人通过,执行算法B)

若满足第二步的条件2则T2=1.5*Pt,继续执行第四步;(此时道路两旁欲通过行人数量均在某一特定行人数量级以下时,继续执行第四步根据公式算出T2)

若满足第二步的条件3则T2=2*Pt,继续执行第四步;(此时道路两旁欲通过行人数量有一方多于某一特定行人数量级时,继续执行第四步根据公式算出T2)

其中T2为行人预留通过时间,T2的取值范围在1.5*Pt到2*Pt之间;

pt代表行人通过四种规模道路的时间,取值在{8,15,23,30}集合中。

第四步:根据T2的值控制接下来人方向的通行时间为T2,在车辆行驶方向即将变为红灯时,根据算法得出T2,T2是接下来影响红灯时间和行人方向绿灯时间的值,暂为1:1的代换关系,即若rr2值为20,则接下来红灯时间为20s,指示行人通行的绿灯时间小于20s,由于要扣除误差、信号损耗以及黄灯时间,故真实的行人绿灯时间约在16-18s之间;

②算法B:

第一步:获取L1、L2、L3、L4、Cl的值;

其中L1、L3是同一方向的车道上欲驶过斑马线的车辆数和斑马线另一侧可通过的车辆数,即斑马线前方空的区域可以允许多少辆车通行);

L2、L4是另一反方向的车道上欲驶过斑马线的车辆数和斑马线另一侧可通过的车辆数,即斑马线前方空的区域可以允许多少辆车通行;

cl代表斑马线两侧行车停止线间的距离,假设该道路为东西方向同行的道路,L1是东向西方向车流量的权衡值,L3东向西方向驶过斑马线车流到斑马线间的距离,意义在于确定该方向道路上能容纳多少辆车驶过斑马线后能正常行驶而不会发生堵车、拥挤的情况;L2是西向东方向车流量的权衡值,L4是西向东试过斑马线的车辆可通量、其与LJ3同理;C1代表斑马线东西方向两侧车辆停止线之间的距离。

第二步:判断满足以下哪个隋况,

LI=L2=0或L3=IA=0,(正反方向车道上欲驶过斑马线的车辆数为0或正反方向斑马线另一侧可通过的车辆数为0)

L1≤N/2且L2≤N/2f此时正反方向车道上欲驶过斑马线的车辆数均小于某一特定行车数量级的一半时)

L1≤N且L2≤N,(此时正反方向车道上欲驶过斑马线的车辆数均小于某一特定行车数量级时)

LI>N或L2>N,(此时正反方向车道上欲驶过斑马线的车辆数均大于某一特定行车数量级时)

其中N为车辆数量级,取值为{10,20,30}

T1为行车预留时间

第三步:若满足第二步的条件1,则TI=0执行算法A;(若正反方向车道上欲驶过斑马线的车辆数为0或正反方向斑马线另一侧可通过的车辆数为0时,行车预留时间为0,执行算法A)

若满足第二步的条件2则判断满足以下哪四种情况之一,

1)若满足L3~≥L1且LA≥L2则T1=N,执行步骤四;

2)若满足L3

3)若满足IA

4)若满足L3

若满足第二步的条件3则判断满足以下哪四种情况之一, 1)若满足L3≥L1且1A≥L2则Tl=max(L1,L2)*2,执行步骤四;

2)若满足L3

3)若满足IA

4)若满足L3

若满足第二步的条件4,则判断满足以下哪四种情况之一:

1)若满足条件L3≥L1HLA≥L2则T1=2N,执行步骤四;

2)若满足L3

3)若满足LA

4)若满足L3

第四步:得出L1、L2两方向的T1值,然后根据Tl的值控制接下来车方向的通行时间为T1,在行人方向即将变为红灯时,根据算法得出T1,T1是接下来影响红灯时间和车辆行驶方向绿灯时间的值,暂为1:1的代换关系,即若T1值为20,则,接下来红灯时间为20s,指示车辆通行的绿灯时间小于20s,由于要扣除误差、信号损耗以及黄灯时间,故真实的车辆通行绿灯时间约在16-18s。

所述降档计算:将值重新代人算法A或是B中,并根据当前算法选定的道路规模宽度参数R)(将其下调一个级别。降档计算:将值重新代人算法A或是B中,并根据当前算法选定的道路规模[宽度]参数R)(将其下调一个级别(Rx取值(8,15,23,30);例如:Rx当前取值为30,则在降档计算中其值取23,若在此情况下仍需再次降档计算则取15,若为最低值8则不会再降至更低而是直接根据Rx取8为参数计算最终值。其目的是应对一些参数低于预期的情况,故而在算法层中进行调整,以得出一个更为合理的结果。

尽管已经示出和描述了本系统的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本系统的原理和精神的情况下对这些实施例进行多种变化、修改、替换和变型,本系统的范围由所附权利要求及其等同物限定。

本系统的有益效果是:节省行人与行车的时间、减缓城市拥堵。

1.3附图说明

图1为算法A的流程图:

2具体实施方式

下面将结合本系统实施例中的附图,对本系统实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本系统一部分实施例,而不是全部的实施例。基于本系统中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例都属于本系统保护的范围。

智能交通控制系统,系统实施在道口中,则开始正常通车后,车辆方向首次要变红灯时,触发算法A程序,得出A程序的结果后,车辆方向红灯,行人方向绿灯,切状态持续时间由A程序得出的结果确定;当行人方向即将变成红灯时,触发算法B程序,得出B程序的结果后,行人方向红灯,车辆方向绿灯;之后如此交替。

算法运行时机:

由于现实中的交通灯红绿交替致使并无绝对的A先执行或是B先执行,本说明中只取一个概述的形式来描述,在具体实施中会给出一个截断的时间点详细、有序的说明。

A:车辆方向通行时间结束的3s前,执行算法A计算接下来给行人通过马路的预留时间。

B:行人方向通行时间结束的3s前,执行算法B计算接下来给车辆通行的预留时间。

3创新點与特色

1)随着我国城市化进程的加快,城市迅速膨胀,城市交通、空间、人口、能源和环境的矛盾也日益尖锐。尤其是随着经济迅速发展,市民出行次数增加、私人汽车增加、出行范围扩大等原因,城市交通问题变得十分尖锐。智能斑马线通过合理算法实现智能分配交通能力,节省大量人力物力,有效解决这些城市交通发展的阵痛,对于城市进一步的发展也有着深刻的作用。

