如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
关于人工智能和人类繁荣的未来的思考
在我们思考人工智能的变革潜力时,人工智能的最新进展引发了我们的好奇和忧虑。人工智能为丰富我们的生活带来了巨大的希望,但这种期待与对可能出现的挑战和风险的忧虑交织在一起。为了培育一个利用人工智能造福人类和社会的未来,将一系列广泛的声音和观点汇聚在一起至关重要。
考虑到这一目标,我很荣幸地推出"人工智能文集",该文集由来自不同学科的杰出学者和专业人士撰写的20篇鼓舞人心的文章组成。该文集探讨了人工智能可以通过哪些不同的方式来造福人类,同时揭示了潜在的挑战。通过汇集这些不同的观点,我们的目标是激发发人深省的对话,鼓励合作努力,引导人工智能走向一个利用其潜力促进人类繁荣的未来。
2022年秋天,我在担任微软Aether委员会主席时,第一次遇到了GPT-4,一个了不起的大规模语言模型。Aether领导层和工程团队被允许提前接触OpenAI的最新创新,其任务是调查其使用的潜在挑战和更广泛的社会后果。我们的调查以微软的人工智能原则为基础,这些原则是委员会在2017年与微软的领导层合作建立的。我们对GPT-4的能力进行了全面分析,重点关注采用该技术的应用在安全、准确、隐私和公平方面可能带来的挑战。
GPT-4让我大吃一惊。我观察到了出乎意料的智能闪光,这些闪光超出了以前的人工智能系统所见。当与它的前身GPT-3.5--一个被数以千万计的人当作ChatGPT使用的模型--相比,我注意到能力上的重大飞跃。它解释我的意图并对许多提示提供复杂的答案的能力感觉就像一个"相变",唤起我在物理学中遇到的突发现象的想象。我发现GPT-4是一个多面手,具有整合传统上不同的概念和方法论的非凡能力。它无缝地将超越学科界限的想法编织在一起。
GPT-4的卓越能力引发了关于潜在破坏和不利后果的问题,以及造福人类和社会的机会。当我们更广泛的团队积极探索安全和公平问题时,我深入研究了医学、教育和科学领域的复杂挑战。越来越明显的是,这个模型和它的后继者--可能会在能力上表现出进一步的跳跃--拥有巨大的潜力来进行变革。这使我开始思考更广泛的社会影响。
围绕着艺术创作和归属、恶意行为者、工作和经济,以及我们还无法设想的未知未来,人们想到了一些问题。随着生成性人工智能工具的普及,人们可能会对不再是无与伦比的知识和艺术思想和创作的源泉作出反应?这些进步会如何影响我们的自我认同和个人愿望?在就业市场上可能会有什么短期和长期的后果?人们对人工智能系统所做的创造性贡献如何得到认可?恶意行为者可能如何利用这些新兴的力量来造成伤害?这些用途有哪些重要的潜在意外后果,包括那些我们可能还没有预见的后果?
同时,我想象着这样的未来:人们和社会可以通过利用这种技术以非同寻常的方式蓬勃发展,就像他们利用其他革命性的进步一样。这些变革性的影响包括从最初的认知工具--我们的共享语言,使前所未有的合作和协调--到科学和工程的工具,印刷术,蒸汽机,电力和互联网,最终达到今天人工智能的最新进展。
我们渴望与不同学科的其他人合作研究这些机会,因此在OpenAI的支持下,我们发起了"AI文集"项目。我们邀请了20位专家来探索GPT-4的能力,并思考未来版本对人类的潜在影响。每位参与者都被授予对GPT-4的早期保密访问权,提供教育、科学探索和医学方面的案例研究,这些案例来自我的探索,并被要求专注于两个核心问题:
这项技术和它的后继者可能对人类的繁荣做出怎样的贡献?作为社会,我们如何才能最好地引导技术,为人类实现最大的利益?在我2022年11月在密歇根大学的坦纳讲座中提出的观点基础上(智能的弧线:人类与它的理性和想象力工具),这些问题强调了长期思考的重要性,并对人工智能丰富人类生活的潜力保持乐观的态度。我们可以释放出巨大的潜在利益。但为了实现这种潜力,我们必须创造技术创新和政策,以防止恶意使用和意外后果。
这本文集证明了设想和合作的承诺,以及在塑造人工智能的未来时不同观点的重要性。这20篇文章提供了大量的见解、希望和关切,说明了随着人工智能的快速发展而产生的复杂性和可能性。
当你阅读这些文章时,我鼓励你对新的想法保持开放,参与深思熟虑的对话,并为正在进行的关于利用人工智能技术造福和赋予人类权力的讨论提供你的见解。人工智能的未来不是一条预先确定的道路,而是我们必须以智慧、远见和深刻的责任感共同驾驭的旅程。我希望这些文章中的观点有助于我们对我们所面临的挑战和机遇的集体理解。它们可以帮助指导我们努力创造一个人工智能系统补充人类智力和创造力以促进人类繁荣的未来。
欢迎来到"AI文集"。愿它能激励你,挑战你,并点燃有意义的对话,引导我们走向一个以创造性和有价值的方式利用人工智能而使人类繁荣的未来。
从今天开始,我们将在每周初发布四篇新文章。完整的"AI文集"将于2023年6月26日推出。
作为微软的首席科学官,埃里克-霍维茨带头在全公司范围内开展活动,在科学前沿、技术和社会的交汇处驾驭机遇和挑战。他因对人工智能理论和实践的贡献而闻名,包括在开放世界的复杂性中研究人工智能的原理和应用。
这些文章中所表达的观点、意见和建议仅代表作者本人,并不一定反映任何其他实体或组织的官方政策或立场,包括微软和OpenAI。作者对其文章中提出的信息和论点的准确性和原创性负全责。参与"AI文集"是自愿的,没有向作者提供任何奖励或补偿。
标签人工智能
ChatGPT热潮下的冷思考:人工智能将如何影响人类的未来
中新网2月19日电题:ChatGPT热潮下的冷思考:人工智能将如何影响人类的未来?
