人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)
人工智能时代,主要带来的变革有哪些
人工智能将带来四大变革:聊天机器人、医疗服务、生物特征识别软件和专属你的APP。
第一大变革是聊天机器人。研究表明,现如今大部分人希望商业场所能够随时提供服务。某公司研发出的聊天机器人,可以满足不同客户的需求。不论你是要订飞机票还是订外卖,聊天机器人都可以为你提供服务,而且你很难察觉你是在和机器人说话。
人工智能所带来的第二大变革,是医疗服务方面。软件能够根据病人以往的病史进行分析诊断,从而为病人提供准确的治疗,减少医疗事故的发生。这种软件能够和医生的工作相辅相成,帮助医生更好地为病人提供治疗。
第三大变革是生物特征识别软件。在人工智能的帮助下,生物特征识别软件能够轻松地推测出一个人的心情好坏。网络广告公司和电视节目供应商都希望采用这项技术来了解顾客对他们的满意度。
第四大变革是为你量身打造的APP。运用了人工智能的技术能够通过分析一系列数据熟知你的习惯,为你量身打造出属于你的服务。你每天都会吃午餐吗?天气不好你更喜欢看视频吗?人工智能能够将这些信息了如指掌,从而为你提供专属服务。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:人工智能,机器学习和深度学习之间,主要有什么差异?http://www.duozhishidai.com/article-15858-1.html如何跳出大数据视角规划一个标准的人工智能平台?就这么简单!http://www.duozhishidai.com/article-15626-1.html在网络大时代背景下,人工智能技术是如何应用的http://www.duozhishidai.com/article-15277-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
人工智能与国家政治安全
原标题:人工智能与国家政治安全人工智能技术的蓬勃发展和广泛应用,给人类生产生活带来了极大便利,同时,也对国家主权、意识形态、执政环境、社会关系、治国理念等带来冲击,深度影响国家政治安全。充分认清人工智能对国家政治安全的挑战,研究应对之策,对于有效维护国家政治安全,意义重大。
人工智能影响政治安全的机理
作为一种颠覆性技术,人工智能进入政治领域后,既具有技术影响政治安全的一般规律,又体现出其不同于以往技术的鲜明特点。
从技术影响政治安全的一般机理来看,主要体现在三个方面。第一,技术进步不可避免地直接或间接服务于政治安全。政治安全是国家安全的根本,经济、社会、网络、军事等领域安全的维系,最终都需要以政治安全为前提条件。因此,包括技术在内的一切社会条件,首要的任务是为政治安全提供服务和保证。综观人类历史上的技术进步,往往被首先考虑用于维护国家安全特别是政治安全,尽管这些技术研发的初衷并非如此。人工智能亦然。第二,政治安全与技术进步相生相克、相生相长。马克思认为,先进技术进入政治领域后,有效提高了“社会控制和权力再生产”。同时,政治安全对技术进步的需求,反过来成为技术不断进步的推动力。但技术并非完美的政治工具。一旦技术利用不当、发生技术失控,或者技术自身缺陷所蕴含的风险爆发,政治安全可能被技术进步反噬。第三,技术进步倒逼政治发展转型,给政治安全带来新课题新挑战。从历史上看,技术进步对社会结构、社会关系、社会文化等带来的变化和冲击,从来不以人的意志为转移。当火枪火炮成为主战兵器时,继续用木盾藤牌来保卫政权的行为无疑是愚蠢的,迫切需要当政者转变思想观念,寻求能够有效维护政治安全的新模式新方法。当计算机网络技术逐渐普及时,西方国家政党纷纷利用互联网进行政治宣传和选举拉票。人工智能较之以往的技术,拥有前所未有的机器“主观能动性”优势,必将对政治安全理念、安全机制、安全路径等带来更大的改变。
