博舍

搞AI(人工智能)都要掌握哪些知识 怎么学人工智能技术知识

搞AI(人工智能)都要掌握哪些知识

大家好,我是YESLABAI的产品总监,大家可以叫我小产。

那个啥,YESLAB的华为AI课程HCNA快开班了,很多后续的AI课程也会很快陆续和大家见面。面对铺天盖地的咨询,我认为自己很有必要解答一下大家经常提出的疑问。

话说,在过去几个月,售小姐姐们最常被问到的问题是,学AI都要掌握哪些知识呢?今天我就回答一下大家的这个问题。

如果上网查查,你会发现各方牛人们都在说,入门级的AI玩家需要至少拥有:

•包括高等数学、线性代数、概率论与数理统计在内的大学数学知识;

•使用一种到多种编程语言的能力,如Python、C++、Java;

•比较熟练的英语阅读能力,用于阅读论文;

•相当的人工神经网络知识;

•……

等会儿啊,我还没说完,你们怎么都走了……

别着急啊,上面只是间接引语,我还没说我的看法呢。上述技能确实是从业AI领域所需的几大技能,但是这并不表示所有人都必须熟练掌握所有的技能。所以,一听学AI就觉得高不可攀的朋友,真的不用过于担心这个问题。

下面,我来逐项地和大家分析一下,上述技能是不是学习AI必须掌握的知识和技能;如果不是必备技能,那么掌握它们有哪些好处,不具备又会遇到哪些问题。

一、大学数学基础

很多朋友兴致勃勃地准备从事AI,但是一听到学习AI需要掌握大学数学基础知识,立刻感觉自己受到了10000点伤害,其实没有必要啊。

首先,大家在大学里面学习数学课程的侧重点是逻辑推论和举一反三。上课的时候,老师疯狂点击PPT演示推导过程和求解例题,大家则在下面兴致勃勃地……刷微信。

不过,在AI项目中学习这些数学课程,侧重点则是各类数学模型在AI中要如何使用,或者说如何在应用场合中套用这些数学模型。反而是平时数学上大家最头疼的那些推论啊、题海战术啊,在AI学习过程中可以暂时忽略掉。

不怕大家不信,熟悉数学模型的应用虽然特别简单,但有的时候还能反哺到推论的学习。所以,学不会大学数学课程的朋友,说不定反而能在我们的AI课程上找到突破,实现借道超车呢。

总而言之,即使是那些大学数学课基本都用来刷朋友圈的学渣同学,你们也可以应付AI课程的学习。打个比方,如果大学数学课程是教大家研发汽车,我们AI课程中的数学部分就是教大家学开车。

那么,如果我不想去掌握这些数学知识,可以学习AI吗?

可以,其实AI从业者中,拥有强大数学背景、数学知识足以支持一切AI应用场合的人依然是少数。只是,数学基础的缺陷,容易导致大家在从业中遇到一些障碍。那时,大家就需要按照查字典的方式,有针对性地去补充项目中用到的那个数学知识点了。另外,完全不掌握这些数学知识,学习人工神经网络的过程可能会痛苦一些。

二、编程语言

完全不会编程的人可以从事AI吗?

其实可以,不会写代码的AI从业者数量并不少。在AI领域,有一些拥有丰富从业经验的人喜欢大量钻研前沿的科技论文,然后构想怎么把这些最新科技动向投向产业。这类人群往往并不写代码,他们也不会写代码,但他们对于前言科技发展的眼光是敏锐而独到的。怎么说呢?程序猿的工作是满足AI的应用需求,这种人的工作是提出AI的应用需求,也就是充当PM。

所以,编程语言只是AI的实现工具,把编程语言培训美化成AI培训只是培训机构的宣传策略。YESLAB也一直强调,不讲人工神经网络的AI培训都是耍流氓。

不过在这里,小产还是得把丑话说在前面,拥有大量论文积累但不会写代码的人大量存在,并不代表大家应该这样规划自己的职业发展路径。对于新入行的朋友,把广泛阅读科技论文当成绕过学习编程语言的近路,有可能会在入行时遇到求职问题,因为一家企业很难相信一个没有写代码能力、也没有从业经验的新人在AI前沿科技方面能够拥有独到的眼光。

要不然,YESLABPython课程了解一下?