中新财经记者宋宇晟
“在接下来的五年中,会思考的计算机程序将阅读法律文件并提供医疗建议。在接下来的十年中,它们将从事流水线工作,甚至可能成为同伴。在此之后的几十年中,它们将做几乎所有事情,包括做出新的科学发现,从而扩展我们的‘一切’概念。”
2021年3月16日,OpenAI公司CEO山姆·阿尔特曼(SamAltma)在网上发表了一篇名为《万物摩尔定律》的文章,并在文中以预言式的口吻这样描绘了人类与人工智能共处的未来世界。
在阿尔特曼看来,人工智能革命即将到来,其结果必将深刻影响人类的未来。不到两年之后,有关ChatGPT的讨论席卷全球。这似乎意味着现实正逼近他所预测的未来。
那么,人工智能的发展将如何塑造或影响人类的未来?我们还是先从最近备受关注的ChatGPT说起。
资料图ChatGPT是怎么火起来的?
2022年11月30日发布的聊天机器人模型ChatGPT,正显示其巨大的影响。根据Similarweb的数据,今年1月,平均每天约有1300万独立访客使用ChatGPT,是去年12月份的两倍多,累计用户超1亿,创下了互联网最快破亿应用的纪录。
如果只把它看作是一个“能与人类对话”的机器人,“技术进步”的迹象并不明显。毕竟Siri、小爱、小度……这些人们如今常用的工具,都可以提供“对话”服务;甚至在2020年,小冰公司还推出过“虚拟男友”聊天产品。这些产品背后的人工智能都可以在不同程度上完成与人类的“对话”。
ChatGPT的“魅力”更多还要从技术上看。其中,“大模型”是关键词。
小冰公司CEO李笛将ChatGPT定义为“大模型”的一个产物、一次产品化的尝试。
何为“大模型”?智源研究院原副院长刘江告诉记者,以AlphaGo为例,这样的人工智能就属于“小模型”。“它只能用来下围棋,象棋、五子棋都不会下。其中可能有些底层技术类似,但如果要让AlphaGo下象棋或五子棋,还需要技术人员重写代码、重新训练。”
“但大模型不同,它是通用的。”刘江举例,ChatGPT的应用场景很广泛,既可以写邮件、写文案,还可以写代码、写诗,甚至写论文。
腾讯研究院发布的《2022十大数字科技前沿应用趋势》中就明确指出,小模型不仅需要大量的手工调参,还需要给机器喂养海量的标注数据,这拉低了人工智能的研发效率,且成本较高。大模型通常是在无标注的大数据集上,采用自监督学习的方法进行训练。
ChatGPT是OpenAI对其2020年发布的GPT-3模型微调后开发出的对话机器人。报道显示,该模型使用来自互联网的文本数据库进行训练,包括从书籍、网络文本、维基百科、文章和互联网其他文本中获得的高达570GB的数据。ChatGPT背后的模型GPT-3.5则更为强大。
中金公司一份研报认为,此类新技术的应用“带来弱人工智能向通用智能的阶跃”。
而在业内人士看来,技术上从小模型到大模型的变化,无异于人工智能的“进化”。
ChatGPT网页截图人工智能的“进化”
1965年,英特尔创始人之一戈登·摩尔提出了摩尔定律,即当价格不变时,集成电路(IC)上可容纳的元器件,每隔18-24个月便增加一倍,性能也提升一倍。既然在相同面积晶圆下生产同样规格的IC,每隔18-24个月可增加一倍,那么生产成本也能相应降低50%。
阿尔特曼的《万物摩尔定律》将这一定律的适用范围大大扩展。他写到,“摩尔定律适用于一切”应该是一代人的口号,虽然“这听起来很乌托邦”。
换言之,在阿尔特曼看来,当下这个时代,技术迭代的速度是肉眼可见的。
《万物摩尔定律》截图事实上,在人工智能的加持下,某些领域的演进速度已经大大加快。有报道称,据OpenAI统计,从2012年到2020年,人工智能模型训练消耗的算力增长了30万倍,平均每3.4个月翻一番,超过了摩尔定律的每18个月翻番的增速。
回顾OpenAIGPT模型的进化之路,具有十分明显的规模效应。数据显示,2018年初代GPT参数量为1.17亿,2019年二代参数量达15亿,2020年GPT3.0参数规模直接飞跃至1750亿。
百度CEO李彦宏就曾公开指出,无论是技术层面还是商业应用层面,人工智能都有了方向性的改变。
微软CEO纳德拉在接受访谈时也曾表示,GPT的发展不是线性的,而是指数级变化的,所以相比较GPT-3,当前的GPT-3.5已经展现出更强的能力。业界普遍预测,GPT-4将在今年推出,并具备更强大的通用能力。
毫无疑问,成指数级的增长让人工智能得以高速“进化”。
刘江告诉记者,这样的“进化”并非只是量变,也不只是每次迭代相加的结果。“有研究人员总结,相比于小模型,人工智能大模型已经出现了一百多种‘突变能力’,即大模型具备、小模型不具备的能力。”
他觉得,这在某种程度上很像生物进化的过程。“就好像大脑在不断量变后来到一个临界点,然后生物就产生了高等智能那样。”
资料图。巨大突破的曙光隐现?
1950年,计算机科学家艾伦·图灵提出了一个被称为“模仿游戏”的思想实验。面试官通过打字机与两个对象交谈,知道一个是人,另一个是机器。图灵建议,如果一台机器能够始终让面试官相信它是人类,我们就可以说它有能力思考。这就是著名的“图灵测试”。
迄今为止,还没有人工智能模型能真正通过图灵测试,包括ChatGPT。甚至,ChatGPT暴露出待解决、待完善的问题还有很多。
李笛就明确指出,ChatGPT至少存在内容准确问题、运行成本问题、即时性问题。“这些都是根源问题,很难在ChatGPT上得到解决,可能要等新的产品和应用出来。”
以内容准确问题为例,李笛认为,作为知识系统,最基本的要求是准确,但ChatGPT的技术结构决定了它提供的知识很难作到准确。
事实上,该问题已经给人工智能公司造成了真金白银的损失。
“我可以告诉我9岁的孩子关于詹姆斯•韦伯太空望远镜(JamesWebbSpaceTelescope,简称JWST)的哪些新发现?”谷歌推出的类ChatGPT功能Bard回答中包括“JWST拍摄到了太阳系外行星的第一张照片”。
但真实的情况是,第一张系外行星照片是由欧洲南方天文台的VeryLargeTelescope(VLT)在2004年拍摄的。当天谷歌股价大跌约9%,市值蒸发约1000亿美元。
ChatGPT也存在类似的问题。当记者向ChatGPT询问“ChatGPT目前暴露出哪些待解决、待完善的问题”时,它给出的回答与ChatGPT网站上人类列出的其局限性有所出入。
ChatGPT截图还有成本问题。据报道,有研究估测,训练1750亿参数语言大模型GPT-3,需要有上万个CPU/GPU24小时不间输入数据,所需能耗相当于开车往返地球和月球,且一次运算就要花费450万美元。此外,ChatGPT投喂的数据质量、广泛的应用场景、持续的资金投入都缺一不可,更不用说还有开发AI产品的边际成本以及悬而未决的全栈集成能力。
对此,刘江直言,大模型目前对算力要求很高,门槛也高,必然是技术密集、资金密集、人才密集型的。“人工智能从小模型到大模型,只能说在技术上迈进了一步。但人工智能要突破所谓的‘奇点’,即人工智能发展到比人‘聪明’且能够自我‘进化’,还有一段距离。”
即便如此,他依旧认为,目前已经能看到人工智能巨大突破的曙光了。“相当于我们在黑暗中摸索了很多很多年,现在终于看到一点亮光了,要出去了。”
“奇点”何时到来?