从人工智能影响政治安全的独特机理来看,主要体现在两个方面。第一,算法和大数据将左右智能机器“认知”“判断”,继而影响政治行为体的抉择。人工智能的核心“三大件”是算法、算力和大数据。一方面,算法是否公正不偏袒、大数据是否真实完整未被删减篡改伪造污染,直接决定机器的研判结果,并影响人的判断和行为。另一方面,与传统的人口学变量的定量分析不同,大数据、云计算、机器学习等可以将数以亿计的政治行为体抽象成社会的“节点”,人工智能通过分析信息中节点的度数、介数和接近度,来揭示权力集聚规律、赢得政治威望的秘诀,这为执政安全提供了新的技术支撑和智慧渠道。第二,人工智能技术对经济、军事、社会、网络、信息等领域的影响向政治领域传导,间接冲击政治安全。作为一项赋能性技术,人工智能正在逐渐“改写”各领域的秩序规则,给各领域带来机遇和挑战。尽管以往的技术进步也是如此,但其影响的深度和广度远远不及人工智能。而且,以往各领域安全问题“错综复杂、交织并存”的程度,也远远不及人工智能时代高。其他领域的安全问题一旦发酵,极有可能冲击政治安全。
人工智能给政治安全带来新挑战
技术变革具有两面性,人工智能既是维护政治安全的新机遇,也是新挑战。
挑战之一:人工智能技术的普及应用,导致政治权力呈现出“去中心化”趋势。在人工智能时代,数据即代表着权力。掌握数据的主体既有国家权力机构,也有个人、企业团体、社会组织等非国家行为体。“互联网数据”结构的“多节点、无中心”设计,决定着处于线上社会任何位置的主体,均不可能比其他位置的主体位势高。人人都有“麦克风”“摄像机”,处处都是“舆论中心”“事发现场”,这一显著特征,弱化了传统的线下科层制国家管理结构和单向治理模式,政治话语权由政府这个传统的权力中心逐渐向社会层面弥散,国家治理难度大大增加,政治安全风险也大大增加。目前,这种风险已初露端倪。2019年9月,因有人线上传播“老师辱骂原住民学生是‘猴子’”的种族歧视谣言,印尼巴布亚省爆发严重骚乱,导致26人死亡、70余人受伤。
挑战之二:随着人工智能技术和数据垄断持续扩张,资本权力的扩张将危及国家权力边界。生产力的发展变化必将带来生产关系包括政治权力结构的调整。作为“第一生产力”的科学技术,其发展进步势必引起国家权力结构的调整。当人工智能技术广泛应用于经济社会各领域并引起变革时,将会推动国家治理结构与权力分配模式做出相应调整。从当前种种迹象来看,资本的权力依托技术和数据垄断持续扩张,将成为新时代国家治理结构调整的重大课题。一方面,人工智能技术研发门槛很高,依赖于大量的、长期的资本投入和技术积累,这导致社会各产业、各阶层、各人才群体间的技术研发能力、资源占有程度、社会影响力等方面极不平衡,以互联网商业巨头为代表的技术资本将占据明显优势。另一方面,人工智能技术强大的赋能作用,以及良好的经济社会应用前景,导致资本趋之若鹜。商业巨头实际上掌握了目前人工智能领域的大部分话语权,并正在逐步形成行业垄断。人工智能时代,巨头企业以强大资本为后盾,逐步垄断技术、控制数据,或将不可避免地在一定程度上逐渐分享传统意义上由国家所掌控的金融、信息等重要权力,进而可能插手政治事务。因此,国家是否有能力为资本权力的扩张设定合理的边界,是未来政治安全面临的重大挑战。
挑战之三:人工智能技术及其背后的数据和算法潜移默化引导公众舆论,进而影响人的政治判断和政治选择,间接把控政治走向。在人工智能时代,数据和算法就是新的权力。近年来围绕国家大选而展开的种种政治运作显示:拥有数据和技术能够从一定程度上影响政治议程。据有关媒体报道,2020年美国总统大选期间,有人利用网络社交平台的大量机器人账号,发布海量虚假信息,力图影响选民的认知、判断与选择。类似的情况,也曾出现在2016年的美国大选、2017年的英国大选和法国大选中。这些案例非常清晰地显示:只要拥有足够丰富的数据和准确的算法,技术企业就能够为竞争性选举施加针对性影响。当某种特定政治结果发生时,人们很难判断这是民众正常的利益诉求,还是被有目的地引导的结果。
挑战之四:人工智能技术可能被政治敌对势力用于实施渗透、颠覆、破坏、分裂活动。利用先进技术威胁他国政治安全,这样的例子屡见不鲜。计算机网络技术出现后,被西方国家用来进行网络窃密、网络攻击、网络勾联、传播政治谣言、意识形态渗透和进攻。人工智能时代,攻击一国人工智能系统或利用人工智能实施渗透、颠覆、破坏、分裂活动,带来的后果将比以往更为严重。
