「人工智能科普系列」25 自动驾驶:AI最大的应用场景
作者| Harper
审核|gongyouliu
编辑| auroral-L
自从谷歌正式对外宣布自动驾驶以来,自动驾驶行业已经呈现出整体布局,多元配置,多角度切入的格局。我们也许还无法预测,全功能,最高等级的自动驾驶汽车会在什么样的时间点,真正走入普通人的生活。但毫无疑问的是,这一次人工智能热潮中,自动驾驶技术一定是最大的应用场景。
自动驾驶带给我们的有关未来生活的想象空间,几乎是无穷的,这绝对不是未来汽车都不需要司机,我们可以躺在车里睡觉,听音乐这么简单的一件事。比如说,当汽车不再需要司机的时候,我们为什么还要像今天这样,在家里保留私家车呢?如今许多共享经济已经为我们揭示出了一些未来生活的样子:大多数汽车可以用共享经济的模式,随叫随到。因为不需要司机,这些车辆可以保证24小时待命,可以在任何时间,任何地点提供高质量的租用服务。这样一来,整个城市的交通情况会发生翻天覆地的变化。因为智能调度算法的帮助,共享汽车的使用率会接近100%,城市里需要的汽车总量则会大幅减少。停车难,大堵车等现象会因为自动驾驶共享汽车的出现而得到真正的解决。
更重要的是,汽车本身的形态也会发生根本性的变化。一辆不需要方向盘,不需要司机的汽车,可以被设计成前所未有的样子。道路上,汽车和汽车之间可以通过“车联网”连接起来,完成许多有人驾驶不可能完成的工作。
比如,许多部自动驾驶汽车可以在道路上排列成间距极小的密集编队,同时保持高速行进,统一对路面环境进行侦测和处理,而不用担心追尾的风险。再如,一辆汽车在路面上可以通过自己的传感器发现另一辆汽车的故障,及时通知另一辆汽车停车检修。未来的道路也会按照自动驾驶汽车的要求来重新设计,专用于自动驾驶的车道可以变得更窄,交通信号可以更容易被自动驾驶汽车识别。
自动驾驶的普及对产业结构、经济格局的影响也将极其深远。想象一下,在过去的100多年,汽车工业是如何彻底改变了全球、全人类的生活方式, 如何创造出了一大批市值百亿美元、 千亿美元的大型跨国公司,如何带动了从设计、生产到零件、外包、服务、咨询、培训、交通、物流等数百个相关的生态产业,如何在短短数十年里让美国成为“车轮上的国家’,又如何在短短十几年时间里在中国小康家庭中普及了汽车出行的现代生活方式。
如此庞大的汽车工业,正面临着以人工智能为依托的自动驾驶技术的改造。生态 中的每一个子产 业都可能在未来10年内发生翻天覆地的变化。即便不提整车制造,单是自动驾驶技术需要的廉价、可靠的传感器(比如说激光雷达),就可能成为一个千亿美元规模的大产业。或者,针对未来的自动驾驶技术,对现有道路进行改造升级,这又将涉及庞大的固定资产投资和相关产业的升级。无论如何乐观地预测自动驾驶对全球社会、经济发展的贡献,也许都不为过。
麦肯锡公司预测,到2030年时, 自动驾驶技术的普及将为现有的汽车工业带来约30%的新增产值,这部分销售额就包括:受益于自动驾驶技术而获得更大发展空间的共享汽车经济,还有因自动驾驶技术的普及而发展起来的车上数据服务,如应用程序、导航服务、娱乐服务等等。
本文的视频版本可以直接点击下面视频观看,欢迎关注数据与智能视频号获取更多精彩视频。
一文详解智能驾驶的功能与场景体系
--关注回复“40429”--
--领取《汽车驾驶自动化分级》(GB/T40429-2021)--
当前,智能驾驶的开发,是基于功能来展开的,如大家耳熟能详的自适应巡航ACC、交通拥堵辅助TJA、高速领航驾驶辅助NOA等。通常,开发者对于自家的智能驾驶产品,都会有清晰的功能开发规划。这里的开发者,包括造车新势力、传统主机厂、传统Tier1、科技公司、互联网巨头等等,几乎无一例外。
与此同时,行业内逐渐达成了共识:智能驾驶的测评和体验,需要基于用户场景来展开。用户作为智驾产品的使用者,不可能像开发者一样,去深入而详细地研究各类功能和指标;用户更关心的,是一款产品的使用体验。
图1智能驾驶功能与场景图示
(图片来源:人工智能在自动驾驶技术中的应用_搜狐汽车_搜狐网(sohu.com))
