人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)
最全AI产业应用白皮书!八大应用领域完全拆解
AI产业应用视图
当前人工智能理论和技术日益成熟,应用范围不断扩大,产业正在逐步形成、不断丰富,相应的商业模式也在持续演进和多元化。人工智能产业应用从下到上,分为软硬件支撑层、产品层和应用层。
▲人工智能产业应用视图
1、软硬件支撑层
该层包括了硬件和软件平台。其中硬件主要包括CPU、GPU等通用芯片,深度学习、类脑等AI芯片以及传感器、存储器等感知存储硬件,主导厂商主要为云计算服务提供商、传统芯片厂商以及新兴AI芯片厂商。软件平台可细分为开放平台、应用软件等,开放平台层主要指面向开发者的机器学习开发及基础功能框架;应用软件主要包括计算机视觉、自然语言处理、人机交互等软件工具以及应用这些工具开发的相关应用软件。
核心器件多元化创新,带动AI计算产业发展。GPU、DSP、FPGA、ASIC以及类脑等AI芯片创新频繁,支撑云侧、端侧AI计算需求。AI计算产业快速发展,尤其是云端深度学习计算平台的需求正在快速释放。以英伟达、谷歌、英特尔为首的国外企业加快各类AI技术创新,我国寒武纪、深鉴科技等企业也在跟进。
2、产品层
产品层包括基础产品和复合产品。其中基础产品又包括了基础语言处理产品、知识图谱产品、计算机视觉产品、人机交互产品四类,是人工智能底层的技术产品,是人工智能终端产品和行业解决方案的基础。复合产品可看作为人工智能终端产品,是AI技术的载体,目前主要包括可穿戴产品、机器人、无人车、智能音箱、智能摄像头、特征识别设备等终端及配套软件。
AI产品形式多样,已涵盖了听觉、视觉、触觉、认知等多种形态。无论是基础产品还是复合产品,能够支持处理文字、语音、图像、感知等多种输入或输出形式,产品形式多样,如语音识别、机器翻译、人脸识别、体感交互等。全球互联网企业积极布局各产品领域,加强各类产品AI技术创新,有效支撑各种应用场景。
3、应用层
应用层是指AI技术对各领域的渗透形成“AI+”的行业应用终端、系统及配套软件,然后切入各种场景,为用户提供个性化、精准化、智能化服务,深度赋能医疗、交通、金融、零售、教育、家居、农业、制造、网络安全、人力资源、安防等领域。
人工智能应用领域没有专业限制。通过AI产品与生产生活的各个领域相融合,对于改善传统环节流程、提高效率、提升效能、降低成本等方面提供了巨大的推动作用,大幅提升业务体验,有效提升各领域的智能化水平,给传统领域带来变革。
02
AI产业与应用发展现状及趋势
人工智能技术快速发展,部分技术进入产业化阶段,带来新产业的兴起。从产业规模看,2017年国内人工智能市场规模达到237.4亿元,相较于2016年增长67%。其中以生物识别、图像识别、视频识别等技术为核心的计算机视觉市场规模最大,占比34.9%,达到82.8亿元。
从产业结构看,人工智能产业可分为基础计算和软件平台、核心软件和设备、行业领域应用三大部分,其中核心软件和设备、行业领域应用是增长最快的部分。
从企业来看,谷歌、苹果、Facebook、微软、百度等互联网、移动互联网企业均将AI作为下一阶段战略发展重点,加快推进基础算法、平台和智能设备研发,与高校和科研院所一并成为推动产业发展的主要动力;创业热潮与投融资热情在2017年回归理性,但整体来看AI创新企业和独角兽企业已具备一定规模,2016年全球新增初创企业738家,2017年新增初创企业降至324家。
从产业生态来看,目前人工智能产业生态模式尚未锁定,各种产业模式均在探索。以谷歌、亚马逊等企业为首的国外领先企业侧重于从芯片、操作系统到运行框架打造垂直生态,并快速将自有架构通过开源、开放等方式进行产业推广,力争形成行业事实标准。国内产业生态偏重于框架层和应用层,尤其是应用层软件技术和平台发展快速。
1、软硬件支撑平台
(1)多种人工智能芯片快速创新
人工智能发展浪潮成为拉动芯片市场增长的新的驱动力。根据预测,全球人工智能芯片市场规模在2016年约为24亿美元,到2020年规模将接近150亿美元,复合年均增长率保持超过40%的高速率;同时,人工智能芯片在人工智能整体市场规模占比也将呈现逐年递增态势,预计将从2016年的8%增长至2020年的12%。
人工智能芯片产业体系初步形成。人工智能芯片指能够实现各类深度学习算法加速的计算芯片。深度学习算法的运行对卷积、矩阵乘法运算任务以及内存存取等操作较为频繁,对于更擅长串行逻辑运算的CPU而言计算效率较低,难以满足需求。现阶段人工智能芯片类型主要涵盖包含GPU、FPGA、ASIC、类脑芯片等。其中,GPU芯片通用性较强且适合大规模并行计算,但售价贵、能耗高;FPGA可通过编程灵活配置芯片架构适应算法迭代且能效优于GPU芯片,但产品开发技术门槛较高,开发生态不完善;ASIC芯片通过将算法固化实现极致的性能和能效,且大规模量产后成本优势突显,但前期开发周期长易面临算法迭代风险。类脑芯片目前仍处于实验室研发阶段。
领先企业加快人工智能芯片布局。英伟达凭借高性能的GPU芯片占据应用规模优势,AMD、英特尔、谷歌等企业加速追赶。英伟达快速推出针对人工智能运算优化的TeslaGPU系列产品,其中最强V100GPU芯片提供每秒120万亿次张量计算能力,同时拓展CUDA生态开发深度学习加速库cuDNN,提升GPU面向深度学习算法和主流开发框架的运行效率,强劲的硬件性能和完善易用的开发者生态助力英伟达迅速形成了巨大的市场优势,现有客户覆盖谷歌、脸书、微软等巨头企业和大量的初创企业、科研院所等。AMD也加速追赶,最新发布全球首款7nm制程、专为人工智能任务设计的GPU芯片产品,试图抢攻服务器和工作站市场。
与此同时,英特尔、谷歌等企业开发兼具更高能效和低成本优势的ASIC芯片构筑竞争实力。谷歌面向谷歌云业务需求自研人工智能ASIC系列芯片TPU,其中,训练芯片具备实现业界最高的每秒180万亿次峰值浮点计算能力,TPU芯片也与旗下TensorFlow开发框架、算法和谷歌云平台深度耦合构建垂直完备的产业生态;英特尔收购芯片初创企业Nervana掌握ASIC训练芯片技术,第二代产品将于2019年下半年正式推出,性能对标谷歌TPU产品。
(2)多方布局人工智能计算框架
基础开发框架在人工智能产业链中占据承上启下的核心地位。在移动互联网时代,Android系统通过GMS与下游云服务松耦合,通过版本控制与上游芯片、整机厂商紧耦合,实现以Android操作系统为核心的移动互联网闭环生态。在人工智能时代,开发框架也具备媲美Android操作系统的核心地位,具有统领产业进步节奏、带动硬件配置、终端场景与云端服务协同发展的核心作用,占据承上启下的关键地位。以Google深度学习开发框架TensorFlow为例,TensorFlow向上与谷歌云紧密绑定,以云平台模式提供云机器学习服务,向下与芯片和硬件厂商紧密耦合做定制优化,谷歌TPU专用于TensorFlow。
