博舍

人工智能与自然语言处理技术 人工智能一般用什么语言表达出来的

人工智能与自然语言处理技术

随着人工智能技术的发展,我们生活中的许多应用都带上了“AI”的色彩,比如可以用计算机帮翻译外文文档。但有时候人工智也能会出一些小故障,变得不那么智能,尤其在语言处理方面。那么我们怎样才能让人工智能变成真正的“智能”呢?自然语言处理技术就是一个重要的方式。

自然语言处理技术(即natural language processing,简称NPL)是人工智能的一个重要分支,其目的是利用计算机对自然语言进行智能化处理。基础的自然语言处理技术主要围绕语言的不同层级展开,包括音位(语言的发音模式)、形态(字、字母如何构成单词、单词的形态变化)、词汇(单词之间的关系)、句法(单词如何形成句子)、语义(语言表述对应的意思)、语用(不同语境中的语义解释)、篇章(句子如何组合成段落)7个层级。这些基本的自然语言处理技术经常被运用到下游的多种自然语言处理任务中,如机器翻译、对话、问答、文档摘要等。

科学家研究自然语言处理技术(NLP)的目的是让机器能够理解人类语言,用自然语言的方式与人类交流,最终拥有“智能”。AI时代,我们希望计算机拥有视觉、听觉、语言和行动的能力,其中语言是人类区别于动物的最重要特征之一,语言是人类思维的载体,也是知识凝练和传承的载体。在人工智能领域,研究自然语言处理技术的目的就是让机器理解并生成人类的语言,从而和人类平等流畅地沟通交流。

但现在的人工智能常常和我们的人工评价有很大的出入,这也是基于AI算法的自动评测面临的最大挑战:如何与人工评价保持一致?应对这个挑战需要解决很多问题。以智能阅卷为例:如何制定电脑适用的评测标准?人工智能如何应对语言的千变万化?如何设计阅卷综合性的评测指标?有科学家认为,大数据与富知识双轮驱动或许能成为解决问题的关键,即在大数据驱动的基础上加入富知识驱动,可以突破现在智能语言处理技术上的瓶颈。

总而言之,自然语言技术的发展说明人工智能技术的核心还是在“人”。“人工智能和机器学习带给决策过程的支撑和信心将使创新加速,但这并不意味着人类的缺席。人们仍然需要定义分析的起点、标注主题并从收集的信息中提取所需数据。”

本文由北京市第六十五中学一级教师李岩进行科学性把关。

科普中国中央厨房

新华网科普事业部

科普中国-科学原理一点通

联合出品

更多精彩内容,请下载科普中国客户端。

作者:和卓琳 [责任编辑:魏承瑶]

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能时代,真的不能为文科生分一杯羹吗

如图所示,2017年中国普通本科招生人数中,工科门类招生人数几乎是历史、农学、法学、教育学、经济和理学医学之和。占比高达三分之一。

据麦可思研究院:《2019年中国大学生就业报告》(就业蓝皮书)就2018年平均月收入较高的本科专进行了调查统计。2018届本科毕业生平均月收入最高的专业是信息安全(6972元),其次是软件工程(6733元)。排名前20的专业中,只有“法语”一门人文社科专业。

人文社科专业多数都不具备强应用性。大学教育与市场需求存在脱节。受供需比影响,大学中的文科专业屡屡亮出“红灯”预警。

据专业数据机构调查,历史学、音乐表演、法学连续三届红牌。失业量大,就业率、薪资和就业满意度综合较低。

“劝人学法,千刀万剐”,在就业率面前不无道理。同样是九年义务教育,凭什么隔壁计算机学院的却一路绿灯,一个个出厂年薪6位数?

人文学科是关于人社会性的思辨,而在劳动价值的驱使下,技术和功能上无法让人获得“即时满足”的人文专业,终是逃不开“低薪”的捆绑。

受市场驱动,文科工资低,就业率差成普遍现状,也是“人文学科”人才焦虑的源头。

人工智能时代,对技术和应用型人才的“砸钱”式需求,真的不能为文科生分一杯羹吗?文科生从事人工智能领域,是痴人说梦吗?首先我们通过人工智能时代的布局方向一探究竟。

潘云鹤院士:AI2.0时代的五个布局方向

中国工程院院士、中国工程院原常务副院长潘云鹤认为在人工智能正在走向2.0时代,这也是人工智能发展的重要转折关头。潘云鹤指出,中国新一代AI的重点方向将从数据智能、群体智能、跨媒体智能、人机混合的增强智能和自主智能系统五方面进行。