2)把“以人为本,绿色通行”作为核心理念应用于智能斑马线,避免人们由于缺乏安全意识而发生交通事故,也降低传统斑马线易磨损,警示效果不明显的特点。

4结语

基于物联网的AI交通管理系统的核心理念为“以人为本,绿色通行”,智能斑马线通过语音对行人和车辆的及时引导和警示,而本系统设计的智能斑马线时嵌在地表,整个斑马线是和地面水平的,这样极大地降低了斑马线的磨损程度;并且采用太阳能供电,大幅度地节约了能源。本文结合语音提示、智能更改斑马线颜色等措施,在不需要人工介入的前提下实现行人过街的规范管理,减少行人闯红灯现象,降低交通事故发生概率,由此提升国民素质和形象,构建安全和谐的城市交通出行环境。可见,本系统的研发和实现具有重大现实意义和应用价值,也将为我国智能化的交通做出巨大贡献。

人工智能论文3000字篇13

摘要:随着社会的飞速发展,科学技术不断进步,工业领域生产模式发生变化,人工智能时代势不可挡,尤其是机器人得到更大范围的推广与应用。工业机器人的突出优势是精准度较高,工作效率高,能够承受较大工作强度,为整个工业领域产量的提升以及质量的提高创造更加优质的条件。由此可见,工业机器人已成为现代工业发展的趋势与方向。文章基于行业发展,详细阐述了工业机器人的特征,探讨其未来发展趋势与方向,以期为整个工业行业的持续性发展提供更大的技术支撑。

关键词:人工智能时代;工业机器人;趋势;

Abstract:

Withtherapiddevelopmentofsociety,thecontinuousprogressofscienceandtechnology,industrialproductionmodechanges,theeraofartificialintelligenceisunstoppable,especiallytherobothasbeenmorewidelypromotedandapplied.Theoutstandingadvantagesofindustrialrobotsarehighaccuracy,highworkefficiency,abletowithstandagreaterintensityofwork,fortheentireindustrialfieldofproductionandqualityimprovementtocreatemorehigh-qualityconditions.Thusitcanbeseenthatindustrialrobothasbecomethetrendanddirectionofmodernindustrialdevelopment.Basedonthedevelopmentoftheindustry,thispaperexpoundsthecharacteristicsoftheindustrialrobotindetail,anddiscussesitsfuturedevelopmenttrendanddirection,inordertoprovidegreatertechnicalsupportforthesustainabledevelopmentoftheentireindustrialindustry.

Keyword:

eraofartificialintelligence;industrialrobot;trend;

随着人工智能时代的到来,互联网技术取得巨大突破,大数据技术成为核心,为工业机器人产品性能的提升提供更加先进的技术支持。在工业机器人发展进程中,其操作趋于简易化,精准度更高,能够广泛应用在诸多领域,投入成本呈现不断降低的趋势。立足工业领域,机器人应用于产品检测、焊接以及搬运等环节。工业机器人的出现强化对人力应用的缓解,在优势上主要体现为较高的生产效率与较高品质的操作,同时,操作持久性更加突出。

1工业机器人的构成以及类型

从构成上分析,工业机器人主要包含三个部分,即本体、驱动以及控制三个系统。从功能上分析,一种机器人的作用体现在对人类手、手臂的模仿。另外一种更具智能化,有效发挥仿生学的特征,能力更显多样化,自由度更高。在当前的工业领域,之所以选择工业机器人,主要源于其较低的单机价格,便于维修,应用效率较高。

2人工智能时代工业机器人核心技术分析

2.1工业机器人以高精度减速机为核心构成,涉及多种技术类型,要求较高

在工业机器人中,关键性结构组成为高精度减速机,涉及多种技术类型。首先,材料成型控制技术十分关键,尤其对减速机减速齿轮的耐磨性与刚性提出更高要求,目的是保证运行的高精度标准。在材料构成方面,要强化对金相组织、材料化学元素以及含量的科学控制。其次,加工技术不容忽视。在减速器中,非标特殊轴承是必不可少的组成部分,结构极具特殊性,需要减速器零件加工尺寸来确认间隙标准,工人技术要求更高。

2.2以电机与高精度伺服驱动器为核心,实现对工业机器人的全方位控制

对于工业机器人的控制,电机与高精度伺服驱动器作用突出,强化对控制系统的管理,尤其是在瞬间力、功率输出方面面临更高的标准。首先,快响应伺服控制技术能实现对位置环、电流环以及速度的有序控制,合理运用干扰观测以及前馈补偿算法。具体讲,要采用指标预测法来构建内部预测模型,达到闭环优化的目的。其次,为了保证工业机器人能够有效发挥识别功能,要依托在线参数自整定技术,强化转动惯量以及PID参数的在线优化,达到参数的精准判定。另外,在线惯量辨识算法明确伺服驱动器的实际工况,强化参数的智能化控制,以现场实际为要求,合理进行参数的调整。

2.3以实时性为要求,强化控制操作系统的稳定性与精确性

在工业机器人中,运动学控制系统对实时性要求较高。目前,机器人运动控制卡以定制方式为主,同时,强调与操作系统的密切配合,强化数据传输、数据精确性以及稳定性的实现,尤其是对于操作系统的消息处理机制,更要关注稳定性与快速响应的需要,增强实时性,为机器人产业化道路的发展创造条件。

3结合工业机器人应用实际准确掌握发展趋势与方向

3.1工业机器人的发展更显系统性特征,整体性能增强,适用范围更广

立足新时期的发展,工业领域的机器人更显多样性,如焊接机器人、清洁机器人等逐渐投入使用,工程自动化程度显著增强。随着技术水平的不断提升,机器人的造价呈现下降的趋势,但是,性能却不断增强。例如,对于工业领域的机械手,其主要原理是进行人手及手臂的模仿,实现灵活抓取以及搬运的功能,满足自动化操作的目标。纵观当前,机械手应用最为广泛的领域是工业制造业、包装业等。机械手能够在既定的时间内较为准确与高效地完成操作动作,这也成为工业机器人发展的主要方向。目前,信息技术发展迅速,尤其是人工智能技术影响力不断扩大,加之互联网技术的支持,工业机器人发展更显系统性特征,强化在控制系统、诊断系统以及维护系统功能的提升。同时,依托仿真模拟化程序设计,切实增强智能化与自动化水平,整体性能不断提升,在应用方面更显可靠性,适用范围更广。