领先企业围绕开发框架平台呈现多元化发展模式。一是纵向打通模式,从硬件到开源平台再到云平台至应用服务,贯通产业链上下游,构建全产业生态,谷歌为其典型代表;二是向上布局行业应用服务模式,以业务为导向,通过核心平台向上布局重点行业应用,如亚马逊、阿里等;三是算法下沉于硬件模式,核心算法固化于硬件,以硬件形态提供行业通用或专用计算能力,如寒武纪;四是以核心平台开放基础能力,为行业提供基础能力,如讯飞为行业提供基础语音识别基础技术,商汤为行业提供人脸识别基础技术等。在四种发展模式中,云平台和应用服务产生的所有数据均回流于训练平台进行数据反哺,可有效提升平台的综合能力。
国际巨头开源人工智能开发框架意图加快掌握技术产业组织的主动权。国际巨头纷纷布局开发框架,意图加快掌握技术产业组织的主动权,占领客户、应用和数据资源,逐步建立新的产业格局和技术标准。2013年,伯克利大学贾清阳博士宣布开源深度学习框架Caffe,成为第一个主流工业级深度学习工具。
2015年11月,Google开源深度学习框架TensorFlow,具备深度学习基本算法,可满足图形分类、音频处理、推荐系统和自然语言处理等基本功能,成为GitHub最受欢迎的机器学习开源项目,目前吸引ARM、京东等大批合作伙伴。2016年,亚马逊宣布MXNet作为其官方支持框架,具有优异分布式计算性能,拥有卡耐基梅隆、英特尔、英伟达等众多合作伙伴,国内图森互联和地平线等公司也有使用。2015年11月,IBM宣布开源机器学习平台SystemML,可根据数据和集群特性使用基于规则和基于成本的优化技术动态地编译和优化,应用在不同工业领域。2016年9月,百度开源其深度学习平台PaddlePaddle,可提供机器视觉、自然语言理解、搜索引擎排序、推荐系统等功能。2017年6月,腾讯和北京大学、香港科技大学联合开发的高性能分布式计算平台Angel正式开源,具有较强的容错设计和稳定性。众多开源学习框架促进人工智能应用程序发展。据IDC预测,到2020年,60%的人工智能应用程序将在开源平台上运行。
2、人工智能基础产品
(1)自然语言处理产品呈现实用化发展趋势
自然语言处理(NLP)是指机器理解并解释人类写作、说话方式的能力,是人工智能和语言学的一部分,它致力于使用计算机理解或产生人类语言中的词语或句子。自然语言处理主要涉及语音识别、语音合成、语义理解、机器翻译,自然语言类产品呈现实用化的发展趋势,但是产品成熟度上仍存在较大的提升空间。
语音识别受到国内外商业和学术界的广泛关注,在无噪音无口音干扰情况下可接近人类水平。目前语音识别的技术成熟度较高,已达到95%的准确度,但背景噪音仍难解决,实际应用仅限于近距离使用。我国语音识别技术研究水平良好,基本上与国外同步,科大讯飞语音识别成功率达到97%,离线识别率亦达95%。此外,我国在汉语语音识别技术上还有自己的特点与优势,已达到国际先进水平。语音识别产品方面,微软、谷歌、亚马逊,以及国内的百度、讯飞、思必驰等企业均推出了各自基于语音交互的产品,其中以输入法、车载语音、智能家居、教育测评最为普遍。
机器翻译是当前最热门的应用方向,由于自然语言语义分析的复杂性,翻译水平还远不能和人类相比。近年来机器翻译技术越发成熟,各大厂商都积极投身于这个备受关注的机器翻译领域,谷歌使用深度学习技术,显著提升了翻译的性能与质量。各大互联网公司相继推出自己的翻译系统,谷歌、微软、有道、科大讯飞、百度、搜狗等均上线或更新了翻译产品。例如阿里机器翻译基于阿里巴巴海量电商数据,并结合机器学习、自然语言处理技术,实现多语言语种识别与自动翻译功能,为跨境电商信息本地化与跨语言沟通提供精准、快捷、可靠的在线翻译服务。
(2)知识图谱从实际问题出发呈现多维度应用
知识图谱概念由谷歌2012年正式提出,其初衷是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。知识图谱是具有向图结构的一个知识库,其中图的节点代表实体或概念,而图的边代表实体/概念之间的各种语义关系,其起源可以追溯到20世纪50年代的语义网络,本质上是使机器用接近于自然语言语义的方式存储信息,从而提升智能信息检索能力,现已被广泛应用于智能搜索、智能问答、个性化推荐等领域。
知识图谱经历了由人工和群体协作构建到利用机器学习和信息抽取技术自动获取的过程。早期知识图谱主要依靠人工处理获得,如英文WordNet和Cyc项目。通过人工处理,知识图谱将上百万条知识处理为机器能够理解的形式,使机器拥有判断和推理能力。随着互联网上最大群体智能知识库维基百科的建立,出现了DBpedia、YAGO以及Freebase等依托大规模协同合作建立的知识图谱。随着大数据时代的到来,知识图谱的数据来源不再局限于百科类的半结构化数据和各类型网络数据。
基于知识图谱的服务和应用是当前人工智能的研究热点。当前,知识图谱的应用可以归纳为语义搜索、知识问答以及基于知识的大数据分析与决策三个方面:
1、在语义搜索方面,由于知识图谱所具有的良好定义的结构形式,语义搜索利用建立大规模数据库对关键词和文档内容进行语义标注,从而改善搜索结果。国外搜索引擎以谷歌搜索和微软Bing最为典型。一方面,基于知识图谱的搜索引擎相继融入了维基百科、CIA世界概览等公共资源。另一方面,搜索引擎与Facebook、Twitter等大型社交企业达成了合作协议,在个性化内容的搜集、定制化方面具有显著优势。国内主流搜索引擎公司近年来也相继将知识图谱的相关研究从概念转向具体产品应用。搜狗“知立方”是国内搜索引擎中的第一款知识图谱产品,它通过整合碎片化的语义信息,对用户的搜索进行逻辑推荐与计算,并将核心知识反馈给用户。百度将知识图谱命名为“知心”,主要致力于构建一个庞大的通用型知识网络,以图文并茂的形式展现知识的各方面。
2、在知识问答方面,基于知识图谱的问答系统通过对用户使用自然语言提出的问题进行语义分析和语法分析,进而将其转化成结构化形式的查询语句,然后在知识图谱中查询答案。目前,国内外形式多样的问答平台都引入了知识图谱,例如苹果的智能语音助手Siri能够为用户提供回答、介绍以及搜索服务;亚马逊收购的自然语言助手Evi,采用TrueKnowledge引擎进行开发,也可提供类似Siri的服务。国内百度公司研发的小度机器人、小米智能音响、阿里巴巴天猫精灵等都引入知识图谱技术,开始提供交互式问答服务。
3、在分析与决策方面,利用知识图谱可以辅助行业和领域的大数据分析和决策。例如在股票投研情报分析方面,通过知识图谱技术从招股书、公司年报/公告、券商研究报告、新闻等半结构化文本数据中自动抽取公司相关信息,可在某个宏观经济事件或者企业突发事件中通过此图谱做更深层次分析和更好的投资决策。目前,高盛、JP摩根、花旗银行等国际著名投行均开展了相关探索和应用。美国Netflix也利用其订阅用户的注册信息和观看行为构建知识图谱,分析用户喜好从而推出新的在线剧集。
(3)技术产业协同发展推动计算机视觉实现商业价值
计算机视觉指通过电子化的方式来感知和认知影像,以达到甚至超越人类视觉智能的效果,是人工智能领域最受关注的方向之一。虽然计算机视觉在当前阶段仍然存在大量尚待解决的问题,但得益于深度学习算法的成熟和应用,以图像分类识别为代表的侧重感知智能的计算机视觉产品已经广泛应用于安防、金融、零售等产业,助力相关产业向智能化方向升级。