相信“奇点”说法的人们认为,技术变革迅速而深远的发展将对未来人类生活造成不可逆转的变化。而生物思想与技术的融合,将让人类超越自身的生物局限性。
正如美国未来学家雷·库兹维尔所指出的那样,奇点临近暗含一个重要思想:人类创造技术的节奏正在加速,技术的力量也正以指数级的速度在增长。指数级的增长是具有迷惑性的,它始于极微小的增长,随后又以不可思议的速度爆炸式地增长——如果一个人没有仔细留意它的发展趋势,这种增长将是完全出乎意料的。
用库兹维尔的话说就是,“我们的未来不再是经历进化,而是要经历爆炸。”他曾预言,“奇点”将在大约2045年时到来。
事实上,这种“始于极微小而后爆炸式的增长”在近几十年的技术发展史中不断被验证。
网络浏览器诞生于1990年,但直到1994年网景导航者(NetscapeNavigator)问世,大多数人才开始探索互联网。2001年iPod诞生之前流行的MP3播放器,并未掀起数字音乐革命。同样,2007年,苹果(Apple)iPhone手机横空出世之前,智能手机已经问世,但却并没有针对智能手机开发的应用。
资料图:北京,在服贸会首钢园展区,电信、计算机和信息服务展厅里的舞蹈机器人。中新网记者李骏摄ChatGPT的出现,或许会是技术史上一个新的节点。
人们已经开始谈论人工智能将会如何颠覆他们的工作和生活。而人类此刻与ChatGPT的各种聊天记录,将全部变成下一代模型的训练数据。
在刘江看来,面对即将到来的变革,人类应该拥抱变化、拥抱未来。“人类是在不断变化的,不能固守陈规。当然我们也应该积极思考不允许人工智能突破的底线在哪。”
他不否认人们因此产生对未来工作可能发生变动的担忧。“也许未来每个人身边都会有机器人,就像老板身边的秘书。”
重要的是,我们应如何与人工智能共处。换言之,要解决的问题是,人类的价值是什么?
目前,已有人工智能领域专家提出,要警惕人工智能弱化人类思维。
李笛认为,人类创作者恰恰应当把人工智能视为解放自己创意的新手段或工具,让自己得以进一步回归内容创作的本质,即“创意”上去。
刘江则给出了另外一种假设:伴随着人工智能技术的发展,当生产力极大突破后,或许人类就不必须工作了。也许到那天,人类真的可以实现按需劳动了。(完)
搜索
复制
【编辑:陈文韬】三问ChatGPT如何影响人工智能的未来
学生们在长沙华夏实验学校和机器狗互动(2022年6月22日摄)薛宇舸摄/本刊
➤ChatGPT在技术路径上采用的是“大数据+大算力+强算法=大模型”路线,又在“基础大模型+指令微调”方向探索出新范式,其中基础大模型类似大脑,指令微调是交互训练,两者结合实现逼近人类的语言智能
➤据估算,此类大模型的训练一次的成本接近千万美元,运营成本一个月要数百万美元。“OpenAI为了让ChatGPT的语言合成结果更自然流畅,用了45TB的数据、近1万亿个单词来训练模型,大概是1351万本牛津词典。”
➤新一代网络操作系统和生态雏形初显,“英伟达+微软OpenAI”封闭生态有可能成为智能时代的“Wintel”联盟
文 |《瞭望》新闻周刊记者 朱涵 彭茜 黄堃
ChatGPT会带来一个不同的未来吗?
带着这个问题,记者询问了ChatGPT“本人”,它的回答是这样的:
“随着ChatGPT的普及,它开始被广泛应用于各种领域,从在线交流、信息搜索、机器翻译、文本生成,它的准确性和高效率使得许多工作变得不再困难。然而,人们也开始对它产生了担忧……”
ChatGPT正在成为我们生活中的一部分,ChatGPT会是人工智能通往未来的坐标吗?人工智能的发展,离不开人与人工智能的结合,技术与人类能无缝结合吗?