我们可以这么理解:功能,属于开发侧的研究内容,形成自己独特的功能规划和功能体系,是开发者需要重点关注的主题;场景,属于用户侧的研究内容,形成系统化和规范化的用户场景体系,是测评机构和用户体验研究需要关注的主题。
那么,当前智能驾驶的通用功能体系是什么?应该如何构建用户场景体系?如何打通功能与场景体系,实现用户体验与功能开发同步?本文将详细解读这些内容。
功能体系
在开发过程中,由于高速行驶和低速泊车时研究的对象属性、应用的算法尤其是决策算法都完全不同,因此通常会将智能驾驶的功能,分为行车和泊车两大类功能。
行车功能
我们汇总了当前主流的行车功能,以及其对应的智能化等级、功能实现效果等内容,如表1所示。其中功能分级参考SAE最新的标准,详见图2。
表1智能行车功能汇总
图2SAE的智能驾驶分级标准
ACC,全称AdaptiveCruiseControl,即自适应巡航控制。作为智能驾驶的基本功能,ACC是大家都耳熟能详的一项功能,也已经发展地比较成熟。通过对道路环境和障碍物的感知,自动控制油门和制动系统,实现车辆在本车道内的自动加减速,以及起步、停车等动作,ACC可以帮助驾驶员解放双脚,缓解直线行驶的疲劳。
LCC,全称LaneCenteringControl,即车道居中控制。LCC是一项纯横向控制功能,通过对车道线的识别和对转向系统的自动控制,解放驾驶员的双手,让车辆自动保持在本车道内居中行驶。
ALC,全称AutoLaneChange,即自动变道辅助。虽然字面名称叫做“自动变道”,但其实目前主流做法是“指令式变道”,一般是通过转向拨杆,控制车辆的转向系统,实现自动变道。ALC可以有效辅助驾驶员实现变道,解放双手。
TJA,全称TrafficJamAssistant,即交通拥堵辅助。TJA可以理解为ACC和LCC功能的叠加,属于L2级功能。该功能在堵车时,通过自动控制车辆的启停和加减速,以及微调行驶方向,实现车辆自动保持在本车道居中跟车,或巡航行驶的功能。
NOA,全称NavigateOnAutopilot,即领航辅助驾驶。基于导航地图,NOA可以让车辆自动按导航的路径实现点到点行驶,长时间解放驾驶员的手和脚。NOA属于L3级的智能驾驶功能,是低级别智能驾驶功能如ACC、LCC、ALC等的叠加。
按可用区域的不同,NOA主要分为高速领航驾驶辅助和城区领航驾驶辅助。受技术条件的限制,当前已量产的NOA都是高速领航辅助驾驶;造车新势力如特斯拉和蔚小理等,已经在探索城区道路的领航辅助驾驶功能,并且即将量产。
目前,ACC、LCC、TJA等不涉及变道的智能驾驶功能,基本上已经普及,各家几乎都推出了相关的功能。ALC功能由于涉及到变道,对硬件和算法有更高的要求,目前只有部分玩家实现了量产。NOA功能是目前已经量产的最高级别的别智能驾驶行车功能,目前仅有头部造车新势力和头部科技公司实现了高速区域的领航驾驶辅助,城区领航辅助驾驶是下一步的趋势。
图3智能行车功能的关系图
泊车功能
表2汇总了当前主流的泊车功能,以及其对应的智能化等级、功能实现效果等。
表2智能泊车功能汇总
APA,全称AutoParkingAssist,即自动泊车辅助功能。功能开启后,APA识别出车辆周围可用的车位,并且在驾驶员选定车位后,控制车辆的横纵向运动,实现自动泊入和泊出车位。APA功能需要保持驾驶员在车上,随时接管。目前APA功能已经发展成熟,日渐成为车辆的标准化配置。
RPA,全称RemoteParkingAssist,即遥控泊车辅助。驾驶员下车后,通过手机APP等遥控方式,控制车辆自动泊入和泊出车位。
SS,全称SmartSummon,即智能召唤功能。智能召唤功能最早由特斯拉推出,可以让车主在车外通过手机APP的方式,发出召唤指令,从而控制车辆自动行驶,到达指定的位置。
HPA,全称Home-zoneParkingAssist,即记忆泊车功能。通过系统自学习,记住车辆在特定区域(家庭或公司停车场)的特定车位,以及行驶轨迹,HPA可以控制车辆从停车场入口开始,自动完成寻找车位和泊车的所有动作。目前小鹏已经实现了量产的HPA功能,由于可用区域限定在停车场内,且需要驾驶员在车上随时接管,因此HPA属于L3级的智能驾驶。