神经网络和深度学习的快速发展极大地推动计算机视觉的发展,大型神经网络在计算机视觉的部分细分领域已经取得优秀的成果。2017年ImageNet最后一届图像分类竞赛上,基于大型神经网络的分类算法在图像分类(1000类)任务中,将TOP5分类的错误率降至2.25%,已经大幅领先于人眼的分类识别能力。2018年在ActivityNet视频理解竞赛上,百度团队在Kinetics视频动作识别任务中将平均错误率降至10.9%,所使用的相关技术已经应用于实际线上视频分类系统,为视频打标签、视频对比和视频推建等业务场景提供语义化解析功能。
计算机视觉产品已在安防、金融、互联网、零售、医疗、移动及娱乐等产业逐步输出商业价值。在金融、移动、安防等产业,人脸识别是当前商业成熟度较高的计算机视觉产品,广泛应用于账号身份认证、手机刷脸解锁、人流自动统计和特定人物甄别等诸多场景。在互联网、零售、移动产业,图像搜索产品可为用户提供更为便捷的视觉搜索能力。
例如:eBay于2017年10月在其购物平台上增加了新的反向图像搜索工具,以帮助用户使用现有照片查找商品项目;Google公司2018年3月宣布其GoogleLens图像搜索服务目前已可应用于android和IOS(通过GooglePhoto项目)智能手机,该服务通过手机摄像头查看周遭环境并为用户提供与之相关的情境信息。在医疗产业,计算机视觉可提供临床治疗中早期病理筛查能力。加州大学伯克利分校放射与生物医学成像系和放射学大数据小组在对早期阿尔茨海默症诊断研究中,通过计算机视觉技术在小规模测试(对来自40名患者的40个成像检查的单独测试)中,对平均发病超过6年的阿尔茨海默症病例发现率达到了100%。
全球计算机视觉产业发展迅速,计算机视觉公司快速涌现。根据MarketsandMarkets报告显示,2017年基于人工智能的计算机视觉全球市场规模为23.7亿美元,预计2023年会达到253.2亿美元。预测期(2018-2023)内复合年增长率47.54%10。市场上一大批计算机视觉公司如雨后春笋般快速涌现,其中以谷歌、微软、亚马逊为代表的大型跨国科技企业除计算机视觉领域外,还积极布局人工智能全产业各个领域。
我国企业虽然在计算机视觉领域起步较晚,但发展速度很快,已经涌现出一批市场估值高达百亿人民币的独角兽企业。例如:成立于2014年的商汤科技,广泛服务于安防、金融、移动等产业,客户包括Qualcomm、英伟达、银联、华为等知名企业及政府机构。2017年7月,商汤科技宣布完成4.1亿美元B轮融资,创下当时全球人工智能领域单轮融资最高纪录。2018年,商汤科技在4月和5月连续宣布获得6亿美元C轮融资和6.2亿美元C+轮融资。成立于2015年的云从科技,深耕安防、银行、机场等重点产业场景,先后与公安部、四大银行、民航总局等产业界成立联合实验室。2017年11月云从科技正式完成B轮融资,总计获得25亿元人民币发展资金。成立于2014年的码隆科技,为京东、唯品会、可口可乐、蒙牛等零售企业提供商品属性识别、商品图像检索服务。2017年11月码隆科技完成由软银中国领投的2.2亿元人民币的B轮融资,成为软银中国在华投资的第一家人工智能公司。
(4)人机交互产品已在多个领域实现落地
人机交互主要是研究人和计算机之间的信息交换,按照交互方式分为语音交互、情感交互、体感交互、脑机交互。目前,人机交互已取得一定研究成果,依赖不同的人机交互技术,不少产品已经问世,并覆盖多个领域。但从整体上来看,受语音、视觉、语义理解等技术条件的限制,人机交互产业还处于萌芽期。人脸表情交互在移动应用产品设计中已得到初步应用,例如由TakutoOnishi开发的iOS应用程序“twika^o^”,可以帮用户把人物面部真实表情转化成文字符号表情。体感交互目前处于发展初期,主要应用在智能家居、体感游戏等方面,用户可以利用自己的身体移动来控制智能家居设备,Kinect一直在体感游戏方面发力,国内也有相关产品出现,例如速盟享动、绿动、运动加加等,但是在效果体验等方面发展层次不齐。
人机交互的发展过程,经历了PC时代、移动互联网时代,现在已进入智能生活时代。PC时代的交互方式主要是键盘+鼠标,移动互联网时代的交互方式主要是触摸、手写和手势,而智能生活时代的交互方式开始走向语音和视觉。人机交互的发展史,就是走向自然交互的发展过程——从以机器为中心的人机交互,走向以人为中心的自然交互。
语音助手在人工智能领域的发展已相对完善。据市场研究机构StrategyAnalytics的数据显示,2017年,GoogleAssistant在智能手机语音助手市场中占主导,为46%,苹果Siri排名第二,占40.1%,百度DuerOS和三星Bixby分别占13%。2019年全球超过一半的智能手机将拥有语音助手,甚至到2023年,这一份额将增长至90%。
目前,智能语音助手还处于智能应用的早期,只是作为一个内置或用户下载的APP供用户使用,在实际应用中并没有起到杀手级效应。智能语音助手使用率、活跃率、留存率都较低,即使Siri也不例外。智能语音助手的语音交互输出在很多场景下是无法展现图片那样丰富的信息的,一句语音的输入反馈输出的信息量更少,得不断进行高频率的互动来提高识别率。从应用方向和场景来看,语音助手主要用于消费级产品和专业级行业应用,消费级市场主要应用于衣食住行等生活场景,如手机、智能车载、智能家居、可穿戴设备等,专业级行业应用主要应用于医疗、教育、呼叫中心、庭审等特定场景。
脑机交互将助力人工智能迈向人类智能。国外的脑机交互研究中,“植入式”技术美、荷领先,美国在人机应用研究方面已实现了突破。“非植入式”技术则初探市场,产品迭出,例如日本本田公司生产了意念控制机器人,操作者可以通过想象自己的肢体运动来控制身边机器人进行相应的动作。美国罗切斯特大学的一项研究,受试者可以通过P300信号控制虚拟现实场景中的一些物体,例如开关灯或者操纵虚拟轿车等。
3、人工智能复合产品
(1)生物识别技术持续融合至各领域
生物识别产品主要是指通过人类生物特征进行身份认证的一种产品。人类的生物特征通常具有唯一性、可测量或可自动识别和验证、遗传性或终身不变等特点,因此生物识别认证技术较传统认证技术存在较大的优势。通过对生物特征进行取样,提取其唯一的特征并且转化成数字代码,并进一步将这些代码组成特征模板。生物识别产品包含诸如指纹识别、人脸识别、虹膜识别、指静脉识别、声纹识别以及眼纹识别等。
指纹识别技术是最成熟成本最低的生物识别技术。其在生物识别技术产业的占比最高,但随着其他识别技术的发展,所占比重逐年下降。指纹识别是通过分析指纹全局和局部特征,例如脊、谷、终点、分叉点或分歧点,再经过比对来确认一个人的身份。电容技术则是目前最常用的采集指纹的技术。通过按压到采集头上手指的脊和谷在手指表皮和芯片之间产生的不同电容,芯片通过测试得到完整的指纹信息。德国ITWerke公司于2011年发布了一款“指纹付款”软件,这是一套只需“刷指纹”便可完成付账的新兴软件。这种便捷的“刷指纹”付账服务目前已经在德国西南部一些超市、酒吧甚至学校饭堂推广。德国著名连锁超市Edeka超市的调查数据显示,大约有1/4的顾客愿意选择“指纹付款”。