挑战之五:人工智能技术进步对主权国家参与国际竞争带来严峻挑战。人工智能是当前最尖端最前沿的技术之一,其核心技术多被美欧等发达国家所掌握。这些国家利用它提升生产自动化水平,提高劳动生产率,加快制造业回迁,将冲击发展中国家的传统比较优势,使后者在国际政治经济竞争格局和全球分工中处于更加不利的地位。通过发展军事智能化,进一步扩大对发展中国家的军事优势。国家之间一旦形成技术“代差”,综合实力差距将被进一步拉大。在这种情况下,技术强国对发展中国家实施政治讹诈和技术突袭的可能性增大。
多措并举,维护我国政治安全
政治安全事关我党生死存亡和国家长治久安,我们必须高度重视人工智能带来的政治安全挑战,多措并举,综合施策。
人工智能技术具有高度专业性和复杂性,企业、科研机构常常处于技术创新前沿,而国家政府则往往远离技术前沿,对技术的感知相对滞后,对技术的安全风险准备不足。为此,要强化风险意识,密切跟踪人工智能技术和应用的发展,运用系统思维,定期研判人工智能可能带来的政治风险,提高风险识别、防范和处置能力。要创新技术治理模式,构建政府主导,企业、研究机构、技术专家、公众等多方参与的人工智能治理体系。“治理”不同于“管理”,管理是政府单向的行为过程,治理则是一种开放的、多个利益攸关方参与的互动过程。通过多方互动,政府既可以跟踪掌握技术和应用的前沿动态、发展趋势,掌控治理主动权,又有助于企业、研究机构、专家、民众更好地了解政府关切,共商制定风险管控机制,推进治理工作的科学化民主化。
当前,我国在人工智能技术领域面临的最重大的安全威胁,是关键核心技术受制于人。从现在起到2030年,是我国抢抓机遇的关键期。要举全国之力,集全民之智,打造一批国家级人工智能研发平台,加强基础性、原创性、前瞻性技术研发,从智能芯片、基础算法、关键部件、高精度传感器等入手,加快核心技术突破。
没有规矩,不成方圆。针对技术应用风险,严格人工智能标准制定和行业监管,确保人工智能良性发展。紧跟技术发展变化,动态修订完善相关技术标准。加紧完善人工智能相关法律法规和伦理道德框架,对相关的民事与刑事责任确认、隐私和产权保护、机器伦理等问题予以明确,理顺设计者、使用者、监管者之间的权责关系。要建立健全人工智能监管体系,形成设计问责和应用监督并重的双层监管结构,实现对算法设计、产品开发、成果应用的全过程监管。积极促进行业自律,加大对数据滥用、算法陷阱、侵犯隐私、违背道德伦理、擅越权力边界等不良行为的惩戒力度。要积极主动参与人工智能国际议题设置,共同应对安全、伦理、法律等诸多挑战。抓住人工智能国际准则和配套法规刚刚起步之机,积极参与规则制定,及时宣示我国主张,努力掌握规则制定话语权和国际交往主动权。
针对外部安全风险,加强军事能力建设,为维护国家政治安全提供力量保证。要积极研究探索智能化战争理论,加快推进现代武器装备体系和人才队伍建设,强化智能化条件下部队训练演练,不断提升我军新时代军事斗争准备水平。
(作者:许春雷,系军事科学院博士研究生,现任河北省石家庄市鹿泉区人武部副部长)
(责编:杨虞波罗、初梓瑞)分享让更多人看到
“人工智能”到底对我们的学习生活有什么影响
0分享至人工智能,也称机器智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通电脑实现的智能。人工智能目前尚且是一个高科技技术,还没有形成完整的产业,但是就像几百年前人们发现电一样,当时也是一种新兴的技术,而现今也早已发展为人类不可或缺的一个产业,人工智能不仅离不开电力,它还和电力有着千丝万缕的联系,它正在像电力一样慢慢地侵入并改变着我们的生活。
人工智能的飞速发展,不禁让很多人产生疑问:“人工智能作为一个高科技会给我们的学习生活带来怎样的变革?”看到这个问题,让我想起斯坦福人工智能实验室的主任吴恩达所说的:“100年前电能改变了很多不同行业,包括农业、冰箱甚至通信,现在人工智能也可以改变更多的行业,例如自动驾驶、金融、医疗行业。”目前人工智能正在一点点的挑战那些机器所不擅长的领域,而好多恰恰是人类最简单的感知,但是正是这些最基础、最简单的感知被机器慢慢取代的过程,让人工智能慢慢地融入人类的学习和生活,并慢慢地改变着我们的生活。