在数据智能方面,AlphaGo让大家看到了大数据应用最好的便是深度学习。但是深度学习还有是否可解释,是否能够更加通用的问题。“如果把深度学习和人工智能其它技术结合起来,我们可能会使大数据中的智能走向更高的水平。”潘云鹤认为。

在五项重点发展方向中跨媒体智能发展能带来更大的想象空间。跨媒体智能将研究跨媒体,跨传感器间的各种感知学习、推理,并且把它和语言、文字的语义打通。这样研究者就可以对语言、视觉、图形、听觉,和各种各样传感器所传达出来的数据进行语义相通相融,从而能够使得智能安全、创新设计、计算机具有更好的创新能力。

具体来看,在大数据智能方向,它着重要解决从数据到知识,到智能中间可解释性的问题,可通用性的问题。为此,它要很好的解决CPH三元空间中知识表达的新体系和新方法。CPH就是信息空间、物理空间和人类社会空间,这三元空间之间会形成很多新的信息交互方式。因此需要把数据驱动的方式和知识引导的方式结合起来,形成人工智能新的更加有效的技术。从而在智能医疗、智能经济和社会治理方面有更大的应用。

第二个方向,群体智能。它将研究在互联网中,群体智能是怎么进行组织的,是怎么进行接力的,用什么方法鼓励大家一起来参与的。在参与过程中,彼此之间怎么进行协同,整个群体怎么演化为更加正确的方向和更加正确的行为。在这个过程中,群体中每一个个体之间怎么能互相学习,互相感知,这些都需要建立新的理论和新的技术。一旦建立了,将在科研、经济、商业和其它领域中有非常大的实用前途。它可以用于众创科研、分享交通、智慧医疗。

第三个方向,跨媒体智能。它将研究跨媒体,跨传感器的各种感知学习、推理,并且把它和语言、文字的语义打通。这样我们就可以对语言、视觉、图形、听觉,和各种各样传感器所传达出来的数据进行语义相通相融,从而能够使得智能安全、创新设计、计算机具有更好的创新能力,希望在人工智能2.0阶段解决计算机的创新能力。

第四个方向,人机混合增强智能。之所以希望人机混合形成强大的交互系统,形成增强智能。研究脑机协同的环境,它的交互方式,它的学习方式,动作控制方式,从而在脑控机器人和很多自主智能体之间协同。

第五个方向,自主智能系统。研究环境的感知,自身的感知,不同个体之间的协同,行为的规划,行为的决策和各种各样行为执行的理论模型和方法,用于无人车、无人机、服务机器人、空间机器人、海洋机器人、无人车间、智能工厂。不但要模拟人,而且要模拟整个系统如何进行运行。

文科生在人工智能时代可能更受欢迎?

此前,李开复老师说了一句话:“在人工智能时代,文科生终于熬到了扬眉吐气的时候了。”那么在人工智能时代,文科生有哪些优势会被放大呢?

《不会被机器替代的人》作者杰夫·科尔文预言:在未来,我们获取成功所必需的技能,不再是技术性的、通过课堂传授获得的左脑型技能,尽管在以往的经济发展中,工人的确需要掌握这些技能。相反,在强大的驱动力之下,我们彼此互助共同完成任务,人类的优势来自深层、根本的人类技能——同理心、创造力、社会敏感性、讲述故事、幽默、建立人际关系,以及比逻辑叙述更强有力地自我表达。这些恰巧是文科生的优势。

1、右脑胜过左脑

《不会被机器替代的人》作者杰夫·科尔文预言:在未来,我们获取成功所必需的技能,不再是技术性的、通过课堂传授获得的左脑型技能,尽管在以往的经济发展中,工人的确需要掌握这些技能。相反,在强大的驱动力之下,我们彼此互助共同完成任务,人类的优势来自深层、根本的人类技能——同理心、创造力、社会敏感性、讲述故事、幽默、建立人际关系,以及比逻辑叙述更强有力地自我表达。这些恰巧是文科生的优势。

2、人际交往技能比专业技能更重要

人有一种偏见,喜欢过高评价“人与人面对面交往”这个行为,而对抽象数据不怎么买账。这是可以理解的,人本质上是个社交动物。

这个偏见,在人工智能时代给人类留下了一个工作机会。人工智能再怎么发达,我们还是要求:

最重要的决定是由人做出的。如果某国要对其他国家宣战,我们要求这个命令是人下达的,在这个问题上我们不可能听从人工智能的指挥,我们不可能把核按钮交给人工智能。人说了算,不能让机器说了算。

我们的价值标准一直在变,喜欢什么想要什么,想法随时都在变,我们无法给人工智能一个清晰的目标,所以有些事儿还是让人自己解决比较好——因为我们有时候自己都不知道要“解决”的是什么。

也是最重要的一点,我们更愿意跟人打交道。因此,最好的办法就是表现出“人味儿”。

从这个角度想,“理工男”可就有危机了,未来也许是“文科生”的天下。美国有一些调研表明,从2000年开始,工程师们在日常工作中所需要消耗的实际脑力,就已经开始下降了。可能自动化程度越来越高,那么工程师的活就越来越简单——也就是越来越不值钱。

《不会被机器替代的人》中有个相当极端的例子。说美国西南航空公司花重金,从众多申请者中聘请了一位技术特别过硬的IT工程师。这人来了以后就把自己关在办公室里干活也不出来跟人聊天。结果主管就问他你怎么不聊天啊?这人说我爱钻研技术不爱聊天。主管说我们西南航空的企业文化就是聊天,然后把他解雇了。

可见,不爱社交的IT男不是好同事。

3、课外实践重于课堂学习

哈佛商学院让一年级的学生走出课堂,参加团队实践。每个团队选择新兴市场上的一个公司。例如,中国的联想公司或者越南资本银行,开展公司提出的一个真实项目,例如,开发一种新的金融服务,以吸引那些从没有开过银行账户的人,或者开辟一条新的家庭用户线。在校园里设计好方案后,团队于元月份进入市场,花费八天的时间进行市场研究,然后,向公司最高管理层报告他们的建议。

学生返校以后,他们的工作不仅强度增加了,而且更加个性化了。根据学校要求,每个团队在10周内,用学校提供的3000元启动金创办一个自己的公司。每年有150个团队,就会创办150个有限责任公司,产生150个商业构想,包括男士优质内衣、为语言辅导教师和世界各地的学生提供联系服务、印度莎丽租赁服务以及其他五花八门的构想。

对于商学院的学生而言,学习资本资产定价模型依然很重要,但是,继续呆在教室里学习模型,对他们已经没什么意义。因为,虽然他们在教室里相互间的物理距离很近,却几乎没有什么交往。

我们可以把商学院的经验总结为:如果独自工作效果更好,就不要和其他人一起耗费时间。如果你花时间和其他人在一起,就要最大限度地利用它。聚集在教室里学习公司财务知识,已经不再能实现个人时间效益的最大化。

4、感性优于理性

全球各地数十所医学院鼓励或要求学生阅读小说,因为它有助于培养学生的社会交往技能。

纽约大学医学院的医学人文学项目报告中有这样的陈述,阅读小说有助于“发展和培养观察、分析、同理心、自我反思等医疗保健业最基本的技能”。当然,受益的不仅是医学院的学生,研究表明,阅读文学小说能够普遍提高读者的同理心。阅读非小说则不会有这种功能。文学小说人物更复杂,其行为更易受内心驱动,阅读这类小说可以使读者更敏锐地察觉他人的所思所想,这是一种为数不多的通过独自活动提高人际技能的方法。

这类研究为人文学专业的学生提供了新的希望。虽然,我们知道薪酬最高的大学专业几乎全部是工程专业,然而,在新兴职业领域,人文学所培养的能力恰恰是经济体中越来越受重视的能力。这并不是因为,对人文学的理解能够帮助科学技术人员创造出更好、更便利、更吸引人的科技,虽然,从同理心角度来说的确应该如此。这是史蒂夫·乔布斯最喜爱的主题之一——他在俄勒冈州波特兰市知名文理学院里德学院接受的教育,这直接影响了苹果产品超凡的外观、质感以及体验。所以,乔布斯给儿子起名为里德。

文科生的机会:跨学科学习,你愿意吗?