3.2以工业发展需求为基础,更显生物性与仿生性特点,强化不良工作环境生产效率的提升

立足工业生产,很多环节与环境保护相矛盾,对从业者身心健康产生不利影响,有些操作人类很难完成,这也成为工业机器人得以推广应用的重要因素。例如,对于真空机器人,其之所以在工业中应用,主要原因是半导体工业中,真空传输晶圆这一环节人类无法完成,而真空机器人的引进实现这一问题的解决。另外,在一些恶劣环境中,如适应无阻运动的蛇形机器人,满足水下作业的仿生鱼机器人等,都处于不断研发之中,备受瞩目。也就是说,在工业机器人的发展进程中,更加关注其仿生性与生物性的特征,能够有效实现对人类行为的模仿与替代,成为新时期工业机器人研发的新动向。

3.3基于不断升级与更新的计算机信息技术,工业机器人控制系统更加完善,加快统一化与标准化的实现

在机器人内部,核心构成为控制系统,是发挥功能的重要保障,强化对记忆、示教、通信连接以及坐标设置功能的支持。当前,计算机技术不断升级更新,为工业机器人控制系统的优化与完善提供强大动力,整体控制水平显著提升。具体讲,在控制器方面,由专用封闭式发展为开放式。也就是说,计算机水平的提升使得工业机器人的控制系统突破专供的束缚,更显统一化与标准化的趋势,网络化特征明显。基于此,工业机器人的操作更显便捷性,具备简单的操作常识即可,无需投入人力物力进行培训,在很短的时间内就可以对机器人进行模块功能调整,在根本上使机器人的使用更加方便与快捷,维护管理工作也易于进行。

3.4综合传感器融合配置技术日趋成熟与完善,实现对人类思维与神经的多功能仿生

立足信息时代,人工智能的发展势不可挡,智能化成为工业机器人在未来的发展方向。智能化的机器人,即强调机器人对人类模仿的更高层次,需要具备更高层级的仿生,既要能够模仿人类的动作行为,同时,还需要具有人类的思维与神经。基于此,传感器成为智能工业机器人的重要构成部分,尤其是视觉、力觉、触觉传感器的出现,加快工业机器人智能化的发展速度。例如,对于从事电弧焊接的机器人,采用多传感器融合配置,融电弧传感器、视觉传感器以及机器传感器于一体。在视觉传感器的支持下,机器人能够凭借激光视觉扫描功能,获取焊接过程中所需要的焊炬等数据信息,保证电弧焊接的精准性。另外,远距离遥控机器人的出现代表了综合性传感器融合配置技术上了新的台阶。这种技术在机器人未来发展中将得到更大范围的推广与应用,处于不断完善与成熟中。

4我国工业机器人发展存在的不足与凸显的问题

首先,我国工业机器人起步较晚,发展时间较短,资金投入方面彰显不足,在技术与经验方面彰显无力性,处于不断摸索与提升阶段,研发力度亟待增强。其次,对于我国机器人的发展,在生产技术与可靠性方面相对薄弱,尤其是机器人很多关键部件需要进口,生产成本大幅增加,机器人市场仍需不断扩大,尤其是过高的成本支出,使得工业机器人在生产研发方面缺乏较高的积极性。再次,工业机器人标准化生产的实现需要以规模优势为前提,但是,我国在生产与研发方面的投入尚未达标,给推广与应用造成巨大阻力。

5如何推动人工智能时代工业机器人的快速发展

随着时代的不断进步,智能机器人技术处于不断创新升级中,因此,工业智能机器人在未来的发展要集中做好如下几个方面的工作。首先,从理论研究方面分析,要重视加强指挥制造技术的探究,尤其是针对机器人中相关零部件的生产,要切实提升产品生产质量,有效应对生产难题,借助新型制造技术与制造模式,缩短机器人生产与推广时间。其次,要结合社会需求,合理增加智能机器人科研项目资金投入,设置专项资金,尤其是面对工业转型发展的新阶段,要扩大对机器人及相关产业的投资量,在根本上为工业智能机器人技术的进步创造条件。再次,立足新时期,要对工业机器人相关条例、规则等进行完善,加快核心技术研发速度,同时,做好研发技术与成功经验的总结分析,推动智能机器人工业化发展进程的加快,构建更加完善的标准体系,强化对人机交互准则的合理优化。

6结束语

综上,工业机器人是多学科相互融合与发展的产物,对工业行业的发展意义巨大。因此,要立足信息时代,在人工智能技术的支撑下,准确掌握工业机器人发展趋势,明确技术特征,促使工业机器人生产制造成本的不断降低,性能逐步增强。同时,要重视仿生学在工业机器人领域的研究与应用,强化控制系统功能的不断升级改造,加快多传感器融合配置技术的发展,大幅提升工业机器人的智能化水平,推动整个行业标准化与统一化建设,拓展机器人应用领域,以便更好发挥工业机器人在人工智能时代的价值。

参考文献

[1]谭文君,董桂才,张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理,2018(04):42-47.

[2]王浩.工业机器人技术的发展与应用综述[J].中国新技术新产品,2018(03):109-110.

[3]蔡济云.工业机器人在自动化控制中的应用研究[J].科技与创新,2018(01):144-145.

人工智能论文3000字篇14

摘要:智能城市是在新一代信息技术支撑和知识社会创新环境下形成的城市理念。它是新一代的信息技术,如物联网基础设施、云计算基础设施和地理空间基础设施。它是一种综合透彻、宽带互联、智能融合、以人为本的可持续创新的先进城市形态。改变城市发展方式,提高城市发展质量是客观要求。智能城市目前包括智能交通、智能能源、智能教育、智能医疗等部分,未来将继续扩展到城市生活的各个方面。交通是经济发展的大动脉。随着智能城市目标的分割和落地,智能交通已成为智能城市建设的重要组成部分。本文旨在探讨智能交通运输的发展对于构建智慧城市的意义,以及应具备发展形态和意识。

关键词:智能交通;智能城市;影响

导言:交通运输一直对国民经济的发展和社会水平的提高有着决定性的影响。城市内部交通也对城市建设进程和居民生活舒适度和生活水平的提高产生了深远的影响。在现代社会经济快速发展的背景下,必须加强城市交通建设,才能有效地满足发展时代城市交通的相应需求,实现这一目标离不开智能交通的建设。