1积极意义
1.1提高学习和工作生活效率
由于云计算和API的普及,2019年人工智能将开始为企业带来和提供更有意义的价值,人工智能将会让工作更有效更高效,同时发现更多新的机遇和新的工作方式。就好比清华大学的“云课堂”,过去,学生需要用笔记本手写一个个记录重点,教师使用花名册点名,而大学生在课堂上使用的云课堂app,将能直接理解和保存教师传授的知识点,而教师也能直接在软件签到上更有效率的监督学生的出勤和听课效率等。
同时,随着人工智能在工作场所扮演的角色越来越多,人们不仅会根据它的智商,还会根据它的情商,也就是感知和理解人类所有事物的能力来进行评判。能够理解人类情感和认知状态的能力将成为评估人工智能标准的一部分,从而让公司为工作场所选择哪种人工智能,甚至让消费者决定在家中用哪种虚拟助手或智能扬声器。
“人工智能将超越炒作和媒体的头条新闻。实用的人工智能将专注于让购物变得更容易、让病人更好地参与诊疗、让律师更聪明、让网络安全更强大。我们不会看到永远不会撞车的自动驾驶汽车,但人工智能将在2019年以全新的有趣方式提高工作效率。”企业聊天机器人的创始人RamMenon这样说道。
1.2丰富学习资源与数据
“2019年将是各个组织机构基于自身数据构建专门人工智能系统的一年。考虑到各个组织机构拥有的专有数据量有限,其将会意识到他们需要工具来轻松在内部创建高质量的人工智能数据。”深度学习公司的联合创始人在谈到人工智能与大数据时,这样说道。
同时,随着社会的快节奏步伐的加快,人们对自己记忆力知识储量的要求越来越高,这就要求我们合理安排时间进行有效率的学习和复习。而人工智能的出现,将会带来更多有效率的产品出现,帮助我们丰富学习资源,提高自己的知识储量。例如我们在学习中外新闻史的发展历程的时候,在整个知识框架面前,我们将可以看到各个国家各个年代的新闻发展状况,倘若我们想要悉知民国时期的报业发展,那么这时我们便可以借助人工智能的学习系统来帮助我们填补这一空缺,这样一来,人工智能不仅能丰富我们的学习资源,还能帮助我们省去更多的珍贵时间。
1.3促进部分专业就业的发展
谈到人工智能对专业就业的影响,尤其是在农业专业领域并不缺乏担忧和焦虑。未来的精准农业以及种植更好作物的关键将依赖于人工智能、图像和传感器,这些传感器将能够收集千英亩农场的种植信息并进行学习。随着人们对粮食的需求正在增加,虽然农业学家和农民面临严重劳动力短缺和专业知识匮乏等多种问题,但由于农业经营需求的规模化和多样性,农业从业者需要密切关注劳动力积极性和管理水平,因此,世界各地的农场可以用人工智能技术填补劳动力缺口,而不是取代工作岗位。
2消极意义
2.1网络学习生活的安全存在隐患
随着越来越多的企业依赖人工智能提升自己的产品,不法分子也将利用类似的能力实施大规模欺诈计划,甚至会给企业人员造成数亿美元的损失。一旦自动化落入网络攻击者之手,就能够使用更简单的工具来获取访问权限并渗透进网络,进而干扰我们的网络学习生活。
过去几年,人工智能和机器学习一直是安全行业的杀手锏。恶意行为者也正在注意到这一点。就像是去年十分恐怖的全球多国爆发电脑勒索病毒,受害者电脑会被黑客锁定,提示支付价值约合人民币2069元的比特币才可解锁。
2.2影响部分传统媒体专业的就业和发展
虽然人工智能在许多行业发挥着越来越重要的作用,覆盖从文本翻译、为工业无人机提供动力到患者诊疗等多个领域,但是毫无疑问,任何事物都是具有两面性的,就好比在新闻学下传统媒体的就业与发展将受到很大的影响,许多大学生在对他进行选择时,会有更多的迟疑性心理。
首先,机器新闻写作高效、全天候的模式使它能够生产海量新闻内容。智能写稿机器人较之于编辑记者,更擅长对枯燥的海量数据进行有效的处理,在整体性、精确性和高效能方面,机器人比人具有更多优势。
其次,在突发事件的报道中,人工智能下的机器人新闻写作正在扮演着越来越重要的“守望者”角色。《南方都市报》写稿机器人“小南”首篇春运报道作品共300余字,报到生成用时不到一秒,还写出了“基本都是无座票,一站到底,路途会比较辛苦”这样充满人情味的文字。当人类记者面对突发事件还在惊愕中时,机器人写手已经迅速完成了数据描述和分析、以及进一步的数据价值挖掘、最后迅速完成自动写稿的全过程。因此,人工智能的发展会影响部分传统媒体专业的就业和发展。