AVP,全称AutomatedValetParking,即自主代客泊车。AVP是真正意义上的全自动驾驶,车辆可以自行进入完全陌生的停车场,不需要先行学习,就能完成所有的泊车动作,并且不需要驾驶员在车上。作为L4级别的智能驾驶,目前对软硬件,尤其是算法和安全性要求很高,目前还没有量产的产品。
图4智能泊车功能关系图
安全功能
除了智能行车和泊车两大类功能外,智能驾驶还包含基本的主动安全功能,如表3所示。
表3主动安全功能汇总
从表3可以看出,各类主动安全功能与危险源相对自车的位置强相关,而与场景没有直接依赖关系,因此不作为本文的研究重点。另外,安全类功能也已经发展地比较成熟,逐渐成为法规要求的必须项,本文也不再一一展开。
场景体系
从完全的用户体验角度,常见的出行场景包括高速、城区和停车场三大区域,其中高速和城区都属于行车场景,而停车场则属于泊车场景。
图5点到点出行全场景示意图
(图片来源:阿拉善英雄会自动驾驶“人机大战”毫末智行展露冠军相_搜狐汽车_搜狐网(sohu.com))
行车场景
在道路上行驶的场景称为行车场景。从智能驾驶的级别和应用场景来看,有如下几类基本的行车场景:
(1)本车道内行驶;
(2)变道;
(3)十字路口;
(4)匝道。
在不同场景下,影响用户体验的因素各不相同。如本车道内行驶时,车辆的加减速响应和舒适度会显著影响驾驶员的体验;而变道时,变道成功率和变道时机则更为重要;匝道场景下,进出策略和匝道行驶稳定性的影响程度更高。
因此,我们需要基于不同的场景,分析在不同场景下,对用户体验影响显著的各项因素,并在开发过程中,重点考虑这些因素,并转化成智驾系统的性能指标。
本车道内行驶
车辆在本车道内行驶,且不涉及变道,是最基本的行车场景。根据在本车道内行驶可能遇到的情况,可以再细分为4个子场景:直道行驶;弯道行驶;跟车行驶;以及前方有车切入和切出,即Cut-In/Out。
下面我们具体分析在不同的子场景下,对用户体验影响显著的因素,以及对应的智驾性能指标,汇总后的内容见表4。
通常情况下,用户会在直道上开启智能驾驶功能,因此直道行驶时的智驾功能开启条件是影响用户体验的一项因素。需要有明确、易记、方便的开启条件,用户才会乐于使用。
对应的性能指标主要是车速,如ACC功能开启时,需要有合理的初始车速要求和车速范围限定,过高或过低的车速限制都会影响使用体验。当前主流的做法是将开启车速限定在30kph以上,但随着算法的进步和对自家技术的自信,蔚小理等新势力也在逐渐降低车速要求,10kph甚至更低都可能实现。
在任何场景下,舒适性都是影响用户体验的直接因素。在直道行驶时,舒适性主要体现在车速增加时的加速度,以及车速降低时的减速度;过大的加减速度会让用户感觉到危险,过小的加减速度则显得系统反应迟钝,引起抱怨。
此外,直道行驶时,车道保持的效果也很重要,平稳地保持在本车道内行驶,是驾驶员和乘客的基本需求。车道保持效果可以通过车辆居中度体现,即车辆距离两侧车道线的距离。
弯道行驶时,智驾系统的自动过弯能力是首先要考察的因素。可以通过的弯道半径,直接反映出系统的过弯能力。弯道半径越小,可以通过的弯道越急,系统的过弯能力越强,那么用户对系统的信赖度也会更高。
弯道场景与直道场景有着共同的影响因素:舒适性和车道保持效果。
弯道行驶时的舒适性,主要通过车辆的横向状态参数体现,如横摆角、侧倾角及侧向加速度等。当然,用户的主观感受也是舒适性的重要指标。
跟车场景下,由于涉及到外部车辆,因此安全感非常重要,此时的跟车时距与安全感紧密相关。适当的跟车时距,可以让驾驶员感觉不到碰撞风险,没有压抑感,同时也能避免被频繁加塞。
另外,舒适性和响应情况也是需要考虑的因素。前车车速发生变化时,自车的响应时间、加减速度等,都会影响功能使用体验。
Cut-In/Out场景是本车道内行驶的一种紧急场景,因此智驾系统的识别能力尤为重要。能够提前识别的距离越远、时机越早,就越能避免危险,保证安全。
另外,与跟车场景一样,Cut-In/Out场景下的舒适性和响应度也直接影响用户体验。
表4本车道行驶场景的用户体验影响因素