1智能交通与智能城市概述

智能交通是计算机技术、通信技术和传感器控制技术在交通管理系统中的综合应用。它可以在广泛的范围内实现全面、高效、实时、准确的管理和运输。它是现代城市建设中交通建设的必然发展方向。智能城市,又称网络城市或信息城市,是将人脑智能、物理设备和计算机网络相结合,形成新的社会形态、经济结构和增长方式的系统。智能城市建设是一项系统工程。在城市智能系统建设中,城市智能管理是首要内容。主要依托城市智能管理系统。二是智能交通、智能安全、智能建筑、智能电力等智能基础设施,包括智能银行、智能家庭、智能医疗、智能企业、智能商店、智能教育等社会智能和生产智能。通过智能城市建设,城市生产经营管理现代化水平不断提高。

2交通运输在智慧城市中的发展定位

现代科学技术的发展是工业发展的技术基础。随着城市化进程的加快,交通问题日益突出。随着机动车保有量的快速增长,交通拥堵、交通管理、能源短缺等问题已成为各城市发展面临的共同问题。在这一背景下,智能交通建设承担着重要的任务。智能交通系统(ITS)是指将先进的信息技术、数据通信传输技术、电子传感技术、卫星导航定位技术、电子控制技术和计算机处理技术有效地集成应用于整个交通管理中。并建立了大规模、全方位、实时、准确、高效的综合运输管理系统。系统。其目的是使人、车、路紧密结合,实现和谐统一,发挥协同作用,大大提高运输效率,保障交通安全,改善运输环境,提高能源效率。这里的“人”是指一切与交通运输系统有关的人,包括交通管理者、操作者和参与者;“车”包括各种运输方式的运载工具;“路”包括各种运输方式的通路、航线。智能交通的发展是政务智能化和交通信息化的发展趋势。这是提高交通管理水平、解决交通拥堵、提高交通资源利用率的最佳途径。就城市而言,完善的智能交通建成后,将通过基础交通设施和智能交通工具,及时解决公共出行的所有难题,进一步提高公众的服务水平,使居民对社会治安状况有更高的认识。EED,交通的便捷和智能化;通过有效利用多种交通数据资源,社会管理将逐步由人来管理。向以信息为主要手段、以数据资源为主要支持的自动化管理过渡。为实现智慧城市打下坚实基础。

3智能交通对智能城市建设发挥的优势作用

我们从经济角度和社会角度分析智能交通发挥的优势作用。

3.1从社会角度来说智能交通发挥的优势作用。在智能城市建设中,考虑经济效益的同时更要关注社会效益,主要表现在四个方面:第一方面是节能环保。智能交通可以有效缩短出行时间,降低能耗,减少汽车尾气排放,从而减少空气污染。在交通拥堵中,噪声往往成为一个社会问题,对智能城市的建设影响较大。智能交通的发展,道路畅通,出行方便,将有效减少噪声污染和车辆停放时间。二是提高城市交通服务管理水平。智能交通促进了现有交通管理体制和体系的改革和完善,增强了交通管理的服务意识,实现了交通系统科学技术和服务的双重飞跃,达到了现代交通系统和现代服务管理的水平,使交通管理由“进”向“出”的转变。三是促进相关产业发展。除了传统的交通运输和计算机信息产业外,通信产业还受到智能交通发展的带动,为城市创造了更高的效益。四是促进科技进步。智能交通需要多个高科技产业的结合,才能有效地作用于交通系统。为实现智能交通,除了提高交通系统的管理和服务水平外,相关的具有技术支持的高新技术产业也应继续研究和创新,为智能交通提供更强有力的保障。只有同心协力、共同进步,才能尽快实现智能交通,推动智能城市建设进程。

3.2从经济角度来说智能交通发挥的优势作用。智能交通从经济效益层面来说可以分为直接经济效益和间接经济效益,“直接经济效益”最直接触及的是交通中的两个关键因素“车”和“人”,交通的智能化会大大缩短行车时间,有效节约了能源,从而也降低了成本,提高了运输效率,交通事故的发生率也有明显改善,普遍提高了车辆的使用寿命。智能交通在公共交通运行中也起到了很好的监督作用,提高了服务水平。同时,它促进了绿色出行,提高了人们的环保意识,引导人们选择公共交通。”间接经济效益”主要指交通智能化带动的相关产业。智能交通依靠计算机、通信等高科技技术。同时,智能交通也将带动汽车制造业生产出技术含量更高、满足智能交通需求的先进汽车。智能交通是一个庞大的整体,覆盖了整个城市的交通状况,将促进城市和农村的发展。同时,也促进了周边经济的发展。智能交通(ITS)对整个交通系统实施网络监控和管理,有利于提高其服务水平,提高人们的出行效率。

4智能城市构建中发展智能交通的战略目标

为满足城市社会经济总体发展需求,为智能城市构建打下坚实基础,建立与智能城市构建需求相符、系统齐全、功能完善、可高效运作的智能交通系统,应坚持以下几点战略发展目标:(1)为交通管理部门和规划部门提供信息化决策支持;(2)建设高效的交通信息库,确保交通系统信息共享;(3)通过交通引导和交通信息发布系统引导合理的交通方式,促进交通行为有序,提高交通設施利用率,保证路网运行效率;(4)保证路网运行效率;(4)保证路网运行效率。)利用无线广播和网络为交通出行者提供出行信息,确保交通出行者能够随时随地获得所需的出行信息,如车站、汽车、家庭等,为其出行路径选择和出行方式确定提供参考。(5)提高交通资源利用效率,减少交通对环境的污染,实现智能交通的可持续发展。结束语

智能交通是建设智能城市不可缺少的组成部分。为实现智能城市的建设创造了巨大的经济效益和社会效益。通过智能交通的发展,可以有效地促进传统交通产业和许多新兴产业的发展,提高交通系统的服务和管理水平,改善城市交通拥堵,改变人们的日常出行方式,有效地降低城市污染程度。虽然智能城市的发展和建设技术还没有完全成熟和完善,但可以预见智能城市是社会和技术发展的必然产物,让我们拭目以待。

参考文献

[1]安锐.智能交通在道路交通管理中的应用[J].包头:道路交通管理,2018.17(12)46-47.