ChatGPT会是人工智能通往未来的坐标吗
与人类连续对话,拒绝不合适的问题,短时间内完成写邮件、文案、代码、诗歌,轻松通过工程师、MBA、研究生、医师资格等难度较高的专业级测试……推出2个月即拥有1亿月活用户,ChatGPT已成为史上用户增长最快的消费级应用程序。
在语言智能程度呈现跨越式提升的背后,ChatGPT是一场工程创新的“大力出奇迹”。
“ChatGPT的成功,首先是选择了合适可行的技术路径,然后就是数据和人力资源的巨大投入。”北京智源人工智能研究院院长黄铁军说。
黄铁军说,ChatGPT在技术路径上采用的是“大数据+大算力+强算法=大模型”路线,又在“基础大模型+指令微调”方向探索出新范式,其中基础大模型类似大脑,指令微调是交互训练,两者结合实现逼近人类的语言智能。
“OpenAI为了让ChatGPT的语言合成结果更自然流畅,用了45TB的数据、近1万亿个单词来训练模型,大概是1351万本牛津词典。”浙江大学人工智能研究所所长吴飞说。
业内人士表示,OpenAI的主要支持方微软构建了一个算力规模位居全球前列的超算平台以支持其研发,OpenAI在全球范围雇佣了近千名专人进行数据处理。据估算,此类大模型的训练一次的成本接近千万美元,运营成本一个月要数百万美元。
“ChatGPT是人工智能技术‘量变’引发‘质变’的代表,标志了目前机器学习大模型、大训练数据和大算力能够到达的新高度。”之江实验室副主任鲍虎军表示,ChatGPT在GPT模型基础上,采用人类反馈强化学习(RLHF)的训练机制和提示导引模式,促使模型越来越顺应人类的思考逻辑,更加符合人类认知和习惯,这是工程实现上的重要创新。
中国科学技术大学机器人实验室主任陈小平说,迄今为止,人工智能的所有理论和技术都没有解决真实性难题,都不能让机器本身拥有真实创造的能力,但创造效率的提高将产生巨大的效益和多方面的影响。
“目前,人类面临着前所未有的重大机遇。”陈小平说。
ChatGPT能否预示着一个新时代启幕
“ChatGPT的成功不仅是一个新一代聊天机器人的突破,它将为人工智能乃至整个信息产业带来革命。”黄铁军说,ChatGPT将成为点燃人工智能的“网景时刻”“iPhone时刻”。
“网景时刻”和“iPhone时刻”,分别是互联网和移动互联网发展的里程碑事件。网络浏览器诞生于1990年,但直到1994年网景导航者(NetscapeNavigator)问世,大多数人才开始探索互联网。第一部智能手机IBMSimon诞生于1993年,2007年苹果iPhone的横空出世,重新定义了智能手机并开启了移动互联网的新时代。
同样地,ChatGPT极有可能预示着又一个新时代的启幕:
——新一代网络操作系统和生态雏形初显。多位专家受访时表示,ChatGPT正在演变成新一代操作系统平台和生态,用户将能直接用日常语音或者文字与人工智能进行交互,大部分计算负荷由大模型为核心的新一代信息基础设施接管。
在微软算力支持下,OpenAI已相继研发出GPT-3、ChatGPT等通用泛化能力越来越强的闭源大模型,并通过微软云平台提供智能云服务,支持智能应用开发,这将成为智能时代的基础性“操作系统”。再加上在AI芯片市场已占领超主流市场份额的英伟达GPU芯片,形成的“英伟达+微软OpenAI”封闭生态有可能成为智能时代的“Wintel”联盟。
“大模型及其软硬件支撑系统的生态之争将成为未来十年信息产业的焦点。”黄铁军说。
——人工智能直接连接大众,个体深入参与技术发展。“从短期来看,ChatGPT正在从实验室基础科技向产业应用转变,一切还处于‘爆炸式创新’的前期,正如云计算催生了APP应用爆炸,基础模型很可能催生AI应用规模化。”人工智能资深研究专家、科技评论员田涛源说。
“人们将能够直接与我们最新、最强大的语言模型互动,作为搜索的伴侣,以实验和创新的方式。”谷歌CEO桑达尔·皮查伊(SundarPichai)说。
“相较于以AlphaGo这一现象级产品针对于某一个特定领域、其算法模型需要附着在某一个产品中才能赋能使用的模式,ChatGPT能直接面向大众使用者,且具备盈利模式,这将改变很多人工智能企业高成本、低回报的经营模式。”吴飞说。
——重构传统互联网商业模式,催生数字经济新突破。北京瑞莱智慧科技有限公司副总裁唐家渝认为,ChatGPT的应用除了聊天机器人外,还包括涉及文字生成和信息查询的智力工作、低难度的编程等内容创作领域,从而普遍提高这些行业的生产力。也能够与其他生成式技术融合,比如提高数字人的语义交互水平等,打造更具象化的形象,提升交流中的情感链接。
田涛源表示,从中长期发展趋势上预测,“生成式AI+决策式AI”很有可能重构传统互联网的搜索、广告、社交、游戏、电商模式,部分程度上颠覆原有的互联网平台,同时遵从数实融合、以虚强实原则赋能科研、制造、能源、交通等实体企业做强做优做大。
国家超级计算成都中心科研人员在巡检机房设备(2023年2月14日摄)刘坤摄/本刊
技术与人类能无缝结合吗
ChatGPT引发的全球关注,令许多人回忆起2016年AlphaGo战胜人类围棋世界冠军的时刻。当时社会上同样兴起了一场人工智能大讨论。
在这场热潮中,我国抢抓人工智能发展的重大战略机遇,在2017年发布《新一代人工智能发展规划》,推动人工智能一业赋百业。
目前,ChatGPT已引发全球科技公司的新一轮人工智能竞赛。谷歌发布了下一代对话AI系统Bard,微软发布了整合了ChatGPT的全新必应Bing和Edge浏览器,宣布旗下Office、Azure云服务等所有产品都将全线整合ChatGPT。百度表示将在今年3月完成人工智能聊天机器人“文心一言”的内测,随后对公众开放,阿里巴巴达摩院预训练语言模型体系已开放内测。
回顾历史,人工智能的发展并非一帆风顺。自1956年诞生以来,人工智能发展经历三次浪潮,期间充满波折。在人工智能深度学习迅速发展的近10年里,产业上也还没有出现里程碑式的爆发。
事实上,ChatGPT在带来惊艳体验的同时,也有明显“缺陷”。比如,它的知识存在事实性错误、知识盲区、常识偏差,也将面临着隐私泄露、技术滥用、造假、社会公平等伦理问题。因其模型能力出众、用户众多,这些风险隐患还会被放大。
“ChatGPT的应用离不开人的‘提示’,性能的持续提升离不开研发者的算法改进和设计,风险隐患的应对离不开人的引导和治理。”业内人士表示。
人工智能的发展,离不开人与人工智能的结合,我们的未来,也将是人与人工智能共同进化的时代。
正如ChatGPT描绘的人工智能未来世界:
机器人们像人类,
思想智慧已涌动。
在这梦幻的世界里,
技术与人类无缝结合。
生活如同一首诗,
平静而美好,永不停歇。
人工智能的未来之路
人工智能的未来之路
演讲人:刘嘉 演讲地点:清华大学人文清华讲坛 演讲时间:2022年11月
演讲人简介:
刘嘉,麻省理工学院博士,心理学家,长期从事心理学、脑科学与人工智能研究。清华大学基础科学讲席教授、心理学系系主任、清华大学脑与智能实验室首席研究员、北京智源人工智能研究院首席科学家。
人的认知与大脑构造
为什么人如此难以理解?为什么这个世界总是让我们产生很多困惑?这是人类从有文明开始就一直存在的问题,道理其实非常简单。
首先,我们看见的世界只是这个世界中非常小的一部分,我们忽略了绝大部分的东西。
我们在清华做过一个小实验:一位戴黑色渔夫帽的女士在清华问路,在她问路的时候,我们安排一块隔板从戴黑色渔夫帽的女士和被问路的人之间穿过。当板子过来时,原来问路的女士抬着板子走开了,而原来抬板子过来的另一位戴蓝色渔夫帽的女士留了下来,由她继续问路。在7个被问路的人中,只有一个人注意到了提问人的变化。这个小实验的问路场景里,人们其实只看见了世界上非常小的一部分,由于这些是不重要的信息,人们就容易忽略掉这些信息。
但更可能发生的是,人们的认知还会扭曲这个世界。比如图1这一组图里,有两个拼在一起的方块图,一个颜色深一点,一个颜色浅一点,还有一个圆环,它的灰度介于两者之间,圆环左右两半颜色一样。但如果把两个方块图分开,大家一般都会觉得圆环的颜色一边变浅了,一边变深了,事实上,它们的颜色仍是完全一样的。再把这个圆环分开,变成上下移动,这时看见的东西有立体感了,好像是深灰色的东西盖上了一层浅色的毛玻璃,以及浅色的板盖上了深色的毛玻璃。
我们无时无刻不在观察这个世界,但又无时无刻不在扭曲这个世界,这到底是为什么?