除了直道、弯道、跟车、Cut-In/Out这4种基本和典型的子场景外,还有其他场景也属于本车道内行驶的情况,包括一些特殊场景。如车道线合并、分叉、消失,车道内有障碍物,施工引导变道等等,也是我们需要考虑的。
另外,系统对交通标志和周围障碍物如行人等的识别能力,也影响智驾系统的性能,从而影响到用户体验。
变道
变道是出行场景中,出现频率极高的场景。在超车、地形变化、车道封闭等状况时,都会发生变道动作。
变道能力体现了智驾系统在变道场景下的边界能力。变道成功率、变道的车速范围要求、道路曲率范围、车道宽度范围以及极限的变道距离等,都是系统变道能力的指标。其中变道成功率是一个统计数据,需要基于大量的测试结果,才能得出相对准确的结论。
目前量产的智驾功能,对于变道时的车速范围,都有一定要求,常见如最低45kph、最低60kph等。随着算法能力的提升,对于车速和道路曲率、宽度等条件的要求,正在逐渐放宽。
危险预判能力是用户安全感和信赖感的保证,只有系统能够及时预判出风险并提示用户,用户才会对系统逐渐产生信任和安全感。试想,如果用户自己能够发现相邻车道有车辆快速接近,不能变道,但系统却没有识别出来,用户怎么可能信任这套智驾系统呢?
变道时的危险预判能力主要体现在系统对危险源的识别率,以及危险源的判定条件如距离、相对速度等方面。识别率越高,提前识别的距离越远,则危险预判能力越强。
合规、合法也是不可或缺的因素,尤其在变道场景时,更容易出现违规操作。因此,能否准确识别虚、实线,能否正确地按车道线变道,是考量变道合规性的重要因素。
舒适性是永恒的主题。在变道场景中,系统的决策时间和完成时间会影响用户对系统能力的评价,而变道时的车速变化策略、加减速度、横摆角速度、侧向加速度等车辆状态参数,则直接影响用户的舒适体验。
可控感是人机共驾的重要因素,无论任何功能,只要不是完全的自动驾驶,就要保证驾驶员对车辆的可控感。在变道场景中,驾驶员如转动方向盘或反向拨转向灯,车辆对驾驶员操作的响应情况,是评估可控感的主要指标。
表5变道场景的用户体验的影响因素
十字路口
十字路口是城区行驶的常见场景,也是较为复杂的场景。车道线、斑马线、箭头、引导线等多种交通静态要素,以及车辆、行人、两轮车、动物等多种交通动态参与者,再加上实时变化的红绿灯,共同组成了十字路口这一经典的城区场景。
车辆在十字路口的行为主要有停车、直行、转弯、掉头等,因此我们需要考虑的用户体验影响因素,可以部分借鉴前文提到的直行、弯道和跟车行驶场景的各项因素。此外,车辆识别红绿灯,以及自动按红绿灯行驶的能力,是在十字路口场景需要重点考虑的因素。
图6典型十字路口
匝道
匝道是高速公路和城市立交所特有的场景。作为不同主干道之间的连接部分,在匝道场景下的体验,是评估智驾系统的重要内容。
匝道场景具体可以细分为匝道内行驶、进入匝道和驶出匝道等3个子场景。
由于目前匝道基本上都是弯道,因此在匝道行驶的用户体验影响因素和指标,可以参考前文弯道场景的内容。
而在进入匝道和驶出匝道的场景中,重点需要考虑进、出匝道的策略和车速变化。例如,进入匝道时,需要提前向右侧车道变道,并提前减速,那么提前变道和减速的时机就很重要;驶出匝道时,车速如何变化,是否能否自动加速到道路限速等,都是影响使用体验的因素。
此外,进入匝道和驶出匝道进入主路的成功率,也是评价系统性能和用户体验的重要指标。
泊车场景
泊车场景主要发生在停车场,因此与行车场景相比,较为简单。
按泊车的完整流程,泊车场景包括停车场内自动行驶、搜索车位、泊入和泊出车位等。
停车场内行驶
当前的停车场类型主要可以分为以下4种:地下停车库、停车楼、露天停车场和路边临时停车位。不同类型停车场的基础设施、路面状况、光照条件等都各不相同,因此车辆在不同停车场内行驶的表现也会有差异。
总体来说,在停车场内行驶,主要考察车辆的轨迹规划能力和感知定位能力,以及对障碍物的识别能力。
表6汇总了停车场内常见的静态特征和动态障碍物,智驾系统需要准确识别这些特征和障碍,才能做到安全高效地在停车场内行驶。
在停车场内自动行驶与低速的行车场景类似,用户体验的影响因素和指标项可以参考低速的行车场景。