[2]姚娟.WSN的智能交通管理[J].中国西部科技,2018.12(3)51-52.

[3]阮永华,石征华.城市网络智能交通综合管控平台研究与设计[J].交通与运输,2017.24(H12)103-105.

[4]熊玲芳,杨世瀚.城市智能交通系统知识库的综合推理[J].计算机与数字工程,2018.14(2)214-216.

[5]李扬,郁宇.发展智能交通系统(ITS)的必要性[J].科技视界,2018.17(28)140-141.

有关人工智能的论文对人工智能未来的看法

本文来源:https://www.ahwmw.com/lunwenfanwen/128834/

人工智能在计算机信息技术中应用

人工智能在计算机信息技术中应用

时间:2023-05-2421:11:28

【摘要】计算机技术的不断提升,推动了人工智能技术的快速发展,并且在各个行业领域中得到广泛应用。本文以文献对比法和理论分析法,对人工智能系统发展现状及应用优势进行分析,从系统安全管理、网络管理及其评价、数据挖掘等方面进行分析,提出了针对性的解决和控制措施,期望能够给同领域的技术人员提供一定理论支撑。

【关键词】人工智能;计算机;信息技术

90年代初,计算机只能单机或局域网操作,还不能上网。随着互联网的出现催生了计算机信息技术的发展。在万物互联互通,世界瞬息万变的时代,我们生活的世界在信息网络中实现了人与物、物与物、机与物的互相连接。计算机正向人脑方向发展,逐渐具备人脑的学习、思考、存储、记忆等功能。最近十几年,计算机智能化、人工智能神经网络等研究进入了高潮。让计算机实现人的听觉、视觉等识别能力是人工智能化研究中面临的重大挑战。随着人工智能技术与多媒体、数据库等技术逐渐结合,计算机变得越来越高效、智能。目前,全世界都对人工智能技术高度关注。为了提高国家的实力,实现科技兴国的目标,我国加大了在人工智能方面的投入力度及政策扶持。随着通信技术和数字化技术的快速发展,网上的信息量越来越多,这已成为一个值得我们关注的问题。如何使用智能方法识别并处理这些信息(包括文字,图像,语音等)已成为目前信息技术领域的一大难题。人工智能指通过计算机模仿人类大脑的思维过程和智能行为,从而使机器完成人工智能化。采取人工智能技术,可模拟人类的思维和处理问题方式,对所需要的专业及工作环境进行模拟和编程,进而代替人工解决实际问题,实现工作系统的智能化运行。要实现这些功能不仅需要理论基础,还要有技术和方法。从应用的优势看,人工智能技术在计算机网络系统中的应用可有效提升模糊信息数据的处理效率,其中最为典型的代表即对模糊数据处理时实现分级管理,同时人工智能的应用不仅能降低成本,还能推进计算机网络系统的智能化发展。因此,本文将重点分析人工智能在计算机信息技术中的优势及具体的应用。

1人工智能技术基本概念及应用优势

人工智能的前身是计算机信息技术,是一种让计算机模拟人的思维来完成相关任务的新的技术。计算机通过程序来模拟人的学习、推理、思考、规划等一些思维过程和智能行为。它是信息技术发展到一定阶段革命性的产物,加快了社会的技术进步。人工智能技术的使用能让计算机在执行程序时记忆并优化组合各种程序,使计算机不再简单依靠人的指令,而是效仿人类大脑思考过程,通过精确地分析和计算得到最优的结果。随着信息时代的到来,计算机网络技术取得了长足的发展,人工智能技术的应用也得到一定提升。随着人工智能的应用越来越频繁,数据处理的效率得到了有效提升,网络的稳定运行也得到了保障。一般情况下,计算机信息技术中人工智能的应用优势大概有以下几个方面:1)模糊信息数据的处理效率能够得到高效提升,这都依赖于人工智能系统。在大数据时代,最具典型的是数据信息的多样化处理,不仅要能拓宽使用类型,同时还要将数据处理的信息内容涵盖多个领域。人工智能技术不仅有效解决目前存在的矛盾问题,同时能够在分级管理过程中,将处理后的数据信息进行优化,实现处理后数据信息的等级划分,进而使数据处理信息的水平得到快速提高,为计算机网络信息技术的高效稳定发展奠定良好的基础。2)成本的降低,有赖于人工智能的应用。在人工智能中电子信息技术得到了广泛应用,这种应用没有很高的成本。电子信息技术是运用高速的算法,对大量的数据进行运算,而且具有相当高的效率。人工智能具有使用方便,数据处理速度快、精度高等特点。在网络中应用人工智能技术能够减少资源浪费,有效整合信息和数据,提升计算机的运行速度,进而降低了成本,这样就可以得到更大的经济效益。3)计算机网络系统发展到今天,人工智能的应用起到了很大的作用。人工智能是一个新的领域,它应用到计算机网络系统中,可以对信息进行深度挖掘,整合大量的信息数据,有效地提高了计算机的网络技术水平,提升数据信息的辨识度。在数据的搜集、处理及应用等过程中,为保证数据信息的精确性,完善计算机系统智能化发展具有积极意义。4)人工智能的应用有助于创新。经济社会发展到今天,需要变革和创新,尤其是科技的创新,极大地改变了人们的生活。特别是近二十年,电子信息技术的高速发展带动了人工智能的进步。同时人工智能系统所具备的精准、高效、省时等优点,对电子信息技术发展又有着促进作用。这两年全球范围的疫情,极大地改变了人们的生活方式,充分利用大数据、云计算系统,可以推动社会发展向数字化转型。