清华大学的自动化系、计算机科学与技术系、电子工程系、软件学院都是研究人工智能的本科起点院系,而说起软件学院,不得不提刘云浩教授。

本科毕业后,他“觉得外交官酷”,就去学了同声传译,拿到文学硕士学位。硕士毕业后,他又选择了从政,不到30岁就成为当时国家邮电部最年轻的处长。而立之年,他却选择出国去美国密西根州立大学留学,仅三年多就拿下计算机硕士和博士,成为该系历史上毕业第二快的博士。博士毕业,他在香港科技大学当老师。最后,他回到清华任教,并成为软件学院院长。

这样一段传奇人生,恰好是跨学科学习的典范。理工、商业、文史、外语……各个领域都被刘教授刷了一遍,还是开了挂地刷。

而人工智能领域,却是最需要这种有跨学科学习能力,也愿意跨学科学习的人才的。“人工智能+”越来越重要,就比如AI+教育领域,如果你只懂AI,那你就做不出真正解决老师痛点的产品,如果你只懂教育,也不知道该用什么样的技术,解决学生学习过程中的困难。只有既懂AI又懂教育的复合型人才,才能真正推动这个领域的发展。

虽然你学的是人工智能专业,可是如果你不愿意跨学科学习,日后也无法走得长远,那还不如一开始就不要读这个专业。

此外,中文系不只是春花秋月,也有科学系统且偏向实践的门类研究——语言学。语言学是对人类语言本质的研究。既可以研究语言符号的形式结构和社会学意义,又可以研究其生物学本质和起源。以北京大学的计算语言专业的课程体系为例:

从语言、认知和计算三个方面对语言各个层面的计算进行研究。既有词法、句法、语义、篇章结构等层面的语言规律研究,又有技术实践和数据挖掘的实践课程。

此专业的研究生是摇身一变为人工智能大佬的最佳契机。语言是人类思维的表现形式。也是实现人与计算机之间有效通信的通用途径。于是用计算机来处理、理解以及运用人类语言就成了目前驾驭和实现人工智能的重中之重。

在这个领域缺少技能过硬的算法工程师,更缺少精通语言学的计算语言专家。这就要求“文”科班出身的同学,自我驱动,首先不要丢掉数学概率和统计算法,至少掌握一门编程语言同时学习机器学习的数据结构和算法。

如果有转行计算机领域的打算,可以在本科低年级进行相关专业课程的辅修。寒暑假可以申请其他海内外高校的交换项目;或者在线上线下参加相关的训练营课程培训。从0到1锻炼计算机的编程基础和运用能力。

此外据南京师范大学文学院语言学及应用语言学副教授李斌博士的博客介绍、目前国内有部分高校有开设计算语言学本科专业,如北大、鲁东大学和南京师范大学。

人工智能专业学什么,学校有哪些?

人工智能专业旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,研究设立人工智能专业,进一步完善中国高校人工智能学科体系。

1、人工智能专业课程

人工智能专业的主要领域是:机器学习人工智能导论(搜索法等)图像识别生物演化论自然语言处理语义网博弈论等。需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)。

首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析

其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;

然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;

人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

2、人工智能专业学校有哪些

中国32家开设人工智能相关专业

NO1:清华大学

清华大学计算机系智能技术与系统国家重点实验室是国内在人工智能人才培养和科学研究的重镇。除了严整的教学培养体系之外,本科同学有浓厚的科研氛围,从大一下学期开始就有学有余力的同学开始进入实验室或相关科研机构(如MSRA),跟随导师从事科研工作。取得的成绩也是不容小觑的:每年都有十余位本科同学在国际顶级会议和期刊上发表论文。当然,清华计算机系智能实验室距离国际顶尖AI研究机构(如MITCSAIL)还有一定距离。不过可以肯定的是,这里会是我国有着AI梦的同学们绝佳的圆梦起点。

NO2:北京大学

北京大学智能科学与技术专业由北京大学数学系、计算机系、电子学系等10个系(所)于1985年成立,主要从事机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学。专业涉及机器人技术,以新一代网络计算为基础的智能系统,微机电系统(MEMS),与国民经济、工业生产及日常生活密切相关的各类智能技术与系统,新一代的人-机系统技术等。

NO3:浙江大学

浙江大学在人工智能方面有着肥沃的土壤,其计算机学院下设的人工智能研究所是中国设立最早的人工智能研究机构之一。早在上世纪80年代,浙江大学就建立了人工智能研究所,首任所长就是国内著名的计算机科学家、被人尊称为“中国人工智能研究开拓者”的何志均,之后两任所长潘云鹤和吴朝晖都算得上是他的得意门生,他们也先后担任了浙江大学的校长。从1981年至今,浙大人工智能研究所见证和参与了人工智能的一系列变化。到现在,人工智能进入大数据阶段,浙大在计算机视觉领域已经建立了相当大的优势。