人脸识别通过面部特征和面部器官之间的距离、角度、大小外形而量化出一系列的参数来进行识别。由于人脸识别具有使用方便且适用于公共安全等多人群领域,被广泛应用于智能家居、手机识别以及人脸联网核查等领域,其占比逐渐攀升。2010年5月,上海世博会上使用了“E面通”人脸识别系统,对进出世博园区约50万持证人员和7000万人次游客都使用了该“人脸通行证”。但人脸识别所涉及的器官多、面积又大,因此它的识别非常复杂,人脸识别的精度比较高,但相比其他识别技术成本略高。
虹膜识别技术是利用虹膜终身不变性和差异性的特点来识别身份。因为每个虹膜都包含着一个独一无二的基于像冠、水晶体、细丝、斑点、凹点、皱纹和条纹等特征的结构。理论上,虹膜的终身不变,虹膜识别的认假率为1/1500000,高于指纹识别的1/50000,安全程度高,更适合作为“密码”。如美国得克萨斯州联合银行已经将虹膜识别系统应用于储户辨识,储户办理银行业务无需银行卡,更无需回忆密码——通过ATM上的一台摄像机首先对用户的虹膜进行扫描,然后将扫描图像转化成数字信息并与数据库中的资料核对,即可实现对用户的身份认证。但由于虹膜识别安全性高但成本过高,普及尚需时间,目前主要应用于银行金库加密、军队国防等领域。
声纹识别通过测试、采集声音的波形和变化,与登记过的声音模板进行匹配。这是一种非接触式的识别技术,实现方式非常自然。但是,声音变化范围非常大,音量、速度、音质的变化都会影响到采集与对比的结果。但通过录音或者合成,能很轻松的伪造声音,安全性较差,目前应用于社保、公安刑侦手机锁屏等领域。
近年来,随着世界各国对安防领域重视度的提高,身份识别技术与产品也逐渐趋于成熟与完善,生物特征识别迎来了一个快速发展的时期,人脸识别、虹膜识别、静脉识别等生物特征识别技术正快速发展,市场应用场景广阔,产品比重不断增加。目前,指纹识别产品所占比重已由90%左右下降到不到60%,生物识别产业正在朝着多元化方向发展并呈现一下特点。
生物特征识别产业链趋于完善,市场规模快速增长。在我国,生物特征识别企业数量快速增长,企业规模不断加大,生物特征识别市场规模爆发式增长。当前,生物特征识别领域内的企业已从20余家发展到200余家,市场规模也已达到数十亿元12。以人脸识别为例,目前已形成了包括人脸识别算法研究企业等在内的多种产业角色的完整产业链。目前随着电子护照的逐渐推出,安全问题受到进一步的关注,我国的生物特征识别产业还存在较大的发展空间,未来产业规模有望进一步加大。
生物识别产业呈现多元化发展,安防领域成为应用热点。目前,在我国生物特征识别产业中,指纹识别技术和产品仍然占据主导地位,但随着人脸识别、虹膜识别、静脉识别、声纹识别等技术迅猛发展,各种模态的生物特征识别产品和市场潜力不可低估。当前随着人们对安全性的不断重视,出现了如生物特征识别门禁在内的一批安防产品,未来安防领域将逐步采用生物识别技术以提升安全性能。
(2)以自动驾驶为代表的智能运载产品发展迅速
智能运载产品主要应用有自动驾驶、无人机、无人船等,目前智能运载产品应用处于迅速发展阶段,无人机和无人船的发展较成熟,已有初步应用,而自动驾驶还处于研发和实验阶段。
根据美国高速路安全管理局(NTHSA)的定义,汽车自动驾驶可分为四个阶段。目前高级别自动驾驶车辆尚处于研究实验阶段,未进行产业化。近两年,各大自动驾驶的企业相继公布了实现自动驾驶量产的时间表,大都集中在2020-2025年之间。Level-2级别的自动驾驶车辆,即高级辅助驾驶(ADAS)车辆已实现量产化。2017年全球ADAS市场规模在300亿美元左右,并呈现稳定增长的趋势。随着汽车智能化趋势加速和安全需求的提升,未来全球ADAS市场渗透率将大幅提高。到2020年,全球ADAS渗透率有望达到25%,全球新车ADAS搭载率有望达到50%。
自动驾驶可分为“渐进性”、“革命性”两大技术路线。当前自动驾驶领域根据入局企业所采用技术可大致分为两大路线,一是福特、宝马、奥迪等传统车企所采用的“渐进性”路线,即在汽车上逐步增加一些自动驾驶功能,依托摄像头、导航地图以及各种传感器,为驾驶员提供自动紧急制动、全景泊车、自适应巡航等辅助驾驶功能。
二是谷歌、百度等互联网科技巨头所采用的“革命性”路线,通过使用激光雷达、高清地图和人工智能技术直接实现无人驾驶目的,强调产品的创新和便捷性。谷歌早于2009年就开始布局自动驾驶,成为第一个拿到美国政府路测牌照的企业,其自动驾驶车辆Waymo已完成800万公里的自动驾驶路测里程,技术水平在世界保持领先态势。特斯拉于2015年推出第一代Autopilot汽车,为全球第一辆量产自动驾驶车辆。
百度于2013年开始开展无人驾驶车项目,其无人驾驶汽车目前已取得了国内首批自动驾驶牌照,2018年百度Apollo和金龙客车合作生产的全球首款L4级无人驾驶巴车“阿波龙”已经正式量产下线。除谷歌、百度、特斯拉外,英特尔、苹果、Uber等科技巨头也在无人驾驶领域开展布局。英特尔收购Altera以及Mobileye后,开始启动L4级别自动驾驶技术研发。2018年英伟达公布了其DrivePX旗下的最新产品Xavier以及未来的下一代产品Pegasus,并基于Xavier分别联合博世以及采埃孚推出了车载AI超级电脑。芯片巨头高通,在收购恩智浦后,于2017年12月初取得美国加州自动驾驶路试的许可证。
无人机以军用无人机为主,需求额呈现上升趋势。随着无人机研发技术逐渐成熟,制造成本大幅降低,无人机在各个领域得到了广泛应用。无人机按照应用领域主要分为军用无人机、工业无人机、消费无人机。军用无人机主要应用有侦查、电子对抗、无人战斗机等,工业无人机主要应用于农业植保、电力巡检、警用执法、地质勘探、环境监测、森林防火等领域,消费无人机主要应用于个人航拍、影视航拍和遥控玩具等。142017年无人机市场规模将达60亿美元,而2020年则会进一步增长至112亿美元。全球无人机产量将达300万架,同比增幅高达39%,其中消费类无人机的销售量将会占到94%,但只占到无人机市场销售额的40%左右。
消费级无人机仍处于初级阶段,自主能力仍待提升。目前部分消费级无人机已能通过传感器、摄像头等进行自动避障,同时还能依靠机器视觉对飞行环境进行检测,分析所处环境特征从而实现自我规划路径。2016年,Intel通过智能算法成功实现500架多旋翼无人机上演空中编队灯光秀,消费级无人机开始朝更高级别的无人机智能化迈进。我国作为全球无人机第一制造大国,大疆占全球消费无人机70%消费级无人机市场份额,然而依照无人机系统路线图标准,大疆消费级无人机技术水平仍属于初级阶段。
(3)智能机器人技术与产品创新活跃
从应用的角度区分,智能机器人可以分为工业机器人、个人/家用服务机器人、公共服务机器人和特种机器人四类。其中,工业机器人包括焊接机器人、喷涂机器人、搬运机器人、加工机器人、装配机器人、清洁机器人以及其他工业机器人。
个人/家用服务机器人包括家政服务机器人、教育娱乐服务机器人、养老助残服务机器人、个人运输服务机器人和安防监控机器人等。