2人工智能在计算机信息技术中的标准化应用

2.1人工智能在计算机信息安全管理中的应用

在计算机网络安全中,人工智能的应用越来越广。例如,智能防火墙技术。与普通的计算机防御系统相比,智能防火墙的优势还是很明显的。它可使用智能识别技术对数据信息进行及时有效处理,根据先使用原则,采取概率以及分析记忆的方法,这样可以降低计算机在检查过程中的计算失误,提高发现网络有害数据的概率。在计算机网络安全管理入侵检测的环节中,智能防火墙技术的应用对计算机信息技术的安全具有深远的影响,也是实施防火墙技术的关键。另外,人工智能技术是建立智能邮件清理系统的核心,可及时有效地甄别无用的邮件信息,并能够及时、全面、高效地处理掉无效、有害的邮件,有效地监测系统软件和客户的邮件信息,对用户的信息安全不会产生影响,进而使邮件系统达到安全、稳定。人工智能的迅猛发展,带动计算机信息技术的进步,使网络管理更加智能化。例如,可借助人工智能技术中的专家处理软件或系统,对问题进行及时解决和控制,使计算机网络系统时时都处在安全监测和维护状态中,这样会大大降低管理的难度,也会增加网络管理的精确度,对人工智能技术的有效应用及计算机网络信息处理系统的优化起到重要作用。依据人工智能的理论以及专家系统的支持,人工智能在计算机信息系统的处理中得到了广泛应用。人工智能技术的应用,不仅涉及计算机应用程序,同时还可对经验及相关知识进行有效积累,汇集相关专家资源,通过专家处理系统,开展确定性的推理分析,对优化确定性的逻辑理论,构建逻辑性的思维体系等具有重要意义。

2.2人工智能在计算机辅助管理中的应用

目前在现代化管理中,计算机辅助管理已得到了广泛应用。人工智能技术在计算机管理中的使用是一种辅助化的管理模式,其基础理论为认知学,可通过知识形式对管理理论、管理思想进行优化,通过对学习形式的表达和对知识体系的形式化分析,促进问题解决思路和解决方案的落地实现。在人工智能处理系统中建立的基础是知识库。计算机辅助管理依靠知识库,根据某个事实,依据一定的规则来对知识库和管理的内容进行表达。人工智能在生活中的应用及作用见下表1。人工智能自诞生以来,理论和技术都在日益成熟,应用领域也在不断扩大。例如,智能物联网系统、工业机器人4.0、无人驾驶汽车的应用、智能的安保系统、智能家居系统、智慧医疗系统、智能教育系统、智能金融、智能农业等。智能化在我们的生活中无处不在。人工智能是未来世界发展的方向,将人们从传统行业的体力劳动中解放出来。

2.3人工智能在计算机数据挖掘系统中的应用

所谓数据挖掘技术,是将计算机用于数据搜索的过程。数据挖掘技术大致分为三个阶段,最初为数据源的收集,其次是将这些数据源进行处理,最后将有效的数据源进行应用。在处理数据的过程中,会用到数据挖掘技术来进行信息收集,因信息内容的不同,数据处理也会不断改变。这样通过数据处理技术逐步建立数据库。人工智能的基础是数据库,与普通的数据控制技术相比,当数据控制技术与人工智能技术融合,利用人工智能技术将数据挖掘技术广泛应用到社会各个方面。用户通过使用计算机得到自己需要的相关信息,这样减少了工作量,提高了效率,另一方面计算机可以对信息进行分类保存,防止信息丢失。在信息时代,如果按照传统的计算机信息处理方式将耗时耗力,也不一定能够达到预想的效果。这时,将人工智能应用到计算机数据挖掘系统中,将会起到事半功倍的效果。操作员先找到标准数据,然后根据标准数据进行数据挖掘,在这个过程中,提高了计算机网络系统的安全性和信息的准确性。工作人员日常生活中需要对入侵计算机的规则进行学习,掌握入侵计算机的系统模式,然后做好数据记录,确保每一个入侵数据信息都不会被遗漏,从而为下次识别外部计算机入侵系统的行为提供便利,有效提高数据挖掘系统运行的安全性,这样可以使数据挖掘系统的安全性得到提高。

3结语

现在,人工智能已经应用到我们生活的方方面面,例如使用者只要输入关键的信息,计算机就会根据指令在数据库中进行搜索,给出用户需要的结果。以安卓系统为例,用户使用智能手机时,向手机中的APP下达命令,这些软件就会根据命令提供相关的信息结果。用户要去某个地方需要导航时,进入导航系统发出命令,系统会自动搜索出路线,提供相关的导航服务。综上所述,人工智能在计算机信息技术中的应用涉及多个领域,但是因为数据的信息量大,计算机的运行处理信息能力低,经常出现网络瘫痪的情况,没有办法满足日常需求。鉴于此,就需要将人工智能引入到计算机网络处理系统中,充分利用智能化处理大量信息,以确保信息能够得到充分、全面、科学地分析和优化。

【参考文献】

[1]李晓.浅析人工智能在当代计算机信息技术中的应用[J].数字通信世界,2021(10):167-168+207.

[2]格桑次仁.浅析计算机信息技术中人工智能的运用研究[J].数字技术与应用,2021,39(6):67-69.

[3]陈敏.人工智能在当代计算机信息技术中的应用[J].电子技术与软件工程,2021(8):243-244.

[4]杨家娥.人工智能在当代计算机信息技术中的应用[J].数字技术与应用,2021,39(1):55-57.

[5]王勇.人工智能在当代计算机信息技术中的应用[J].电子技术与软件工程,2021(1):253-254.

[6]杨远花.浅析人工智能在当代计算机信息技术中的应用[J].材料保护,2020,53(9):187-188.

作者:苗芳单位:辽宁省计量科学研究院

人工智能在产前超声领域应用

人工智能在产前超声领域应用

时间:2023-05-2807:08:27

【摘要】人工智能是利用数据和计算机算法实现原本人类才能完成的任务。借助计算机“高效、稳定”的优势,人工智能甚至在某些劳动密集型任务中发挥着超人类的作用。其中,医学影像领域凭借其图像标准化程度高、大数据支撑的天然优势,目前已与人工智能结合为一个新兴的医学研究领域,并迅速成长。产前超声受孕周、胎位和声衰减等影响,所获图像的标准化程度低、图像特征描述困难等,导致机器学习的特征工程准确性低,是医学图像领域中人工智能研发的最难点。近年来,借助深度学习技术发展的优势,产前超声人工智能识别研究逐渐起步,并取得了令人鼓舞的结果,例如在标准切面定位、胎儿生长指标与解剖结构的自动测量、鉴定图像的标准化程度、正常和异常图像的分类识别等方面,人工智能呈现出与产科超声专业人员相媲美的筛查与诊断能力。本文将概述医学影像人工智能的基本概念、人工智能在产前超声领域的研究进展、未来发展趋势和方向,旨在促进产前超声与人工智能领域的跨学科研究,以进一步挖掘人工智能在产前超声领域的发展潜能。