表6停车场内常见的动、静态物体
搜索车位
搜索车位的用户体验,主要考察车辆对车位的识别能力。车位识别的准确率越高,说明车位识别能力越强,用户的体验也会越好。
停车位的类型多种多样,按车位线情况可分为标线车位与非标线车位,按车位方向可分为垂直车位、水平车位与斜列车位等。表7汇总了常见的车位分类依据和具体类型。
需要说明的是,车位搜索能力也应该基于多次测试的统计数据来评价,样本量太小,没有普遍意义。
表7常见车位分类依据和具体类型
图7车位标线示意图
图8部分空间车位示意图
泊入和泊出车位
泊入车位是泊车过程的最后一步,也是智能泊车的最初应用场景。
当搜索到适合的车位时,智驾系统便控制车辆自动泊入车位,期间的横纵向控制和挡位切换等操作,都由系统自动完成。
泊入能力是影响泊入体验的首要因素,体现了系统的泊车能力。泊入能力的指标包括成功率、可泊入的车位尺寸范围、车速范围等,需要综合考虑车辆状态参数和车位参数等。
舒适性同样是重要的影响因素。对于驾驶员在车上的智能泊车系统,舒适性直接影响了用户的体验。车辆在泊车过程中的加减速度和系统完成泊车的时间等指标,可以体现舒适性。
泊车的规范性是另一项影响因素,停放规范整齐的车辆,会增加用户的好感和信任。是否停放端正、位置是否居中、与车位线或相邻车辆的距离如何,都反映了系统泊车的规范性。
表8泊入车位的用户体验影响因素
泊出车位是泊入车位的相反过程,其影响因素与泊入场景基本一致。
功能与场景的关联
前文我们详细解读了智能驾驶的功能体系和场景体系,而这两种体系也分别代表了开发侧和用户侧。因此,分析不同功能与场景之间的关联,找出其内在联系,是打通开发侧与用户侧的重要途径。
行车功能与场景
根据前文对智能驾驶功能体系的解读,行车功能主要有L1级别的ACC、LCC、ALC,L2级别的TJA,L3级别的NOA,其中NOA又分为高速公路区域的NOA和城区的NOA。
从功能描述中不难看出,ACC的主要作用是自动控制车辆纵向行驶,LCC主要用于保持车辆在车道内居中,因此ACC和LCC主要应用于本车道内行驶的场景。在这2项功能开发过程中,需要重点考察在前文提到的在本车道内行驶场景中,涉及的性能指标项。其中ACC需要考虑所有的指标,而LCC则重点考虑车道保持效果和舒适性。
ALC的作用就是变道,因此应用于变道场景。在开发ALC的过程中,开发者要重点关注的是变道场景下的用户体验影响因素,如变道能力、舒适性、合规性等,及其对应的性能指标。
TJA功能是ACC+LCC+ALC的叠加效果,因此需要包括这3种功能所包含的场景,即本车道内行驶+变道场景。相应的,需要考虑的用户体验影响因素和性能指标,也应该是这些场景的内容。
NOA功能分为高速NOA和城区NOA。高速NOA对应的场景除了TJA功能涉及的场景外,还需要加入匝道场景;城区NOA场景则是TJA场景加上十字路口。可以看出,NOA涉及了最多、最全面的场景,开发过程种需要考虑大量的用户体验和性能指标项,因此想要做好NOA功能,是具有一定难度的。
当然,NOA功能涉及的场景很复杂,我们在此只列举了典型的基本场景,还有其他一些场景也是开发者需要不断发掘和补充的,如桥梁、隧道、非结构化道路、学校等等,都有其独有的特点。基于基本场景,不断扩展,丰富场景库,是智驾开发的一项长期而有意义的工作,对于功能开发和提升用户体验,非常有帮助。
图9行车功能与场景的关系图
泊车功能与场景
泊车功能包括L2级别的APA、RPA,L3级别的SS、HPA,L4级别的AVP。
APA和RPA的作用区域是在停车位附近,将车自动泊入泊出,不同之处在于APA是驾驶员在车上监控并随时接管,RPA是驾驶员在车外监控并通过遥控装置随时接管。
因此,APA和RPA的应用场景是泊入和泊出车位,在功能开发的同时,需要全面考虑泊车能力、舒适性和规范性等影响用户体验的因素。
SS和HPA的作用区域是停车场内,包括停车位和停车场内的道路。SS负责将车从停车位召唤到指定位置,HPA则负责将车从停车场入口停到特定车位上。