人工智能技术是一把双刃剑,有利有弊。人工智能的学习系统能提高学习生活效率,丰富我们的学习资源和数据,促进部分专业行业的发展,但其也会使得网络学习生活存在隐患,影响传统媒体的发展。对于消极影响,我们必须趋利避害,采取积极的措施应对,让人工智能在外面的学习生活中发挥最好的作用。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端ChatGPT会给我们的生活带来什么改变
本文来自微信公众号:L先生说(ID:lxianshengmiao),作者:李睿秋Lachel,原文标题:《最近很火的ChatGPT究竟是什么?会给我们的生活带来什么改变?》,题图来自:《机械姬》
我想,最近许多朋友的生活中,可能或多或少都被ChatGPT刷屏了。
你或许已经看过了许多相关的文章。它们或许从商业角度出发,告诉你ChatGPT引发了怎样的商业浪潮;或许从技术角度出发,告诉你ChatGPT的原理和技术有多厉害;又或者,直接向你推销各种各样的类似产品,告诉你这些产品多么有前途……
但这些,离我们的生活都有些遥远。你可能看了很多文章,依然没有搞明白,ChatGPT究竟是什么,它跟我有什么关系?
因此,今天,我想简单聊聊这个话题。
如果你对ChatGPT从未听闻,那希望能告诉你一些新信息;如果你对此感兴趣但不熟悉,那希望能为你提供一点指引。
一、ChatGPT是什么?ChatGPT实际上不是一个新事物。它是2022年11月推出的,刚推出的时候我就使用了,还在知乎发了一条想法吐槽了一下。
没想到,时隔两个月之后,随着微软及一票商业公司的入场,它又开始火了,火得家喻户晓。
那么,ChatGPT究竟是什么?
从原理上来讲,ChatGPT其实也不是新事物,它背后的基础,是母公司OpenAI在几年前发布的自然语言模型GPT。对人工智能有所了解的朋友一定知道,OpenAI于2018年发布了GPT-1,首次让人工智能能够让人类一样“理解文字”、写出文字。
随后几年里,OpenAI陆续推出了GPT-2、GPT-3,用更庞大的参数实现了更精细的学习。通俗来说,就是让人工智能更“像人”了。
目前GPT-3已经用在了很多场合。像国外已经有用GPT-3来写新闻的应用,至于用GPT-3写小说、生成游戏台词、生成代码,也都在探索中了。
而ChatGPT,就是在GPT-3的升级版GPT-3.5的基础上,进行一定的包装、微调、优化,所做出来的产品。过往的GPT-3只是一个底层引擎,必须接入到一个软件中才能使用。而ChatGPT,可以理解为OpenAI自己为GPT做了这么一个软件,让用户可以直接使用它。
所以它才叫ChatGPT,也就是“可以聊天的GPT”。
那么,GPT又是什么呢?它的全称是GenerativePre-trainedTransformer,生成式预训练转换器。简单来说,它的原理是:先给它提供一个庞大的语料库(通常是直接从互联网上抓来的),让模型通过上千亿个参数对这些文本进行打散、标记、学习,构建起一个复杂的预测模型。
然后再依据这个预测模型,判断一个单词在这个情境下应该接哪一个单词。就这样一个一个单词串起来,形成一段话,或者一篇文章。
这种预测的模式,其实跟我们大脑的学习和加工模式是非常相似的。因此,这也是它能够更“像人”的一个重要原因。
我们可以用三层模型来理解:
这个模型背后无需人工参与的“无监督”式预训练自学习原理,或者说让模型像大脑“自由生长”的过程,就是它的动力层;
借由这个原理所完成的GPT-3.5,就是一个结构层,是ChatGPT起作用的主要基础;
而对这个GPT-3.5进行包装、优化所形成的ChatGPT,就是一个交互层,它的本质就是加了一层更友好的用户界面和交互方式,让个人用户能够更容易地应用它。
二、ChatGPT能做什么?了解完ChatGPT的原理,我们自然会关心一个问题:就目前而言,ChatGPT究竟能做什么?