公共服务机器人包括酒店服务机器人、银行服务机器人、场馆服务机器人和餐饮服务机器人等。个人/家用服务机器人和公共服务机器人也可统称为服务机器人。
特种机器人包括特种极限机器人、康复辅助机器人、农业机器人、水下机器人、军用和警用机器人、电力机器人、石油化工机器人、矿业机器人、建筑机器人、物流机器人、安防机器人、清洁机器人和医疗服务机器人等。
工业机器人市场集中度高,是机器人应用最为广泛的行业领域。根据IFR(国际机器人学联合会)发布的数据,2017年,工业机器人在全球机器人市场中占据高达63.4%的市场份额,发展最为蓬勃。中、韩、日、美、德五国2017年工业机器人销售占全球总销量的71%。其中中国工业机器人销量达到13.8万台,其次是韩国约4万台,日本约3.8万台,美国约3.3万台,德国约2.2万台。新型工业机器人能够取代人工进行繁重的制造过程,在专业的金属加工自动化中它可用于金属器件制作,搬运、码垛,还拥有智能服务内核、学习型“大脑”,在训练与实践过程中可以不断地提升金属产品的加工精度。
人工智能的兴起推动了家政行业的智能化,个人/家用机器人的应用更加广泛。家政行业的领导企业“管家帮”推出家庭服务类智能管家机器人,可实现语音交互控制完成家政服务在线下单、拨打电话、家居布防、亲情陪护、健康监测、远程监控、主动提醒、居家娱乐、启蒙早教、应急报警、语言学习等诸多服务,是儿童的玩伴及老年人的贴心守护者。日本软银开售的类人机器人,有学习能力,可表达情感,会说话,能看护婴幼儿和病人,甚至在聚会时给人做伴。它们可以使用云计算分享数据,从而发展自己的情感能力,但不会共享主人的个人信息。英特尔公司推出的3D打印机器人,除了走路、说话,还能帮主人发微博、翻译语言,或开冰箱拿饮料。我国小米公司开发的扫地机器人能够自主探知障碍物和室内地形,实现对室内的自动化清洁。
公共服务机器人在酒店、金融、电信、电力、物流等具有大规模智能服务需求的行业中广泛应用,在低投入的基础上为企业提供优质高效的服务。
米克力美的智能酒店服务机器人能自动学习酒店的通道、电梯和房间位置,自动构建虚拟电子地图来进行导航,确定行走道路,能自动避让人和障碍物,并且可自动乘坐电梯。实现无人陪伴的情况下独自完成各项服务,降低了酒店人工成本的同时提升运营效率。
i智能客服机器人是一种全新的智能工具,可以24小时在线实时回复用户提问,作为人工客户服务的有效补充。目前已经与招商银行、平安银行、建设银行等银行及中国联通、中国移动等近千家公司达成合作。在仓储物流领域,具备搬运、码垛、分拣等功能的智能机器人,已成为物流行业当中的一大热点。
2012年亚马逊以6.78亿美元买下自动化物流提供商Kiva的机器人仓储业务后,利用机器人来处理仓库的货物盘点以及配货等工作。所有员工只需要在固定的位置进行盘点或配货,而Kiva机器人则负责将货物(连同货架)一块搬到员工面前。
Starship公司推出了一种专门用来小件货物配送的“盒子机器人”,其硬件上配置了一系列摄像头和传感器,能够保障其安全行走在人行道上,在指定时间从物流中心出发,穿越大街小巷,来到顾客家门口完成快递任务。在配送过程中,所携带的包裹都是被严密封锁,接收者只有通过其智能手机才能打开。
阿里自主研发的机器人“曹操”接到订单后,可以迅速定位出商品在仓库分布的位置,并且规划最优拣货路径,拣完货后会自动把货物送到打包台。在2018年618购物节期间,京东、阿里菜鸟、顺丰等物流企业积极应用仓内机器人、分拣机器人等智能设备,提升仓储自动化智能化水平。
特种机器人智能化水平不断提升,替代人类完成特殊环境下难以完成的工作。在医疗领域,国产手术机器人“天玑”,在骨科类手术中已经进入临床实践,有效减少了骨科手术人工操作过程中可能造成的脊髓、血管损伤风险。在诊后康复环节,具有轻量化、高柔韧性的康复机器人开始逐步应用推广。
上海璟和机器人公司推出的多体位智能康复机器人系统Flexbot,适用于各级医疗机构的康复科、骨科、神经内科、脑外科等相关临床科室,用以开展临床步态分析,具有机器人步态训练、虚拟行走互动训练、步态分析和康复评定等功能。
在农业特种机器人领域,美国投资公司KhoslaVentures的报告指出,农业特种机器人能够自己识别区分作物与杂草,用专门的除草剂对杂草选点喷洒,能够降低农药污染20%,同时降低种植成本。
我国智能机器人产业技术水平持续提升。工业机器人领域,新松、新时达、云南昆船、北京机科领衔本土工业机器人第一梯队,相关产品逐步获得市场认可。新松集团将人工智能和虚拟现实技术应用于国内首台7自由度协作机器人,实现了快速配置、牵引示教、视觉引导、碰撞检测等功能。服务机器人领域,我国服务机器人的智能化水平已基本可与国际先进水平媲美,涌现出一批以深圳旗瀚科技、深圳越疆等为代表的有竞争力的创新创业企业。特种机器人领域,开诚智能、GQY视讯、海伦哲等企业创新活跃,技术水平不断进步,在室内定位、高精度定位导航与避障、汽车底盘危险物品快速识别等技术领域取得了突破。
(4)智能设备未来市场空间广阔
人工智能与可穿戴智能设备融合带来全新的科技体验。可穿戴设备包含智能手表、智能眼镜、智能服装、计步器等多种产品形态,通过采用感知、识别、无线通信、大数据等技术实现用户互动、生活娱乐、医疗健康等功能,为佩戴者提供一个完美的科技体验。可穿戴智能设备将会成为人的一部分,作为传感器的载体,进一步补充和延伸人体感知能力,实现人、机、云端更高级、无缝的交互,实现情景感知。
可穿戴设备市场目前处于初期阶段,产品同质化严重。全球可穿戴设备将持续高增长,据市场调研机构ABIResearch数据显示,2018年全球可穿戴设备市场出货量将达4.85亿台,市场调研机构IHS预计,2018年销售额将达336亿美元,年均复合增长率高达22.9%。可穿戴智能设备被广泛应用在社会多个领域,在医疗、金融支付、身份认证甚至工业领域发挥重要作用。
就目前来看,可穿戴设备市场仍处于初期阶段,继苹果、三星、华为等企业进入智能穿戴领域后,康佳、联想等越来越多的企业开始瞄准细分领域,并纷纷推出相关产品,如三星GalaxyGear智能手表、爱普生智能手表PS-500等。国内厂商也在积极布局,如果壳电子的智能手表GeakWatch、百度联合TCL发布的BoomBand手环、华为TalkBandB1等。然而,目前智能穿戴市场的同质化严重,很多产品即无痛点又非刚需,实用性难以让人满意,消费者对可穿戴设备的依赖性并不强。如健康手环种类很多,核心功能就是测步、监控睡眠等。
智能音箱市场进入发展快车道。作为智能家居的组成部分之一,智能音箱独特的人机交互功能可以成为智能家居领域的入口终端,智能家居的广泛普及推动智能音箱行业的快速发展。
从2014年亚马逊Echo发布至今,2017年全球智能音箱市场规模已经突破了120亿元。根据StrategyAnalytics发布的研究报告指出,2017年智能音箱全年出货量达到3200万部,同比增长超过300%。据不完全统计,近几年国内外已经有超过500家公司开始布局智能音箱市场。整个智能音箱产业链上下游覆盖芯片和麦克风等硬件厂商、语音技术服务商、内容供应商、OEM/ODM供应商和互联网企业。随着智能音箱的发展,产业链将实现“硬件+软件+内容+服务”的资源整合,逐渐形成生态闭环。智能音箱厂商通过开放语音识别和麦克风等软硬件技术、丰富语音服务技能、扩展智能设备连接,不断完善智能语音生态,也为企业通过捆绑内容与服务盈利提供条件,带动智能音箱销量增长。