可以看出,SS的应用场景是泊出车位,加停车场内行驶;HPA的应用场景是停车场内行驶,加搜索车位,再加泊入车位。开发者需要重点关注车辆在停车场内低速行驶的体验,以及搜索车位的能力,这对车辆的融合感知和定位能力有很高的要求。
AVP作为智能泊车的终极解决方案,属于L4功能,是所有智能泊车功能的集大成者,其作用区域覆盖了从车主下车,到车辆泊入的全过程,以及相反的召唤全过程。AVP的应用场景是前文提到的所有泊车场景的叠加,包括停车场内行驶、搜索车位、泊入和泊出车位。
此处我们忽略了车辆从车主下车点到停车场的这段距离,由于这段场景在停车场外,并且存在不确定性,在本文中就不展开了。
AVP功能需要全面关注泊车全部场景下的用户体验和性能指标。另外,由于AVP功能开启时,用户已经离开车辆,因此高安全性和鲁棒性,也是至关重要的,需要有足够的安全冗余设计。
图10泊车功能与场景的关系图
本文我们详细解读了当前智能驾驶的功能体系和场景体系,并分析了两者之间的联系,建立了功能体系与场景体系的关联架构。
通过全面考虑功能与场景的关联,基于功能规划和应用场景,综合制定智能驾驶的性能指标,有利于在开发早期就打通开发侧和用户侧的壁垒,将用户体验全程纳入开发过程,实现同步开发。
当然,功能是不断迭代的,场景是不断完善的,我们在智驾开发过程中,需要基于这些基本功能和基本场景,持续升级拓展,真正地做到产品需求源于用户,智驾功能服务于用户,打造出高满意度的智能驾驶解决方案。
转载自九章智驾,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。
--END--
从近期到远期:人工智能在实际生活中的应用场景和未来整合趋势
人工智能(ArtificialIntelligence,AI)在实际生活中的应用场景非常广泛,涵盖了从近期到远期的多个领域。以下是一些典型的应用场景,以及未来可能整合的技术和应用。
近期应用场景:
虚拟助手:智能助手(如Siri、Alexa、小冰)帮助用户管理日程安排、提供实时天气信息、回答问题等。图像识别:AI技术可以通过分析和识别图像内容,应用于人脸识别、物体识别、图像搜索等领域。语音识别:语音助手(如Siri、GoogleAssistant)能够识别和理解人类语音指令,并执行相应操作,如播放音乐、发送短信等。自动驾驶:将AI技术应用于汽车领域,实现自动驾驶功能,提高行车安全性和交通效率。远期应用场景:
机器人助手:智能机器人能够协助人类进行家务、照顾老人、甚至扮演陪伴角色。医疗诊断:AI技术能够辅助医生进行疾病诊断,提供个性化的医疗方案、药物推荐等。智能城市:AI技术可以在城市中应用于交通管理、环境监测、能源优化等方面,提高城市的智能化程度。个性化教育:AI可以根据学生的个体差异,提供定制化的教育内容和学习辅助工具,提高教育质量和效果。将来整合的技术和应用:
跨领域整合:不同领域的AI技术和应用将会整合,形成更加全面和智能的解决方案。例如,将语音识别、图像识别和自然语言处理技术整合,实现更加人性化和智能的交互方式。强化学习:强化学习是一种让机器通过试错和反馈来学习的方法,未来将应用于更复杂的决策和控制任务,如自动驾驶、智能机器人等。大数据和云计算:AI需要海量的数据进行训练和学习,未来将进一步整合大数据和云计算技术,提供更强大的计算和存储能力,以支持更复杂的AI应用。总之,人工智能在实际生活中的应用场景将越来越广泛,从简单的语音助手和图像识别,到复杂的自动驾驶和智能机器人,AI技术将为我们的生活带来更多便利和智能化。未来,不同领域的AI技术将会整合,搭建更加智能和全面的解决方案,推动人工智能进一步发展和应用。
人工智能发展与应用综述
人工智能发展与应用综述摘要自人工智能的概念在1956年被提出以来,研发者们就不断研究,六十多年的发展,在理论研究以及应用领域都已取得了喜人的成果,人工智能在医疗,交通,教育,商业,信息安全等领域已经深入国民生活。本文对人工智能概念进行解读,并对人工智能发展与应用进行综述,探索人工智能发展轨迹,以更好认识人工智能,对行业技术与发展有更深刻的理解。