【关键词】产前超声;人工智能;深度学习

智能的概念最初被描述为计算机程序执行与人类智能相关的过程的能力,如推理、学习、适应、感官交互理解。19世纪50年代AlanTuring在一份研讨会论文中提出测试机器是否具有智能的方法,如机器能够与人类展开对话而不被评估者辨别出其机器身份,那么称这台机器具有“智能”[1]。随后McCar-thy等[2]提出“人工智能(artificialintelligence,AI)”这一特指名词。传统的计算机算法(如电子计算器)设置好既定的规则,每次都执行相同的功能,AI算法则自动从训练数据中学习规则(函数)。当今AI作为人脸识别技术、虚拟助手语音识别(如亚马逊的Alexa、苹果的Siri、谷歌的Assistant和微软的Cortana、汽车自动驾驶等)的基础,已广泛应用于我们的日常生活中。人机对弈的里程碑事件包括1997年“深蓝”电脑击败了国际象棋世界冠军GaryKasparov、2016年击败了中国职业围棋手李世石(9段)[3]。在医学领域,AI因其具有从大数据中获取规律的能力,可用于筛查、预测、分诊、诊断、药物开发、治疗、监测和影像识别等,目前已在新药研发[4-5]、临床决策[6-8]、医学影像判读[9-10]等各方面发挥着助力作用。已获得美国食品和药物管理局批准的AI图像分析软件呈指数递增,如检测心律失常的智能手表、自动提取关键诊断图像的智能软件等。产前超声是医学影像AI领域的难点,受孕周、胎位、超声特有的声衰减等影响,图像标准化程度低、特征描述困难,从而导致机器学习的特征工程准确性低。深度学习是先进AI技术的代表,在图像模式识别方面表现尤其出色,通过模仿人脑的结构设计,可自动提取底层特征,避免了人为图像分割导致特征工程准确性低的影响。因此,借助深度学习技术极有可能在这项劳动密集型任务中突破瓶颈,为智能化图像识别提供更为深远的帮助。本文整合这两个领域的基本理论知识,介绍AI基本概念,探讨AI与产前超声领域结合的研究进展、机遇与挑战、未来趋势,旨在加强产前超声领域与AI领域专业人士之间的跨学科交流,进一步挖掘AI在产前超声领域发展的巨大潜力。

1AI基本概念

广义的AI指机器具备任何与人类相似的思考、学习、推理的能力,即机器从数据和经验中学习规律,从而达到可提供新的数据和经验的能力。狭义的AI是机器执行特定任务的能力,如图像检测、翻译、国际象棋等。机器学习是AI的一个分支,可理解为随数据量增多而逐渐改进统计方法,以获得最佳模型(函数/规律),最终达到预测未知状况的目的[11]。换而言之,大数据支持是机器获得智能的基础,而医学影像在常规临床实践中积累的大数据库为机器学习提供了丰富的资源。根据学习方式不同又可分为:监督学习、无监督学习和强化学习。监督学习中训练数据是具有标签的,机器根据已有的数据标签,找到输入和输出结果之间的关系;无监督学习中训练数据是不需要标记的,机器通过聚类的方式从数据中寻找某种内在共性,从而分类数据;强化学习不直接给出解决方案,通过试错、激励的方式以达成回报最大化。深度学习是机器学习的另一分支。在深度学习中,输入和输出由多层隐藏层连接,也称为卷积神经网络(convolutionalneuralnetworks,CNN),是一种受生物神经网络启发的计算算法。深度学习神经网络含有多层隐藏层,可自动提取底层特征,使人眼无法分辨的抽象信息得以保真学习[12-13]。因此,其应用于医学影像AI识别时,可以有效避免人为图像分割导致的特征工程准确性低。

2AI在产前超声领域研究进展

随着人们对先天性畸形产前筛查重要性的认知逐步加深,产前超声筛查需求持续增长,而要达到专业产前超声筛查所需能力的培训时间长,导致产前超声工作者的工作负荷急剧增加。因而,提高产前超声筛查效能的迫切需求成为了AI在产前超声领域发展的主要驱动力。目前,产前超声AI领域的研究进展主要呈现在以下方面:产前超声筛查切面识别与定位、生长指标与解剖结构的自动测量、鉴定图像的标准化程度、部分标准切面的正常异常的分类识别等。

2.1产前超声筛查切面智能识别与定位

产前超声筛查切面智能识别是指计算机通过大量学习已知数据的类别标签,实现超声图像输入后切面的自动分类,如图像是腹围切面还是头颅切面,这是进一步测量、诊断异常的基础。而筛查切面的定位是指机器能在视频流或众多扫查切面中定位到所需的诊断切面。早在2017年,Yu等[14]借助深度学习CNN的结构优势,配合迁移学习策略和针对性的数据增强技术,实现了胎儿颜面正中矢状面、双眼水平面、鼻唇冠状面的分类识别,经测试该模型的受试者曲线下面积达0.979~0.999。同年,Chen等[15]应用卷积和递归神经网络的新型复合框架实现在图片和视频集中对腹围切面、双眼横切面、四腔心切面的自动分类识别。英国帝国理工学院Baumgartner等[16]通过深度学习弱监督学习模式,建立了CNN模型SonoNet,实现了自由扫查时13个胎儿标准切面的自动识别,图像召回率达90.9%。该项技术的实现将有利于引导经验不足的操作人员获取胎儿筛查的标准切面,全面提高产前超声医师培训效能,缓解全球范围内专业产前超声工作者短缺的压力。甚至在紧急情况下,非产前超声专业医疗工作者基于AI辅助也可获取筛查切面进行基本的产前超声筛查。

2.2胎儿生长指标及解剖结构的自动测量

计算机自动测量的基础是根据超声图像中不同区域所展示的回声强弱、空间纹理、结构形状、边缘连续性等特征,把目标图像中特征性解剖结构从其周围的背景中抽离出来。将深度学习自动分割优势应用于标准切面自动测量,展现出良好的性能。目前很多的超声仪器都配备自动测量AI软件,包括颈项透明层、生长发育指标、侧脑室等的测量。如Chen等[17]基于CNN对胎儿颅脑侧脑室的像素级分割,实现了侧脑室宽径准确测量,误差仅1.8mm。荷兰拉德堡德大学团队[18]基于VGG-Net的网络,自动分割胎儿颅骨光环,再通过U-Net网络来自动测量胎儿头围,最后以参考头围的Hadlock曲线来确定孕周,实现孕周的自动估算。Kagan等[19]对比了人工与半自动测量颈项透明层厚度在不同经验医师间重复性的差异,发现自动化测量技术有利于经验不足的操作人员对颈项透明层进行更为准确的评估。基于自动分割特征图像,AI技术准确的自动测量将简化所有超声工作者平时的操作步骤,节约检查时间而将更多的注意力专注于特征性结构或病灶。