NO4:上海交通大学

上海交通大学在人工智能领域已有数年的积累,计算机系俞凯教授团队的智能语音技术取得了多个国际评测冠军,达到了国际一流水平。团队在产业化上也实现了很大的突破,他所创立的苏州思必驰信息科技有限公司已经被苏州市确认为人工智能领军企业,作为苏州工业园区内的标杆,将在3-5年达到百亿市值,并作为千亿市值企业后备军。同时,交大在智能媒体、图像分析、脑机交互、机器人、人工智能芯片等领域还有一批一流团队及成果,具备良好的发展前景。

NO5:南京大学

南京大学的计算机科学研究起步于1958年,建立了计算技术、计算数学、数理逻辑等专业开始培养计算机相关领域专门人才,1978年在上述三个专业基础上成立了计算机科学系,1993年更名为计算机科学与技术系。南京大学计算机科学与技术系在建系前和建系初期就曾取得令人瞩目的成就:上个世纪60年代调试成功了当时国家高等教育部所属高校第一台计算机,实现了我国第一个高级语言编译程序;70年代分别主持了国产DJS-210中型计算机和XT-1操作系统等软件系统的研制;80年代研发了国内第一个分布式系统ZCZ,培养出中国大陆第一位计算机软件博士。建系以来,南京大学的计算机学科建设进入快速发展期,在队伍建设、人才培养、科学研究等方面一直位居国内先进行列。

NO6:复旦大学

复旦大学图像与智能实验室主要研究领域包括人工智能,图像处理,计算机视觉,信息安全等基于生物视觉的感知和认知结合的学习模型及其在脑型机器人上的应用,应用领域包括工业视觉、智能机器人、智能安防、生物医学影像识别。该校研发的视觉系统已经应用于国内外多家著名企业和创业公司,取得了良好的经济效益。毕业生去向包括(1)赴IBM研究院、谷歌、华为、腾讯、百度、阿里巴巴等公司就职;(2)前往哈佛、卡内基梅隆、普林斯顿、华盛顿、哥伦比亚等大学攻读博士学位和做博士后研究。

NO7:哈尔滨工业大学

在全国高校学科评估中,哈工大计算机科学与技术学科位列全国第4名,是国家重点一级学科,并进入ESI全球前1%的研究机构行列。计算机类专业隶属于计算机科学与技术学院,教师队伍由中国工程院院士方滨兴、中国科学院院士陈国良、美国国家工程院院士DanielP.Siewiorek领衔,包括了中组部“千人计划”入选者潘正祥、贾小华等国家和深圳市认定的高层次人才,承担并完成了国家重点科技攻关项目、国家自然科学(重点)基金项目、国家863项目等各类课题100余项,拥有国家发明专利、软件著作权等100余项。

NO8:中国科学技术大学

中国科学院自动化研究所自建所伊始,就在工业自动化、智能设备控制、模式识别、智能信息处理等领域享誉国内外,号称中国人工智能领域的黄埔军校,其培养的学生业已遍及全球顶尖的高校、学术研究机构和IT巨头。

NO9:华中科技大学

华中科技大学计算机科学与技术学院拥有信息存储系统教育部重点实验室、服务计算技术与系统教育部重点实验室、数据存储系统与技术教育部工程中心、网络存储技术湖北省工程研究中心、集群与网格计算湖北省重点实验室、湖北省数据库工程技术研究中心、下一代互联网接入系统国家重点实验室,拥有华中科技大学IBM技术中心、国家高性能计算中心(武汉)。另外,该学科是中国教育科研计算机网华中中心结点单位,是中国教育科研网格主结点、中国国家网格(武汉)结点单位,是武汉光电国家实验室(筹)的重要组成单位之一。

NO10:东南大学

东南大学计算机科学与工程学院起源于1960年建立的“解算装置及技术”专业,曾自主研制我国第一台数字积分机,填补了国内空白,并成功地应用于国防现代化和工业自动化领域,取得了开创性成果。近10年来,承担了各类科研项目共200多项,其中国家自然科学基金、国家973、国家863、国家科技攻关、教育部和江苏省等重要科研项目140多项,获得国际工业领先奖1项、国家科技进步奖8项、部省级奖20多项,在国内外著名的学术期刊和会议上发表论文1600多篇,其中SCI、EI、ISTP三大检索850多篇次。在ESI学科排名中,学院水平已进入全球前1%。

据走向智能论坛、高三网、站长之家等综合整理。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