智能摄像头智能化水平快速提升,市场前景广阔。智能摄像头是民用安防市场最大的蓝海,除了传统安防企业,包括360、小米、康佳在内的众多互联网、家电企业都发布了智能摄像头产品。随着谷歌以5.55亿美元的价格收购美国家庭监控摄像头创业公司Dropcam,家庭监控类产品概念被引爆,开始掀起中国智能摄像机的浪潮。从市场占有率来看,360、中兴智能摄像机、小蚁、萤石、乐橙、联想看家宝、乔安、富视康等占据国内大部分市场。通过内嵌智能SOC芯片、GPU等硬件以及结构化分析、深度学习等机器视觉算法,智能摄像头智能化水平不断提升。目前主流智能摄像头一般具备行为分析、异常侦测、识别检测、统计等功能,以海康“深眸”为代表的深度学习摄像头内置GPU处理器,采用深度学习算法在摄像头前端能够提取目标特征,形成深层可供学习的图像数据,极大的提升了目标的检出率。
4、人工智能各领域应用
(1)人工智能赋能医疗各环节能效初显
近年来随着医疗数据数字化深入,深度神经网络学习算法突破以及芯片计算能力提升,人工智能在医疗领域应用掀起第二次浪潮,已渗透到疾病风险预测、医疗影像、辅助诊疗、虚拟助手、健康管理、医药研发、医院管理、医保控费等各个环节,并取得初步成效。
美、英、日等国政府均高度重视人工智能在医疗领域应用。美国《健康保险携带和责任法案》为人工智能应用扫清了障碍,FDA(食品药品监督管理局)实施“数字健康创新行动计划”,重构数字健康产品监督体系,并单独组建成立AI与数字医疗审评部,加速AI医疗发展;英国NHS(国家医疗服务系统)正计划在整个卫生服务部门大规模扩展人工智能,用于日常操作和治疗。
2016年日本厚生劳动省开始规划AI医疗相关政策,包括医疗费用的修正、采用人工智能医疗的激励措施等,并预计在2020年全面实施与推动人工智能医疗制度
我国2016以来国务院及相关部委相继印发《关于促进和规范健康医疗大数据应用发展的指导意见》、《新一代人工智能发展规划》、《“十三五”卫生与健康科技创新专项规划》、《关于促进"互联网+医疗健康"发展的意见》等文件规范和引导人工智能技术在医疗领域应用,新版《医疗器械分类目录》中增加了人工智能医疗产品,并预计2019年制定出台相关检定标准。
从应用效果来看,人工智能技术在以患者为中心的医疗环节中的应用尚处于初级阶段,产品以试用为主,存在同质化程度高、集中度高、实用效果与医生患者预期不符等问题。在医药、医保、医院环节则更多是面向企业、医疗机构用户,业务模式相对成熟,主要考验的是供给侧的技术能力。2018年以来人工智能医疗应用发展更加理性,一些公司不断大胆尝试,在商业化道路上逐步探索出不同模式。
统一标准、开放平台,推动人工智能与医疗深度融合。微软、亚马逊、谷歌、IBM、甲骨文和Salesforce在2018年8月中旬联合宣布将逐步开放标准,并通过云和人工智能技术消除医疗互操作的技术障碍,挖掘医疗数据潜力,以更低的成本提供更好的效果;谷歌公司在2018年7月GoogleCloudNext大会上透漏,人工智能产品AutoML的注册用户也已经超过1.8万家,其中超过10%的用户来自医疗和生命医学行业,有效推动了用户在医疗影像辅助检测,以及及时检测预警中风、哮喘、婴儿猝死综合征方面的创新。中国BAT三大互联网企业利用自身平台特点与优势布局,如具备AI医学图像分析和AI辅助诊疗两项核心能力的腾讯觅影入选科技部首批国家人工智能开放创新平台,2018年6月AI辅诊引擎接口开放,加速与医院的HIS系统融合。
聚焦合作伙伴,实现医疗影像应用重点突破。医学AI技术研发公司希氏异构从北京迁到成都,专注于与华西一家医院深度合作,联合成立“华西-希氏医学人工智能研发中心”,建立成果共享机制,充分调动医生积极性,同时获取稳定、安全数据。通过对20万份病例数据学习,双方联合研制出国际第一台AI消化内镜样机,其对息肉、肿瘤、静脉曲张的初期诊断准确率分别为92.7%、93.9%和96.8%,并进行持续迭代优化,迈出了消化内镜AI技术本地化、设备化的关键一步。
通过AI赋能,提升传统医疗器械服务水平。通用电器、西门子、飞利浦以及中国的联影、迈瑞、鱼跃等公司等医疗器械用品制造公司则凭借临床经验和数字化、AI等技术,在已有的医疗设备产品基础上不断推出整合的解决方案,以更低的成本为人们提供更好的健康保障和医疗关护。如飞利浦全球有超半数的研发人员专注于软件开发,其中大部分研究员同时从事人工智能研究,未来飞利浦大部分产品将基于人工智能技术,相继发布肿瘤疾病整体解决方案、胸痛中心/脑卒中中心整体解决方案、睡眠呼吸疾病整体解决方案、监护系统等解决方案。
跨学科技术要求高,欧美公司引领药物研发。药物研发具有低效和费时费钱特点,一种新药研发费用超过1亿美元,周期长达8-12年,同时还需要药物化学、计算机化学、分子模型化和分子图示学等多学科配合,因此在人工智能医疗应用中最具挑战性。目前部分科技公司利用人工智能技术对大量分子数据进行训练来预测候选药物,并分析健康人和患者样品的数据以寻找新的生物标志物和治疗靶标,建立分子模型,预测结合的亲和力并筛选药物性质,有效降低药物开发成本,缩短上市时间并提高新药成功的可能性。如BergHealth公司利用人工智能技术成功找到了癌症代谢的关键作用分子,提升癌症新药研发效率,其主要抗癌药物—BPM31510,目前处于针对晚期胰腺癌患者治疗的II期临床试验过程中。
智能化监管,各国医保监管机构的必然选择。智能化监管结合时间和空间,从患者、疾病、诊疗、医生、医院等多个维度建立医疗就医关系网络,利用机器学习等相关算法,识别其中的欺诈行为和群体。当前美国半数以上的管控型医疗组织机构在实施医疗反欺诈行动中都通过运用专业的反欺诈信息系统,来帮助稽核人员分析大量的数据和进行前瞻性欺诈调查,以检测和识别不一致的数据或形态等,随着信息技术特别是人工智能技术的不断发展,医保监测逐步走向智能化时代。
我国政府大力支持推广医保智能监管模式,将人工智能技术与“三医联动改革”相结合,在医保监管领域,推动医保智能监管模式在全国范围内进行推广,将所有医保定点医疗机构纳入范围,实现住院和门诊医疗费用100%智能审核。
(2)智能教育加速推进教育教学创新
当前人工智能、大数据等技术迅猛发展,教育智能化成为教育领域发展的方向。智能教育正改变现有教学方式,解放教师资源,对教育理念与教育生态引发深刻变革。当前全球主要发达国家均加速推进教育教学创新,积极探索教育新模式,开发教育新产品。
在改变现有教学方式方面,一是实现教学成果智能测评,提升教学质量。利用人工智能技术对数字化、标准化的教师教学行为与学生学习情况进行测试、分析与评价,帮助师生快速精准定位教学问题,实现针对性、科学性教学,提升教学效果。二是构建个性化学习系统,激发学生自主学习动力。教育企业探索通过对学生学习特点建立知识画像,推送针对性教学内容,进一步激发学生自主学习意愿。2017年4月,澳大利亚自主教学平台SmartSparrow获得400万美元融资,其教育模式得到初步认可。2014年,美国自适应教育人机大战数据显示,自主教学平台有效提升学生学习效果,学生及格率平均提升10%,新知识获取时间平均缩短44%,国内猿题库、疯狂老师、作业盒子等互联网教育企业正逐步推出类似功能。