2.3产前超声筛查切面的标准化程度质控

产前超声筛查切面的标准化程度质控是指判断超声图像是否显示了标准切面所必须显示的结构,是避免误诊与漏诊的基础,也是培训专业的产前超声工作者的关键。通过将医学逻辑转化为计算机语言进行图像的量化质控,我国深圳大学团队产出了出色成果。其中,Wu等[20]将AI检测技术应用于胎儿腹围切面的标准化程度质控。首先基于CNN定位图像中胎儿腹部横切面,再基于标准的腹围切面需显示胃泡、脐静脉等关键结构,对关键结构的显示进行量化评分。该研究所研发的FUIQA网络对腹围切面的质控评分与3名专家的主观评价相接近。Lin等[21]提出基于候选区域快速卷积神经网络多任务学习框架MFR-CNN对颅脑横切面内的丘脑、外侧裂、脉络膜丛,侧脑室后角、透明隔腔、第三脑室进行分类及定位检测,结合图像放大程度对切面进行量化评分。以交并比>0.7为定位准确,该模型对切面中结构定位准确率达80%以上,平均分析时间为0.5s。Dong等[22]建立的胎儿四腔心切面质控评分的神经网络综合考虑了图像的增益、放大程度以及图像所必须显示的关键结构等因素。如果同时检测到:4个腔室、肺静脉回流角,心尖、乳头肌、两侧各显示1条肋骨,且增益及放大程度合适,机器则判断为标准四腔心切面。其定量质控胎儿四腔心切面内部验证精度93.52%,外部验证精度达81.2%。

2.4正常与异常产前超声图像的自动分类识别

胎儿异常的诊断是AI在产前超声领域的最难点:首先胎儿畸形的产前诊断通常需要多切面联合诊断,单一平面信息量少,AI算法需要解决动态、联想、立体识别等方面的难题。此外,胎儿畸形的病变种类很多,每种畸形变化不一,相对来说单一病种数据量少,AI识别也面临数据量不足的困境。近两年,研究者们开始尝试于胎儿心脏及颅脑的正异常分类或部分异常类型诊断方面作出突破。2020年,Gong等[23]在建立胎儿先心病AI筛查模型中,首次引入了异常四腔心切面的图片训练,验证结果表明AI在分类正常与异常四腔心图像的表现超过了低年资及中年资医师,仅次于高年资医师。Ar-naout等[24]建立的神经网络在识别5个胎儿心脏标准切面基础上,实现了正常与16种先心病的智能分辨,曲线下面积为0.99,敏感度为95%[95%置信区间(CI)84%~99%],特异度为96%(95%CI95%~97%)。Xie等[25]基于深度学习卷积神经网络对胎儿颅脑超声图像进行正异常分类,该分类系统测试结果显示正常与异常颅脑横切面分类准确率达96.31%,明显超过既往文献报道的80%。热力图病灶定位结果显示61.62%达到精确定位,24.65%定位到与病灶紧邻的位置。同一课题组Lin等[26]通过分割和标记超过21500张胎儿颅脑超声图像进一步提出了胎儿颅脑异常实时AI辅助诊断系统,该系统可以在常规超声扫查中自动识别胎儿颅脑横切面及切面内特征性解剖标志,并根据图像检测9大种不同颅内异常。该系统的受试者工作特征曲线下面积为0.81~0.95。上述研究成果表明,基于机器视觉中的多项任务(分类、分割、检测),AI技术在产前超声领域的研究已逐渐从正常切面的定位识别过渡至异常声像的分类诊断,并有望模拟经验丰富的产前超声医师,权衡多种图像参数的同时辨别伪影,指导正确的临床决策。

3产前超声AI的挑战与趋势预测

AI技术在产前超声领域的研究进展充分展现了AI技术的优势及有望减轻产前超声工作者负荷的潜能。然而,将AI引入临床实践仍然面临诸多挑战,特别是对AI模型普适性的考证及一些目前尚无法避免的伦理问题的解决是将研究成果转化为生产力的必要准备。首先,AI模型的普适性问题:(1)单一中心获取的训练数据所建立的模型能否适用于不同的产前筛查与诊断的场景;(2)为中孕期设计的AI模型很难适用于早孕、晚孕的超声检查;(3)大多数AI模型是通过“监督学习”推导出来的,这意味着医师标注的准确性将影响模型的准确性。人类参与不可避免地在学习过程中引入主观偏差,得到的模型也可能受标注偏倚影响。因此,未来的AI模型无论是针对训练集的标注、还是验证数据集的底层标签,均需考虑制定合适的准则对质量进行把关。AI的适用性也需根据训练及验证数据制定严格规范,未来开展大规模多中心的临床研究将成为AI进入临床实践的必经之路。此外,真实场景的临床思维不仅考虑图像的特征,还会根据年龄、家族史、既往史、其他指标进行多因素整合分析,而AI模型只针对训练过的特征进行预测,不考虑其他因素。因此,未来医疗AI领域的研究重点将是构建AI集成图像和电子病例的“个性化影像诊断”。另外,AI在产前超声的应用,或者说在医学的应用,不可避免地会遇到一些伦理问题,例如AI应用到临床需要达到多高的准确率、AI所产生的医疗风险将由谁承担,需要各位研究者们进一步建立行业标准来规范这些问题。

4总结

AI在产前超声领域的研究进展,提示其有望改善筛查与诊断的工作流程、增加产前超声诊断者诊断的信心、提高产前筛查效能。未来的AI开发者和产前超声专业人员需进一步加强跨学科交流,将潜力转化为生产力,并联合多学科共同制定标准化的行业规范,规范这一新兴领域的行业标准。利益相关声明:本文作者无相关利益冲突。作者贡献说明:谢红宁负责提出选题及论文设计,并对论文进行修改;雷婷起草了本论文。

作者:雷婷谢红宁单位:中山大学附属第一医院超声科

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