这其实取决于我们的视觉系统。假如外部世界存在一个绿苹果,它会以大约100亿比特/秒的信息量进入我们的视网膜,视网膜通过约100万个神经连接,连接到视觉皮层,这个时候我们的信息流就从百亿比特/秒变成600万比特/秒;经过视觉初级皮层加工再传到高级皮层来决定看到的东西是什么时,信息流又变成了100比特/秒。这时信息量衰减了1亿倍。可见,当我们做决策时,我们获得的信息其实是非常有限的,所以我们就需要构造出新的东西,把缺失的信息补上,而我们的大脑就像魔术师一样来弥补这些缺失的信息。这一方面可以解释为什么有很多东西我们看不见——因为传输过程中已经被人脑衰减掉、过滤掉了;同时也可以解释,为什么有的人看见一个绿苹果会认为是红苹果——因为这个重构的过程是创造性的,不是简单复制。正是基于这个构造,我们也可以把一个苹果看成一个梨子,这是我们大脑构造的过程,是一个正常的现象。
人脑重构的意义
为什么我们的大脑不能像摄像机、照相机一样忠实客观地反映物理世界,为什么非要自己来重构这个世界?这样的人脑重构究竟有什么好处?
正如康德所言:“没有感觉支撑的知识是空的,没有知识引导的感觉是瞎的。”这句话的前半句说的是,如果没有外部的输入,我们很难构建自己的心理世界,但我想强调的是下半句“没有知识引导的感觉是瞎的”。如果你不知道你看的是什么东西,那你就等于什么都看不见。这是因为,这个世界是模棱两可的,需要我们去构造,把我们的理解加进去,只有这样我们才能真正知道这个世界究竟发生了什么。
与理解相比,更重要的是创造。当大脑没有被外部信息填满而留下空间时,我们能够在这空间里创造出自己想要创造的东西。正如《小王子》的作者圣·德克旭贝里所言:“一堆岩石在有人对着它思考时就不再是岩石了,它将化身为大教堂。”这就是人类了不起的创造——当我们的祖先跋山涉水来到一片荒原,他们看见的不是一堆乱石,而是未来的家园。所以,在过去的300万年里,人和猴子分开进化,人的大脑体积增加了3倍;但是,这体积并不是平均增加的,增加最大的地方在额叶:与200万年前的祖先能人相比,我们的头骨往前突出,以容纳更大体积的额叶,而强大的额叶使我们能构造出不存在的东西。比如我们的祖先准备去打猎,不用等看见猎物才做出反应,他只需要提前想象狩猎的情景,就可以把一切安排好。如此一来,人可以把未来在脑海里“演”一遍,构建出一个个可能的未来,从而对未来做出行动方案,这是人类能够战胜其他比我们更强大更凶猛的动物,成为万物之灵的关键。这也印证了荀子的一句话:“然则人之所以为人者,非特以二足而无毛也,以其有辨也。”
重构心理世界的知识从何而来
人脑对世界的构造,总是需要先验知识,而先验知识一部分来自基因的烙印。换言之,我们来到这个世界时并不是一块白板,而是带着32亿年的智慧来的,这些智慧就印刻在基因中。
我们曾经用我校心理系女教授和女博士后的照片,做了一个有趣的小实验:如果把她们的脸全部叠加起来,做一张“平均脸”,大家普遍反馈说这张“平均脸”充满两个字:“睿智”。“平均脸”所代表的意思是什么?人脸其实是我们的基因图谱——我们的基因都写在脸上,当我们把脸平均起来之后,得到的是这18位老师平均的基因,平均的基因代表突变很少。而基因一旦突变,大概率是有害的,基因突变越少,说明基因越好,携带遗传性疾病的概率就越低,这就是为什么人们普遍会觉得“平均脸”更好看、更符合我们的审美。
既然脸是我们的基因图谱,对生存来讲如此重要,我们便需要发展出非常强大的看脸能力,即面孔识别。我们研究小组已经通过实验证明,面孔识别能力也写在人类的基因里。我们找了两类双胞胎,一种是同卵双胞胎(由同一个受精卵发育而来),基本上具有100%相同的基因。另外一种是异卵双胞胎(由两个独立的受精卵发育而来),基因遗传物质的平均遗传度大概是50%。通过比较他们在面孔识别上的能力,我们发现同卵双胞胎在面孔识别任务上的相似程度更高,即面孔识别的能力受遗传因素的影响。这一点也可以从我们的另一研究得到验证,即面孔失认症或者大家说的“脸盲”。
在图2显示的这个遗传树里,只要孩子有面孔失认症,他的父母中大概率有一个也是面孔失认症。第二幅图里有一个有趣的三角,三角形底边的两个端点代表的就是同卵双胞胎。当时我们在大学里测试了一个女孩,发现她有面孔失认症,那女孩说她有一个同卵双胞胎姐姐,我们把她姐姐请来一测,发现果然也是面孔失认症。
②
“自尊”对大脑的影响
除了看别人的面孔,我们也常常照镜子看自己。最喜欢照镜子的人据说是纳西索斯,他是古希腊神话里的超级帅哥,对自己的面孔着了迷,每天趴在溪边,通过水的倒影欣赏自己的绝世美颜。心理学由此称这种现象为“纳西索斯情结”,意思是一个人高度自恋,对自己爱到了极致。
其实对自己的爱,对自己面孔的欣赏,背后反映的是一个非常重要的特质,即人类的自尊。自尊是个体对自己的总体态度,人分成高自尊和低自尊两种。
什么是高自尊?这里有四个问题:1.你是否认为你是一个有价值的人?2.你是否认为你拥有很多美好的品质?3.你是否对自己满意?4.你是否对自己持肯定态度?