在解放教师资源方面,一是实现作业智能批改,降低教师教学负担。借助图像识别与语义分析技术的持续革新,学生作业自动批改能力已初步实现,2018年4月,安徽省教育厅发布《安徽省中小学智慧校园建设指导意见》,明确2020年将建成作业测评系统,实现学生作业自动批改。根据中国信通院移动互联网应用服务监测平台数据显示,截止2018年4月,提供作业自动批改功能的移动应用已有95家,主要聚集在小学速算领域,其中爱作业应用日活用户数超过20万,日均处理作业50万份。二是拓展学生课后学习途径,分担教师教学压力。教育企业通过构建课后习题库并结合图像识别技术,实现对学生上传题目快速识别,即时反馈答案与解题思路。伦敦教育机构WhizzEducation,探索构建与课堂教学进度高度一致的课后学习系统,通过在线语音互动方式,实现学生课后辅导与答疑。
(3)智能交通提升城市管理水平
随着全球经济高速发展,城市化进程不断加快,机动车保有数量增长,道路交通运输量不断增加,各种交通问题凸显,发展智能交通可完善政府管理,改善用户体验,促进城市发展。
交通管理方面,一是实时分析城市交通流量,缩短车辆等待时间。人工智能驱动的智能交通信号系统以雷达传感器和摄像头监控交通状况,利用人工智能算法决定灯色转换时间,通过人工智能和交通控制理论融合应用,优化城市道路网络中交通流量。二是大数据分析公众资源数据,合理建设交通设施。人工智能算法根据城市民众出行偏好、生活、消费等习惯,分析城市人流、车流迁移及城市公众资源情况,基于大数据分析结果,为政府决策城市规划,特别是为公共交通设施基础建设提供指导与借鉴。三是实时检测车辆,提高执法效率。通过整合图像处理、模式识别等技术,实现对监控路段的机动车道、非机动车道进行全天候实时监控。前端卡口处理系统对所拍摄图像进行分析获取号牌号码、号牌颜色、车身颜色、车标、车辆子品牌等数据,并连同车辆的通过时间、地点、行驶方向等信息通过计算机网络传输到卡口系统控制中心的数据库中进行数据存储、查询、比对等处理,当发现肇事逃逸、违规或可疑车辆时,系统自动向拦截系统及相关人员发出告警信号。
车主体验方面,一是汽车辅助驾驶和无人驾驶。车辆辅助安全驾驶系统包括车载传感器、车载计算机和控制执行等,车辆通过车载传感器测定与周围车辆以及道路设施及周边环境距离,在紧急情况下,做出各类安全保障措施。车辆自动驾驶系统,实现在行驶过程中自动导向、自动检测及回避障碍物。二是智慧停车。国内斑马智慧停车和上汽集团合作开发中国首款互联网汽车荣威RX5,实现智能泊车、车位状态获取、安全驾驶等功能。
城市发展方面,一是节能环保。智能交通系统实现节能减排效应,通过建设智能交通系统,有效提高现有道路交通网络运行效率,达到缓解拥堵、节约能源、减轻污染的目的,通过智能交通控制,最终实现减少废气排出量并对节能环保作出重大贡献。二是降低事故。采取智能交通技术,提高道路管理能力,减少每年交通事故中死亡人数。当前,世界各发达国家投入大量财力与人力,进行大规模智能交通技术研究试验及产业应用,很多发达国家已转入全面部署阶段。
(4)人工智能提升公共安全保障能力
人工智能已应用在社会治安、反暴反恐、灾害预警、灾后搜救、食品安全等公共服务领域,通过人工智能可准确地感知和预测社会安全运行的重大态势,提高公共服务精准化水平,保障人民生命财产安全。从应用的深度和广度来看,全球人工智能在公共服务领域还处在探索期。
在社会治安领域,人工智能已应用于警方侦查过程,为警方破案提供重要线索。依托安防行业的基础,犯罪侦查成为人工智能在公共安全领域最先落地的场景。基于计算机视觉技术在公共场所安防布控,可以及时发现异常情况,为公安、检察等司法机关的刑侦破案、治安管理等行为提供强力支撑。美国多地警方部署人工智能警务风险评估软件,将犯罪控制在萌芽状态。智能软件根据保存的犯罪数据预测哪些犯罪高发区域可能会出现新问题。
我国人工智能的应用有效满足公安实战要求,以问题导向解决问题。2017年国庆期间,公安部门在北京天安门广场采用了动态人像布控技术,总共报警次数90多次,有效盘查60多次,准确命中各类对象50多人。此外在金砖国家(BRICS)领导人第九次会晤在厦门举行期间,智能安防系统就协助公安部门抓获全国在逃人员20余名。但目前全球各国社会治安领域AI应用发展并不均衡。以英国为例,虽然英国AI技术创新比较活跃,但是人脸识别错误率高,应用成效差强人意。根据《独立报》发布的数据,英国大都会警察使用的面部识别软件所产生的104次警报中,只有两次是准确匹配。
在反恐反暴领域,人工智能在打击恐怖分子、炸弹排除等领域可发挥重要作用。美国建立的禁飞系统能预测恐怖袭击的可能性,大数据系统每天都会传输犯罪预测数据到执勤警员的执勤电子设备中,预测型侦查已经广泛开展。此外反恐机器人能对可疑目标自动探测与跟踪,并拥有对目标远程准确打击能力,在打击恐怖分子、协助军方反恐等领域可发挥重要作用。在我国,由哈工大机器人集团研制的武装打击机器人、侦察机器人、小型排爆机器人已应用于反恐安全、目标探测、可疑物检查与打击、路边炸弹排除、危险物质处理等领域。
在灾后救援领域,人工智能在高效处置灾情,避免人员伤亡方面发挥关键作用。不管是自然灾害之后的搜救,还是日常救援行动,随着人工智能融合,可快速处理灾区航拍影像,并借此实时向救援人员提供重要的评估与规划性指导,不仅保障自然环境、群众生命财产安全,同时能够最大限度的减少救援人员的牺牲。
比如日本总务省消防厅推进开发的“机器人消防队”,由自上空拍摄现场情况的小型无人机、收集地面信息的侦察机器人、可自动行走的水枪机器人组成。美国国家航空航天局NASA推出的AI系统Audrey,通过消防员身上所穿戴的传感器,获取火场位置、周围温度、危险化学品和危险气体的信号以及区域卫星图像等全方面的信息,并基于机器学习的预测为消防人员提供更多的有效信息和团队建议,最大程度的保护消防员的安全。在我国,灭火、侦查、排烟消防机器人技术和产品已相对成熟,并已经进入了实际作战,在高效处置灾情、避免人员伤亡并减少财产损失等方面发挥着越来越重要的作用。此外国家地震台研制的“地震信息播报机器人”,在2017年8月8日四川九寨沟地震期间,仅用25秒写了全球第一条关于这次地震的速报,通过中国地震台网官方微信平台推送,为地震避灾、生命救援和消息传递争取时间。
此外,在食品安全、大型活动管理、环境监测等公共安全场景,利用人工智能技术可以减轻人工投入和资源消耗,提升预警时效,为及时有效处置提供强力支持。
(5)人工智能拓展金融服务广度和深度
智能金融是人工智能与金融的全面融合。智能金融是以人工智能等高科技为核心要素,全面赋能金融机构,提升金融机构的服务效率,拓展金融服务的广度和深度,实现金融服务的智能化、个性化和定制化。