1.回答问题
这可能是ChatGPT最简单的应用。你在聊天界面里向它提问,比如“波粒二象性是什么意思”,它就会用流畅的语言向你解释,把这个概念讲解得非常清楚。就我试用的体验而言,效果非常好,简洁晓畅,表达能力胜过许多人。
2.撰写文章
你可以向它提要求,让它按照你的要求撰写一篇文章。这是我去年做的一个实例,大家可以看看:
图源:ChatGPT质量还是挺像模像样的。
在这个基础上,可以有非常多针对性的应用。比如:
你可以让它撰写一封邮件,告诉客户你的报价,并且用礼貌、恳切的语言去表述。它写出来的作品保证用词精确,句子流程,比一般人写的要好;
你可以给它一个主题,再给一些背景和指引,让它撰写一份策划方案,甚至让它帮你想创意、提供各种不同方向的点子和灵感。这可以帮你节省大量时间精力;
你可以给它一些数据,让它根据这些材料撰写一份报告。它会非常智能地组合这些材料,生成一份文质兼美、结构清晰的报告,省去你斟酌文字的大量功夫;
你可以给它一个选题,让它生成大量内容、风格和行文都截然不同的文章,发布在各个平台上。据说已经有一些营销号开始这么干了;
你甚至可以让它按照老师的要求写一篇论文。实际上,国外已经有许多学生开始用ChatGPT完成作业了,也开始有大学教授跟ChatGPT“斗智斗勇”,比如要求学生现场写作,要求学生解释每段话的意思,等等。
所以有一个笑话是这样的:
老师对ChatGPT说:请帮我想一个题目;学生对ChatGPT说:请按照这个题目帮我写一篇文章;助教对ChatGPT说:请帮我给这些文章写评语并打分。
3.总结提炼ChatGPT还有一个非常强的能力,就是对输入的材料进行总结提炼。比如:你可以给它输入一篇文章,让它概括文章大意;或者给它输入一段讨论,让它总结主要观点和论证。
现在也已经出现了一些产品,利用ChatGPT背后的GPT构建,能够实现这样的效果:你输入一个视频、一个播客,AI帮你收听,听完,用简洁的语言总结出视频或播客的要点,呈现给你。
4.生成代码许多程序员朋友盛赞ChatGPT的一点,在于它的代码能力非常强。你提一个要求,比如“如何实现XXXX效果”,ChatGPT会告诉你几种可行的方案,并提供这些方案的主要函数和算法;你向它提问,比如“在XXXX情况下出现了一个bug,为什么”,ChatGPT会告诉你几种可能的原因,并告诉你如何处理每一种可能性。
我自己试了一下,我觉得它写代码的能力比我强多了,大概有100倍吧。
之所以ChatGPT能够掀起这么大的热潮,一大原因是因为它太“像人”了。你会感觉,跟你对话的似乎不是一台机器,而是一个非常聪明,几乎无所不知、无所不能,并且能满足你任何要求的人。这一点,令许多人欲罢不能。
这表现在几个地方:
1)每一次跟ChatGPT聊天时,只要你不关闭窗口,你说的每一句话都会成为它的“上下文”。
换言之,你可以像跟真人对话一样,不断问它“然后呢?”“还有吗?”,或者表达你的态度,它会给出像真人一样的回应,无需你不断重复、补充、完善问题。
举个例子:你抛出一个话题,它回答,你对它的回答里有个地方不太满意,可以直接指出来,它会道歉,然后给出一个更好的、满足你要求的回答。这个过程非常自然、流畅,你就像在跟一个真人对话,它能完全理解你的每一句话,并给出合乎逻辑的回应。
2)得益于海量的训练参数(GPT-3有1750亿个参数),ChatGPT的文字生成能力非常精细,质量极佳。