关键词:人工智能发展应用综述总结1、引言人工智能的概念越来越深刻影响着人类的生活,如同蒸汽时代的蒸汽机,电气时代的发电机,信息时代的计算机,人工智能已经成为推动人类进入智能时代的决定性力量。当然,人工智能并不是凭空产生的,其发展具有一定的过程,在无数科学研究者,学者的辛勤努力下,人工智能研究的研究体系已经初见成果。人工智能的概念产生于欧美、日本等国家,并迅速风靡全球,可喜的是,根据清华大学发布的《人工智能发展研究报告2018》统计,我国已经成为全球人工智能投资融资规模最大的国家,我国人工智能在人脸识别,语音识别,安防监控,智能音箱,智能家居等人工智能应用领域处于国际前列。根据2017年,爱思唯尔文献数据库[1]统计结果,我国在人工智能领域发表的论文数量已居世界第一。当然,作为一项新兴事物,人工智能并非完美无缺,在许多方面仍然有较多的困难尚未攻克,本文对人工智能发展与应用进行综述[2、3],指导正确看待这一新兴事物,更好指导未来的技术发展。
2、人工智能以及核心概念由于“智能”这一概念难以确切定义,图灵用:“机器能够思考吗?”这一问题代替。图灵提出通过对机器进行“图灵测试”,以判断它是否具有智能。“图灵测试”就是让机器当做人,与人进行对话,如果有30%的测试人相信此机器是人类,那么这台机器被认为具有智能。美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样的定义:人工智能是关于知识的学科,是怎样表示知识以及怎样获得知识并使用知识的科学。从实用观点来看,人工智能是一本知识工程学:以知识为对象,研究知识的获取,知识的表示方法和知识的使用。目前学术界将人工智能分为强人工智能和弱人工智能,强人工智能就是机器具有自我意识,要求机器有知觉有意识。弱人工智能是指没有知觉意识的智能,机器按照事先写好的程序进行工作,并不拥有智能。
(1)、机器学习机器学习[4]是人工智能的核心技术,是使机器拥有智能的主要途径,是指让机器模拟人的学习能力,以此来增强机器的性能。早在上个世纪图灵就给出了类似机器学习的想法,他设想让机器模仿儿童思维,使其接受正确的教育成长为一个成人的大脑。这种想法与当今学者研究的方向不谋而合。后来图灵与同事一起编写了程序去实践这种想法,机器能够做他们编写过的事情,除此之外,不会向人类一样在能力方面有更多的延伸。如何让机器自主的学习,在今天仍然是人工智能发展的难题。
(2)、人工神经网络是受人脑神经元的启发,试图设计与人脑结构类似的网络结构,模拟大脑处理信息的的过程,以提高运算速度。作为人工神经网络的一类,卷积神经网络已经广泛用于大型图像处理中。虽然人工神经网络无法与人类大脑媲美,在模式识别,医疗,智能机器人等领域取得的成果有目共睹。
(3)、专家系统是指依靠人类专家已有的知识建立的知识系统,是一种特定领域内大量知识与经验的程序系统。它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以甚至超过人类专家的水平。目前专家系统开发最早应用最广泛的领域,多是医疗诊断,地质勘探,文化教育等领域。
3.发展历程回顾人工智能的发展可以有以下四个时期:孕育,形成,知识运用,综合集成四个阶段。孕育期:一般认为人工智能的最早工作是Warre基本出发点。Mcculloch跟WalterPitts完成的。他们提出一套人工神经元模型,两名普林顿大学数学系的研究生在1951年建造了第一台神经元网络计算机。不少早期工作可以被当做人工智能,古希腊的亚里士多德创立的演绎法,三段论的至今仍然是演绎推理的基本出发点。形成期:人工智能诞生于1956年的一次历史性聚会。几位来自美国的数学,神经学,心理学,信息科学和计算机科学的杰出科学家齐聚一堂,由麦卡锡提出了“人工智能(AI)”这一概念。会议过后,各地的科学家、学者纷纷研究相关知识,“人工智能”这一学科以及相关研究如雨后春笋一般形成。1969年的国际人工智能联合会议标志着人工智能得到国际的认可。知识应用期:1977年费根鲍姆在第五届国际人工智能大会上提出了知识工程的概念。从此之后,各类专家系统得以发展,大量的商品化专家系统和智能系统纷纷推出。