三、阅读论文

阅读科技论文的重要性,小产在前面刚刚介绍过了。那么,对英语阅读能力没有信心,或者不想在论文库里皓首穷经的人可以从事AI吗?

可以,只不过这样一来,大家的职业发展就会遇到瓶颈,或者说会固定在长期从事一线工作的状态。当然,长期从事一线工作也没有什么不好,只是如果大家关注大企业的AI人才需求,一定会发现它们都是十分青睐于那种同时拥有编写代码能力,和积累了大量前沿论文的人才。

那么,很多朋友可能想问,阅读科技论文对英语的要求是什么水平呢?

这么说吧,如果大家雅思阅读考到8.5以上,或者托福阅读考到28……

回来回来,我是说,如果大家四级都考不过,那也不要紧……

英语和数学确实是很多人的老大难,销售小姐姐们也确实反映很多朋友在咨询时都提出了论文阅读的问题。其实,英文水平的提升和论文阅读量的积累都是一个循序渐进的过程,可以提高大家职业发展的上限,但是并不会影响大家进入AI这个行业。

当然,小产注意到大多数负责任的AI培训机构为了消除这个门槛,都在课程中插入了一些论文带读的分享课。YESLABAI公会也决定在例行活动中,适时地选取一些在业内公认很有价值的经典科技论文,和一些比较有潜力的前沿科技论文来为大家进行带读,帮助大家彻底消除英语阅读障碍对诸位了解AI领域前沿科技动态造成的影响。

英文的事情,AI公会可以搞定,近期优惠呦。

四、人工神经网络

如果大学的专业与人工智能不相关,那么人工神经网络可能是大家在大学期间完全没有接触到的一个领域。于是,也有很多人问,不懂人工神经网络可以从事AI吗?

答案是可以,但是不推荐。说的直观一点吧,完全不懂人工神经网络从事AI,就像你在肯德基点了一份老北京鸡肉卷,然后告诉KFC的小姐姐不要加鸡肉。

确实,有很多根本不懂人工神经网络的人也在从事AI行业。在个别知名企业的认证培训体系中,也弱化了人工神经网络知识所占的比重。这是因为这些跨国企业的认证培训体系是服务于推广自身产品的,人工神经网络作为它们产品的核心技术架构,已经集成在了产品内部,受训者未来在工作中扮演的角色只是在它们产品的平台上用编程语言调试它们。

这种简化人工神经网络知识在培训体系中所占比重的做法,对于厂商的好处是明显的,毕竟有能力承担人工神经网络教学的人在行业中凤毛麟角,而培训师资人数受限则会限制产品推广的效果。学习这种课程的人只要拥有编程基础就可以比较快地上手,但却会在开源的时代背上比较浓重的厂商背景,压缩了职业发展的空间。当然,大多数厂商的认证培训体系,包括华为推出的HCNA认证中,还是会包含对人工神经网络的介绍。

其实,人工神经网络并不是太高深的技术。它说白了就是始于大脑仿生学的一种逻辑图,如果其中不包含数学函数,看上去比计算机网络的拓扑图都要容易很多。大家完全不需要特别担心这部分内容学不会啊。

总之,相比于担任网络工程师,从事AI技术人员的门槛确实提高了。根据入门同学大学各类基础课程的掌握水平不同,我认为门槛大概提高了10%-30%。但门槛的提高客观上增加了这个行业从业者的含金量,让从业者仅凭一段短时间内的集中投入,就可以拥有一份薪酬更加可观的体面工作。所以,有句话怎么说的来着?一件事的对与错,取决于你看待它的角度。

最后,相信大家也看明白了。这篇文章通篇就是向大家传达一个理念:学AI不怕起点低,AI从业者也不都是全才。

不过,凡事都得有个度。前一阵,一位销售小姐姐问我,有个咨询的大哥哥问她,不会数学,不懂人工神经网络,不想学编程,也不打算读论文,能不能直接搞AI?

(THEEND)

www.yeslab.net

什么是人工智能 (AI)

虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,127KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。

然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。

StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:

人类方法:

像人类一样思考的系统像人类一样行动的系统

理想方法:

理性思考的系统理性行动的系统

艾伦·图灵的定义可归入"像人类一样行动的系统"类别。

以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。

目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。 

随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