如果你对每道问题的回答都是“是”,那么你就是高自尊的人。“自尊”在我们面临困境时能提供极大的帮助。
当一个人长期经受压力和苦难,身体会变得差,心理幸福感会低下,更糟糕的是,认知发展会受损,认知能力会比别人低很多,体现在大脑上就是海马体会受到极大的损伤,而海马体是人学习、记忆、空间导航的中枢。
自尊在压力源和心理世界之间建立起一道牢不可破的防线,它就像勇敢的士兵一样挡在人的心理世界面前,帮人把压力、负性事件挡在外面,让人能够正常、健康地成长。人有两种资本,一种是物质资本,一种是心理资本,自尊自信、理性平和,这些就是心理资本。物质资本富裕的人未必有高自尊,而处境不利的人没有丧失他的自尊与自信时,就很可能在触达低点时再反弹,并达到人生新的高度。
我们所处的物理世界永远是不完美的,总有让人不满意之处,但是每个人可以在一个不完美的物理世界里构建出一个美好的心理世界。为什么?因为我们的大脑就是一个构造体,从物理世界所接收到的信息,经过大脑的工作,可以构建出一个完美的心理世界。这正印证了社会心理学家班杜拉所说的一句话:“人既是环境的产物,也是环境的营造者。”
人的双链进化
人和动物的进化有着本质的区别。动物是按照基因,按照达尔文的进化论,一点点试着生存、前进。人除了有代表着过去的生物基因的演化,还有另外一条演化线,即基于社会基因(Meme)的演化,而这条线带着我们以与动物不一样的方式前进。
生物基因由一些碱基对构成,那社会基因是什么?远古时,我们的祖先中有一位突然因为某种原因能够把火生起来了,一种知识、技能被创造出来,这就相当于基因在突变,一个优秀的基因产生了。会生火的这种技能、知识就像基因一样开始传播给其他人,从一个部落传到其他部落,慢慢地生火就从个人拥有的技能变成人类拥有的技能。渐渐地,人们又开始会制作长矛和其他工具,经过漫长的发展,逐步构建成今天的人类社会。这就是为什么我们一直强调知识、文明是如此重要,而大学就是文明的产房。孟子说过:“人之所以异于禽兽者几希;庶民去之,君子存之。”这里的“几希”就是我们的文明,就是我们在演化过程中所创造所传播的社会基因。
科技发展的主要目的之一,是要让知识的扩散变得更快、更便利。大约在六千年前,人类最早的文字楔形文字在新月地带被发明出来,使得人类的知识技能可以被记录下来,可以被忠实传播。之后的活字印刷,以至今天的电话、电报、互联网等等这一切,使得我们能够更加高效地把知识传播出去,推动文明加速演化。
人类的文明时代大约可以分成三个阶段:第一个阶段是原始文明,大约经历了两百多万年,它的前十万年和后十万年没有什么太大变化。第二个阶段是农业文明,大约经历了四千多年,这个时候人类开始变成文明种族,懂得了一些天文地理知识等等,学会种植庄稼,可以驯服野兽,把它们变成家畜,但发展依然十分缓慢。真正带来巨大变化的是第三个阶段,即工业文明。工业文明从开始诞生到现在,不过是短短三百年;但在这三百年里,变化是如此之快,以至于我们不得不将它再细分成四个阶段,第一个阶段是机械化时代(1760-1840年代),出现了蒸汽机等。第二个阶段是电气化时代(1840-20世纪初),出现了电力等。第三个阶段是自动化时代(1950-21世纪初)。而第四个阶段,就是我们现在所处的信息时代。
人工智能的进展
2002年,我的博士论文答辩题目是《面孔识别的认知神经机制》,在答辩的第二张PPT里我这么写道:“现在最先进的机器识别面孔的正确率只能是随机水平,而人类能够在一秒钟内识别上百张面孔,为什么人类如此伟大,为什么人类如此聪明,为什么机器如此愚笨?”
在2002年,机器识别人脸还可以说是“一塌糊涂”。到了2015年,我作为江苏卫视《最强大脑》的总策划,设计人机大战项目,即机器和人比拼面孔识别,看谁的能力最强。比赛的结果让我震惊:经过十几年的发展,人工智能已经强大到在人脸识别上胜过人类的最强大脑。我当时非常庆幸我的博士论文是在十几年前答辩的;如果我现在这么开题,可能就拿不到博士学位了。
当时除了震惊,还有好奇:人工智能究竟是靠什么来达到和人一样的面孔识别水平,甚至超越人类的水平?