专家系统的发展,也是得人工智能的发展范围扩大到了人类各个领域,并产生了巨大的经济效益。但是专家系统发展过程中也存在很多缺陷,应用领域窄,缺乏常识性知识,知识获取困难,不能访问现存的数据库等问题被逐渐暴露出来,人工智能面临着考验。综合形成期,在专家系统方面,从20世纪80年代末开始逐步向多技术,多方法的综合集成与多领域的综合应用型发展。大型专家系统开始采用了人工智能的多种语言,多种知识表示方法,多种推理机制和多种在控制策略相结合的方式,人工智能的发展进入综合形成期。目前,人工智能技术正在向大型分布式人工智能,大型分布式多专家协同系统,并行推理,多种专家系统开发工具,大型分布式人工开发环境和分布式环境下的多智能协同系统等方向发展。但是从目前来看,无论是人工智能理论还是实践都不够成熟,人工智能研究仍然需要科研工作者长期摸索。
4、人工智能的应用(1)、虚拟各人助理目前市面上的人工智能助理如:Siri,小娜等。个人助理能够帮助用户完成多项任务,多项服务,其推动力是人工智能技术。现阶段的人工助理一般具有基于上下文的对话能力,可以实现简单的人机对话,回答一些简单的问题。个人助理的应用包括语音识别,图像识别,深度学习等技术,其工作原理是“语音识别+云计算服务”。
(2)、自动驾驶谷歌公司一直致力于自动驾驶汽车的研究,2012年4月。谷歌公司宣布自动驾驶汽车已经行驶20万公里,这一数据已经接近汽车的最大里程数。我国自动驾驶技术的研究同样取得振奋人心的成果。2017年由海梁科技与深圳巴士集团等联合打造的自动驾驶客运巴士,正式进行线路的信息采集和试运行。
(3)、智慧医疗医疗一直是关系到国际民生的重要范畴。随着专家系统的不断发展完善,已有实例表明,人工智能可参与到医疗建设中。Watson[5]是IBM公司研发的采用认知计算系统的人工智能平台,watson肿瘤系统是其产品之一,可以作为辅助诊疗手段,与医院数据对接,实现病例数据的信息共享,还可以为临床医生在诊断过程中推荐诊疗方案,苏北人民医院2017年正式引入此系统,开启了智慧医疗的新时代。
5、我国人工智能发展趋势与展望人工智能技术发展至今60多年,其概念已经逐渐清晰,在生物,医疗,交通等领域孕育出了突破性的成果,但是人工智能技术能否发展到人类的水平仍然不能给出确切的答案。目前人工智能面临的问题主要是:
(1)、体系结构受限受限于冯诺依曼体系结构,目前人工智能系统在感知,认识方面无法突破瓶颈。这主要是由于传统的冯诺依曼体系结构采用的是存储程序的方法,程序是事先设定的,无法随着外界的改变而改变,这也是限制人工智能发展的关键。不过,我们有理由相信,在不久的未来能够克服这种制约。
(2)、社会问题困扰如果人工智能真的发展到与人类智慧媲美的程度,又会引发一系列的问题。一方面心理学上,“恐怖谷”理论就是假如机器人接近人类的时候,我们会对其产生莫名的厌恶和惧怕。另一方面,人工智能带来的社会问题同样困扰着人类,以自动驾驶汽车为例,3-18美国自动驾驶车辆车祸致人死亡的事件给自动驾驶技术的发展带来不小的冲击,事故责任的划分成为一大难题。目前人工智能的发展,主要是在弱人工智能发展并取得显著的成果,在强人工智能的研究上仍在开展,存在很多问题,有很大的发展空间,从目前的一些前瞻性研究可以看出人工智能可能会向以下几个方面发展:模糊处理,并行化,神经网络和机器情感。人工智能的下一个突破可能是赋予计算机情感能力。
参考文献
[1]中央人民政府驻香港特别行政区联络办公室副主任中国科学院院士谭铁牛.人工智能的发展趋势及对策[N].中华工商时报,2019-02-25(003).[2]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,30(02):4-7.[3]杨俊龙,柳作栋.人工智能技术发展及应用综述[J].计算机产品与流通,2018(03):132-133.[4]陈彦淇.简析人工智能的发展与应用[J].科技传播,2019(04):162-163+170.[5]曹敦煜.人工智能在心脏疾病诊疗中的应用[J].科技传播,2019(04):141-142.