它写的文章,表达能力甚至强于许多不擅长写作的普通人。我有时向它提几个问题,它给出的回答会让我感到“有启发”,或者是一个新的角度,或者是一个完善的框架,这已经非常有价值了。
三、ChatGPT的缺点和问题但是,ChatGPT也并非绝对完美。实际上,就目前而言,ChatGPT依然存在好几个亟待解决的问题。
最严重的问题,就是ChatGPT的错误率实在是太高了。举一个简单的例子,这是我去年用ChatGPT测出来的实例:
图源:ChatGPT为了模仿一个外行人,我刻意把问题写得不太准确,可以看到,答案非常离谱。这可能跟ChatGPT的训练语料库主要是英文材料有关。用英语提问的话,答案的正确率会提升,但依然会出错。
并且,ChatGPT往往会用非常自信、言之凿凿的语气来回答问题。这就导致了,如果你是一个外行人,很多时候你可能压根没办法分辨它给出答案的准确性。哪怕是内行,对于一些较为琐碎的细节,也很难去验证。
去年ChatGPT刚发布时,知名的程序开发交流论坛StackOverflow就很快将其封禁。官方的解释是:这是因为ChatGPT给出的答案经常有错误,但我们很难看出错误在哪里。
从我的角度来说,如果一款人工智能工具,100次回答里面有3-5次是错误的,那我可能就不会用它。因为我很难判断它会不会再某一次突然犯一个大错误,给我造成严重损失。
实际上,我可能希望等它的错误率达到千分之一以下时才会去使用。但就目前来看,可能还需要很长一段时间,才能达到这个水平。
另一个问题是道德伦理问题。
ChatGPT是一个人工智能程序,它只会忠实地按照内在的预测模型回答问题。因此,如果你向它进行诱导性提问,那可能会得到一些偏离道德伦理的答案。这可能会引起不必要的负面反应。
尽管官方已经在不断修复漏洞了,但毕竟防不胜防。再者,你修复得越多,也就意味着这个工具能够发挥作用的场景越少。这可能是一个需要考虑的平衡。
最后一个非常重要的问题,是摄入信息的水准问题。
ChatGPT不能凭空生成信息,它所有的知识,都只能来自于它被喂养的语料。那么,显而易见,它所能够提供的答案,能够输出的内容,也不会超过这些语料的平均水平。你不可能指望它摄入一大堆插科打诨的帖子,要求它写出《三体》。
而由于互联网上存在大量的劣质信息,这就导致了:ChatGPT摄入的信息越多,它整体的水平可能也就越低下。
遗憾的是,我们至今还没有一套可靠的方法,能够客观地判断内容质量的优劣。高引用的论文也可能是错的,名气颇大的学者也可能是灌水出来的,关注者颇多的KOL也可能是营销号。
而如果依赖于用户的点赞或转发等数据去判断内容质量,常识和经验告诉我们:这样带来的势必是大量哗众取宠、吸引眼球的劣质内容,只会更严重地污染这个池子。
并且,随着大量工具和服务开始使用ChatGPT等工具,大量由人工智能生成的文章会充斥互联网。这就会造成“自产自销”。一旦人工智能只能喂养由其他人工智能产出的语料,它的水准就将会遭遇一面难以打破的障壁。
有研究认为,在5-10年内,互联网上的内容可能就会被用光。届时,人工智能将成为无米之炊,只能再次反刍自己所产出的信息。
这可能会是制约ChatGPT等AIGC(人工智能生产内容,AIGeneratedContent)工具的一个最严重的问题。
四、ChatGPT的未来前景如果我们用乐观的眼光去看待,认为AIGC能够克服上述这些问题,那么,它对我们的生活,会带来什么样的改变呢?