人工智能与传统金融产业链的融合主要分为三阶段。第一阶段是科技赋能阶段,该阶段强调应用场景,将其他领域成熟的人工智能技术平行向金融领域应用迁移,提升某些环节业务效率;第二阶段是科技增能阶段,该阶段强调模型应用,由于模型直接应用会带来合规风险,因此该阶段会产生大量第三方专业服务,金融行业意识到人工智能特点及优势,主动在业务环节中应用人工智能,引发业务方式深刻变革及效率极大提升;第三阶段是科技产能阶段,以价值应用为主要特点,金融核心业务将人工智能化,人工智能成为金融核心价值创造手段,同时伴随监管效率和监管措施智能化。
人工智能已被广泛应用到银行、投资、信贷、保险和监管等多个金融业务场景。目前,传统金融机构、大型互联网公司和人工智能公司纷纷布局金融领域,智慧银行、智能投顾、智能投研、智能信贷、智能保险和智能监管是当前人工智能在金融领域的主要应用,分别作用于银行运营、投资理财、信贷、保险和监管等业务场景,但整体来看人工智能在金融领域的应用尚不成熟。应用在金融领域的人工智能相关技术主要包括机器学习、生物识别、自然语言处理、语音识别和知识图谱等技术。目前的应用场景还处于起步阶段,大部分是人机结合式的,人工智能应用对金融业务主要起辅助性作用。但金融业务场景和技术应用场景都具有很强的创新潜力,长远来看,在金融投顾、智能客服等应用方面对行业可能产生颠覆性影响。
智能投顾应用。智能投顾主要指根据个人投资者提供的风险偏好、投资收益要求以及投资风格等信息,运用智能算法技术、投资组合优化理论模型,为用户提供投资决策信息参考,并随着金融市场动态变化对资产组合及配置提供改进的建议。智能投顾不仅在投资配置和交易执行能力上可以超越人类,还可以帮助投资者克服情绪上的弱点。工商银行、中国银行等国有银行也纷纷推出智能投顾服务,花旗银行预计到2025年智能投顾管理的资产总规模将会高5万亿美元。伴随着人工智能神经网络、决策树技术的不断迭代创新和发展,智能投顾在金融业中将会进一步得到应用和发展。
智能风控应用。人工智能技术在智能风控方面的应用发展较快,随着互联网金融的快速发展,如蚂蚁金服、京东金融等不少金融机构和互联网金融公司大力发展智能信贷服务。智能风控主要依托高纬度的大数据和人工智能技术对金融风险进行及时有效的识别、预警和防范。金融机构通过人工智能等现代科技手段对目标用户的网络行为数据、授权数据、交易数据等进行行为建模和画像分析,开展风险评估分析和跟踪,进而推测融资的风险点。根据某些可能影响借款人还贷能力的行为特征的先验概率推算出后验概率,金融机构能够对借款人还贷能力进行实时监控,有助于减少坏账损失。
智能金融客服应用。对于处在服务业价值链高端的金融业而言,人工智能技术将对金融领域中的服务渠道、服务方式、风险管理、授信融资、投资决策等各个方面带来深刻的变革式影响,成为金融行业沟通客户、发现客户需求的重要决定因素。目前,交通银行、平安保险等金融机构已经开始运用人工智能技术开展自然语言处理、语音识别、声纹识别,为远程客户服务、业务咨询和办理等提供有效的技术支持,这不仅有效响应客户要求,而且大大减轻人工服务的压力,有效降低从事金融服务的各类机构的运营成本。
人工智能对金融市场、金融机构和消费者都产生深刻影响。对金融市场来说,人工智能减少信息不对称程度,提升市场效率与稳定性;改善整个金融市场价格发现机制,降低整体交易成本;有效提升交易速度与效率,增加金融市场流动性。对金融机构来说,人工智能促进更多金融机构使用人工智能实现日常业务流程自动化,有效识别客户需求并提供其定制产品,显著提升业绩;促使金融机构提前检测欺诈、可疑交易、违约和网络攻击等风险,提升风险管理水平。对消费者与投资者来说,人工智能降低消费者和投资者金融服务成本,促进其获得更广泛金融服务;通过智能数据分析把握每位消费者或投资者消费偏好,便于提供更多定制化与个性化金融服务。
(6)智能家居助力打造智慧家庭
人工智能在家居领域的应用场景主要包括智能家电、家庭安防监控、智能家居控制中心等,通过将生物特征识别、自动语音识别、图像识别等人工智能技术应用到传统家居产品中,实现家居产品智能化升级,全面打造智慧家庭。智能家居产品已相对成熟,未来市场发展空间巨大。
一是打造智能家电终端产品。通过图像识别、自动语音识别等人工智能技术实现冰箱、空调、电视等家用电器产品功能的智能升级,促进家用电器控制智能化、功能多元化,提升家用电器的使用体验。如澳柯玛与京东联合研发推出的一款智慧大屏互联冰箱,内置摄像头可自动捕捉成像,基于图像识别技术自动识别120多种食材,为用户建立食材库,实现食物自动监测,并可跟踪学习用户习惯,为用户智能推荐食谱。长虹推出的Alpha人工智能语音空调,搭载智能语音控制模块,通过自动语音识别技术,实现6米内语音交互、全语义识别操控,高效识别及语音操控准确度达到95%以上。
二是实现家庭安防监控。基于图像识别、生物特征识别、人工智能传感器等技术实现家庭外部环境监测(如楼宇)、家庭门锁控制(如智能门锁、猫眼)、家庭内部环境探测(如空气质量、烟雾探测、人员活动等)等功能。如LifeSmart云起与英特尔合作打造的人脸识别可视门锁,通过摄像头采集含有人脸的图像或视频流,自动在图像中检测和跟踪人脸,基于人的脸部特征信息进行身份识别,实现人脸识别、远程可视、智能门锁的联动防御。斑点猫的智能猫眼产品人脸识别综合准确率可达到99.6%,采集家人信息后,智能猫眼会迅速识别出家人,并进行家人回家信息播报,构建温馨的智能家居生活场景;而如果陌生人到访,智能猫眼会进行陌生人报警提示,并可识别多种人脸属性,将年龄、性别等信息发送到用户手机,让用户及时应对,构建安全的家庭外部环境。
三是打造智能家居控制中心。基于自动语音识别、语义识别、问答系统、智能传感器等人工智能技术,开发智能家居控制系统(整体解决方案),实现家电、窗帘、照明等不同类型设备互联互通,从简单的设备开与关,逐步走向智能化、便利化、个性化设定。当前智能家居控制中心具有APP控制、智能设备控制(如智能音箱)和智能机器人控制三种控制模式。GoogleAssistant、三星SmartThings智能家居控制中心采用APP控制模式。通过在谷歌Pixel手机终端中安装GoogleAssistant软件,并在GoogleAssistant中添加基于自动语音识别技术的全新功能“HomeControl”,用户能够向Pixel发出语音指令,完成调节屋内温度、控制照明、切换电视频道、播放音乐等操作。亚马逊echo、谷歌Home采用智能设备控制模式。海尔Ubot采用智能机器人控制模式。
目前,人工智能相对成熟的产品主要集中在安防监控设备等局部细分领域,智能扫地机器人、智能音箱、机器翻译机等产品普遍存在覆盖范围小、使用群体少、智能化水平偏低等问题,此外,还有更多的产品空白领域。虽然在可见的未来,影视剧里面的那种具有自主意识的人工智能不会出现,但通过机器学习算法简化软件的复杂性、增强机器的“智能”方面还有很广阔的发展空间。例如,辅助驾驶系统将成为汽车的必备,虽然完全无人驾驶可能很长时间都不会出现。家用电器会更加智能化,同时也会出现家庭服务机器人等新型家电产品。
转载文章仅代表作者个人观点,不代表本公众号观点返回搜狐,查看更多
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]