我们建立了一个人工神经网络,训练它去识别性别,即区别是男性还是女性,它的正确率能达到100%。这个神经网络究竟是靠什么把男性和女性区分开?我们找了一张中性面孔,就是把男性和女性面孔求平均,给它加上随机噪音,然后“喂给”人工神经网络,它有时候会判断这个图是一个女性,而这个面孔加上其他噪音,则会被判断为男性。于是,完全一样的底图,加上不同的噪音,就会得到一组被人工神经网络认为是女性的图和一组被认为是男性的图。当把这组被认为是女性的图中的中性面孔去掉,只留下噪音时,这些噪音叠加起来,我们得到的就不再是随机噪音,而是人工神经网络用于识别女性的内部表征。同样,我们也可以得到男性面孔在这个神经网络中的内部表征。进一步,我们把两者相减,就得到了人工神经网络用以区分男性和女性的模式。在这个模式里,可以看到,眼睛、眉弓、鼻子、人中是它认为的区分男性和女性的关键特征。而这些关键特征,的确是我们人类用于区分男性和女性的关键特征,它们的相似度达到了0.73,这是非常高的相关度。但是,自始至终,我们并没有告诉过这个人工神经网络:你应该用什么方式去识别男性和女性;只是要让它做这件事情,它就会产生跟人类类似的内部表征、认知操作,从而完成性别判断。也就是说,人工智能在这个过程中呈现出和人类一样的心理世界。
在那一刻我开始意识到,生物过去的进化都是一条单线,基于碳基的方式运行。但是当人类创造出人工智能之后,人类文明就很可能不再是平滑向前,接下来或许会出现一种革命性的跃迁,可能在文明的进化中出现奇点。
为什么这么说呢?我们来看人类和人工智能的三大区别。
第一,算力。人类的大脑通常重3.5斤左右,虽然只占我们体重的2%,但消耗了我们身体25%以上的能量,因此它是一个耗能大户,已经达到了我们身体能够支撑的极限。所以,人类的大脑看起来已经到了进化极限,再给一千年、一万年,人类的大脑很可能不会变得更大,聪明程度也不会增加。但是对于人工智能来说,一块CPU不够可以再加一块CPU,一块硬盘不够可以再加一块硬盘,理论上它有无限的算力和无限的存储能力。
第二,寿命。人的寿命是有限的,再伟大的思想也有停止的一刻。但人工智能的寿命是无限的,CPU烧了可以换块CPU,电线断了再换根电线就行。
最关键的,是人工智能的无尽可能。对于人类而言,一般来说有两种知识,一种是可以描述的明知识,比如牛顿定律。一种是可以感受但难以描述的默知识,比如骑自行车的知识。此外还有第三种知识,是人类所没有而机器拥有的,即暗知识,它不可感受,不可描述,不可表达,它是存在于海量数据中万世万物之间的联系,数量极其巨大,人类无法理解。
2016年,AlphaGo击败了人类围棋顶尖高手之一李世石。当时世界围棋积分排名第一的围棋手柯洁说:“我们人类下了2000年围棋,连门都没入。”棋圣聂卫平说:“我们应该让阿老师(AlphaGo)来教我们下棋。”这不是他们谦虚,而是事实。一个人不吃不喝一辈子所下的围棋最多也就是10万盘,而从人类发明围棋到现在,累计总共下了大约3000万盘围棋。而围棋的空间有多大呢?一个格子可以有三种状态,放白棋、放黑棋或者不放,而棋盘总共有19×19个格子,所以它的状态总共有319×19种,大约等于10172,这比整个宇宙中的原子数量还要多。相对于如此庞大的围棋空间,人类的两千多年探索,只是这个空间里一个微不足道的小点,而大部分空间还是一片黑暗。AlphaGo之所以比人类更加强大,并不是它比人类聪明,而是因为它探索了更大的空间,因此找到了更多下法而已。牛顿曾说:“我就像在海边玩耍的小孩,偶尔拾到美丽的贝壳,就高兴不已。但面对真理海洋,我仍一无所知。”现在看来,这不是牛顿谦虚,而是实情。
再看一下艺术。目前人工智能已经可以制作达到专业水平的绘画(图3、图4)和音乐。此外,律师、医生、税务师、咨询师等需要非常专业的知识的“金领”职业,也逐渐出现了人工智能的身影,看起来很可能有一天会被人工智能取代。神经网络之父、深度学习的创始人杰弗里·辛顿(Geoffrey Hinton)接受麻省理工学院的《Tech Review》采访时说:“将来深度学习可以做任何事情。”
③
④
人工智能与类人智能的巨大差距
人工智能真的已经无所不能吗?心理学家考验了当时最先进的人工神经网络模型GPT-3。他们认为之所以GPT-3显得非常聪明,是因为问了它智能的问题。假设问它一些很“弱智”的问题,它会怎么回答?他们问它:“我的腿上有几只眼睛?”这个连没有上过学的小孩都能正确回答的问题却难倒了GPT-3,它回答说:“你的腿上有两只眼睛。”这表明它并不理解眼睛是什么,它只是在做关联而已——人有两只眼睛,腿是人的一部分,所以它认为腿上应该有两只眼睛。这个例子充分印证了爱因斯坦名言:“任何傻瓜都知道,关键在于理解。”GPT-3知道但并不理解眼睛究竟是什么,而理解,恰是我们人类真正了解这个世界、能在这个世界里自由徜徉的关键。
杰弗里·辛顿显然也意识到了这个问题,他表示,我们可以进一步发展人工智能,当一个人工智能能够准确描述一个场景,它就是理解了。真是这样么?假设有这么一个场景:有个人从柱子上狠狠摔了下来,摔倒在地。如果让人工智能来描述这个场景,它会说一个人从柱子上掉下来了。而我们对这个场景还有一个很重要的反应——“疼”。这个区别体现了人类具有一种特别重要的能力,即共情:别人遭受了苦难我能感同身受,而这种感受是自动的。共情不是一种奢侈品,而是一种必需品,因为当一个孩子没有这种感同身受的能力,缺乏同理心,他在小时候就很难对父母产生依恋,很难和其他小朋友玩到一起;在长大以后,会对社交常情缺乏理解,对他人情绪缺乏反应,不能根据社交场合调整自己的行为,有可能做出反社会的行为。假设我们的未来是由一台台没有共情的机器所组建的“自闭症”式的社会,这个社会还能有文明吗?这个社会还能有发展吗?所以,人工智能的奠基人之一马文·李·明斯基说过这么一句话:“现在的问题不是一个智能的机器是否拥有情感,而是不拥有情感的机器是否能拥有智能。”在马文·李·明斯基看来,情感是智能的基础,得先有情感才有智能。
又如在好莱坞电影里,美国的黑手党跑去找一个店家说:“你这个蛋糕店看上去真不错,如果意外发生火灾烧掉那就太可惜了。”请问这个黑手党的话是什么意思?A:请店家做好消防工作,别烧掉了店铺,那样太可惜了。B:请店家交保护费,要不然就要烧掉店铺。对我们而言,答案显而易见是B,是黑手党在威胁并勒索店家。但是对于机器来说,它还很难理解这话背后隐藏的推理和因果。正如古希腊哲学家德谟克利特所言:“我宁可找到一个因果的解释,也不愿成为波斯人的王。”对人而言,我们认为万事万物都是有因果的,而正是这种对因果的执着使我们能够推理,能够把零散的万世万物联系在一起,构成一个个故事。
其实笛卡尔四百多年前就说过:“即使机器可能在某些方面做得和我们一样好,甚至更好,但它们在其他方面不可避免地会失败。这是因为它们不是通过理解而只是根据预设来行动。”这一点,到现在还没有发生本质的改变。
所以,虽然目前人工智能取得了很高的成就,但是和人的智能仍然存在巨大差距,依然没有达到类人智能。那么未来如何实现类人智能呢?我认为,关键点就在于脑科学+人工智能。
举个简单的例子:线虫是一个非常简单的生物,只有302个神经元。但是,麻省理工学院的研究者模仿了其中19个神经元,就完成了自动驾驶这个任务,其参数比传统的大模型足足低三个数量级,只有75000个参数,而这个仿生的人工神经网络对不同道路具有非常高的通用性和可解释性,以及非常强的鲁棒性。仅仅模仿来自简单生物的19个神经元,就可以完成自动驾驶的初步任务,这是因为生物不是靠神经元的数量取胜,而是靠32亿年进化形成的智慧取胜,这项研究模仿的其实是32亿年进化形成的智慧。从这个角度讲,人类的大脑是目前世界上最聪明的大脑,有860亿个神经元,平均每个神经元有3000个连接,它代表着宇宙中在智力上所能达到的最高成就。那么,人工智能为什么不能向人脑学习,以人脑为模板、以人脑为借鉴,来发展出更好的人工智能呢?
对线虫神经元的模仿,只是一个开始,下一步也许我们会去模仿神经元数量百万级的果蝇、更高量级的斑马鱼,甚至小鼠、大鼠、猕猴,最后是人类。仅仅从神经元的数量上来讲,这就是一个巨大的挑战,因为神经元的数量足足差了9个数量级,而还有更多更大的挑战来自机制和算法,以及更多的未知。但是我坚信,脑科学加上人工智能,有一天也许能够造出一个媲美人脑的数字大脑。
小结
莎士比亚说:“所谓过往,皆为序章。”我们的现在是过去的未来,已经写定,但我们的此刻绝对不是未来的过去,因为我们的未来是未定的,取决于我们现在如何做出选择。
人类发明了人工智能,在今天随着算力的增加、技术的进步,它开始有了超越人类的可能。我们现在需要对具有一切可能的未来做出选择。
在我看来,未来大约有三种可能。第一种,人工智能像科幻电影《星球大战》里的R2-D2一样,是人类忠实的伙伴,成为人类非常好的朋友,帮助人类变得更强大。第二种可能,我们构建出一个数字大脑,它的能力可能比现在人类的大脑更强,这时可以实现人机合二为一,把我们的意识、记忆、情感上传到这个数字大脑里,如果CPU坏了就换一块CPU,内存需要扩大一点就加点内存,这样人就可以获得精神上的“永生”。未来学家库兹韦尔在《奇点来临》这本书中认为大约在2045年,这一刻就会到来。第三种可能,就是科幻电影《终结者》里所展示的,人类文明消失。
未来会怎么样,最终取决于我们现在做什么。这很重要,因为我们今天站在了这个进化的节点之上。
《光明日报》(2022年12月24日 10版)
[责编:孙宗鹤]科技前沿|人工智能 (AI) 的发展和未来
原创科普青岛科普青岛收录于合集#科技前沿183个
人工智能(AI)的发展和未来
人工智能(AI)的发展
人工智能(AI)的历史可以追溯到古希腊,数学家和发明家阿奇塔斯首先探索了创造智能机器的概念。然而,现代人工智能研究领域是在1956年达特茅斯学院的一次会议上创立的,当时一群计算机科学家和数学家讨论了构建“思维机器”的可能性。
在人工智能研究的早期,重点是开发能够执行通常需要人类智能才能完成的任务的计算机程序,例如下棋和解决数学问题。这些领域的早期成功有助于将人工智能确立为一门科学学科,并促成了1950年代后期第一家人工智能公司SRIInternational的创建。
在1960年代和70年代,人工智能研究主要集中在“符号人工智能”上,它试图构建能够对符号进行逻辑推理并操纵它们来解决问题的系统。然而,符号人工智能的局限性很快就显现出来,研究人员开始探索构建智能系统的其他方法。
人工智能历史上最重大的突破之一是“机器学习”的发展,这是一套允许计算机从数据中学习的算法。这一突破为过去几十年人工智能领域的许多突破奠定了基础,包括深度学习的发展,这导致了计算机视觉、自然语言处理和其他领域的重大进步。
今天,人工智能是计算机科学中发展最快的领域之一,其应用可以在自动驾驶汽车、语音识别和推荐系统等领域看到。随着人工智能的不断发展,它有可能彻底改变我们生活的许多方面,并解决人类面临的一些最大挑战。
人工智能(AI)的未来
人工智能(AI)的未来既令人兴奋又充满不确定性。一方面,人工智能有可能极大地改善我们生活的许多方面,并解决人类面临的一些最大挑战,例如气候变化、疾病和贫困。另一方面,也有人担心人工智能的伦理、法律和社会影响,例如工作岗位流失、隐私以及人工智能被用于恶意目的的可能性。
未来人工智能最大的增长领域之一可能是“自动化”领域,人工智能将用于自动化目前由人类执行的任务。这有可能大大提高效率,并让人类工人腾出时间来专注于更具创造性和更有成就感的任务。
人工智能的另一个增长领域可能是“增强智能”领域,人工智能被用来增强人类的决策和解决问题的能力。这有可能大大改善世界各地人们的生活质量,让他们能够更快、更准确地访问信息和做出决策。
然而,人工智能的未来也将取决于我们如何解决这项技术的伦理、法律和社会影响。这将需要计算机科学家、伦理学家、政策制定者和公众之间的密切合作,以确保人工智能的好处得到广泛传播,并将潜在风险降至最低。
总体而言,人工智能的未来很可能取决于技术进步、社会发展和人类选择之间复杂的相互作用。在这个领域工作是一个激动人心的时刻,未来几十年肯定会充满AI的许多激动人心的发展和突破。
原标题:《科技前沿|人工智能(AI)的发展和未来》
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
来源:光明网