1.搜索互联网发明之前,我们的信息获取可以说是搜索1.0时代。那时,我们只能到图书馆去查阅资料,用卡片和笔记本做笔记,通过摄影或手抄的方式记录,繁琐,麻烦,成本又高。因此,“做研究”成了一件阳春白雪的事情,只有少数人有能力去做。
后来,有了互联网,有了搜索引擎,大量的信息被电子化,放到网络上。我们获取信息的方式被大大拓宽了。只需要输入关键词,就能看到刊载在各种期刊上面的文献,存放在图书馆里面的资料,看到别人的分析、观点和见解。我们迎来了一个信息爆炸的搜索2.0时代。
而有了ChatGPT等AIGC工具的辅助,我们可能会迎来搜索3.0的时代。
搜索2.0迫切需要解决的问题是什么呢?信息太多了。如何有效地筛选、提炼、整合这些信息,就成了一个难题。但AIGC可以解决这个问题。我们向它提问,给出一个关键词,它快速整合知识库里相关的信息,总结提炼出最符合我需求的答案,呈现给我们。
整个过程流畅,自然,舒适,可以省去我们在大量信息间来回穿梭、整理的时间,极其便捷——这就是搜索3.0。
你问,它答,答案就在那儿,以最好的面貌呈现给你。
现在已经有一些类似这样的工具了。比如我在用的学术搜索引擎Elicit,就是使用人工智能检索我想要的论文,不过还停留在比较初级的阶段。也许等有了更成熟GPT的加持,会再上升一个台阶。
因此,ChatGPT也吸引了许多巨头的关注。目前最受关注的,应该就是微软和谷歌了。
微软已经直接投资了OpenAI,并且计划在自己的搜索引擎必应和浏览器edge中嵌入ChatGPT。目前,ChatGPT版必应已经在国外向少量媒体开放,个人使用可能还要等一段时间。你可以登录必应国际版,会有一个加入等待清单的提示。
谷歌也宣布将一个人工智能Bard嵌入Google搜索之中。Bard背后依托的是谷歌自己开发的人工智能模型LaMDA,跟GPT效果相似但不同。
2.阅读前面提到,ChatGPT有总结提炼的能力。这一点,可能彻底改变我们阅读和学习知识的方式。
试想一下:未来我们会如何学习一个新概念?你向人工智能提问,它直接把概念详细讲解给你。不懂的地方可以继续追问,它会进一步向你解释。那么,你还需要去到处找资料、看教材、听课程吗?不需要了。有人工智能就够了。
未来我们会如何阅读一本书?也许你可以把它导入人工智能,它会自己帮你总结提炼出书里最有价值的内容。可能是作者的观点,可能是方法论和步骤,可能是案例或论据……你想要什么,就向它下达什么指令,让它帮你“脱水”,呈上一份完善的摘要。
未来我们会如何看视频、听播客?或许我们也不用看、不用听了,直接导入人工智能,它会帮我们总结出其中的要点,甚至可以帮我们写一份妙趣横生、文采飞扬的阅读报告,让我们能轻松愉快地摄入知识。
未来,我们可能每个人都有拥有属于自己的专属医生、律师、财务经理……无论我们想要咨询什么问题,直接问人工智能就好,它会给出最新、最全面、最准确的答案。
当然,上面说的这些,现在的人工智能还远远不能做到。但很可能我们离这一天也不会多遥远了。
3.写作这一点可能是更简单的了。
我们不再需要自己字斟句酌去写邮件,只需要给它一个指令,人工智能就会自动帮我们写好一份邮件。
我们不再需要自己写材料、写报告,只需要给它足够的信息,人工智能就会自动帮我们整理好文字,并且文笔上乘。
我们不再需要把大量的精力耗费在撰写方案、文档上面,而只需要思考,想出各种各样的创意、主题、想法……再把这些想法告诉人工智能,它就可以自动帮我们把这些繁琐的事务全都搞定。
甚至,连思考本身都可以让人工智能来辅助——你可以给它一个话题,让它帮你寻找素材、案例、参考资料;或者让它帮你头脑风暴,提供各种各样的点子供你参考……
我们或许将真正迎来一个“人工智能助理”时代。
五、微调:训练你自己的人工智能在这些应用之中,最令我感兴趣的,其实是微调(fine-tuning)。
什么意思呢?它指的是:在人工智能本身的基础上,你再喂给它一些独特的、专属于你自己的材料,把它训练成一个属于你自己的人工智能,让它能够回答一些更具针对性的问题,满足你独特的需求。
举几个例子。
国外有人分享了一个实例:她把自己童年时的日记上传到一个人工智能模型中,让程序去学习她的思维、经历和文字,从而制造出了一个“童年的自己”。然后,跟这个“童年的自己”交谈。把自己遇到的问题,产生的困惑,面临的抉择向她询问,从自己的内心中寻找答案。
这是一个非常有意思的例子,也令我非常难忘。
同样,如果把一位作家的所有作品输入进去,或许再加上他的生平和经历,这个人工智能就能用作家的口吻去回答一些相关问题。国外有人做了这么一个尝试,向ChatGPT输入《反脆弱》作者塔勒布的作品,让它煞有介事地回答问题,使得塔勒布本人不得不出来纠正。
那么,如果把《红楼梦》以及明清的各种史料喂给一个更成熟的人工智能,它有没有可能续写出《红楼梦》?我想,这是可能的。
我感兴趣的点在于:通过微调,我们完全可能创造出一个专属于我们自己的人工智能——只需要把我们所有的笔记,工作中产生的材料,平时的思考和日记……都喂给它,就可以了。
在这个情况下,它就是你,甚至它比你自己还更接近你自己——因为许许多多你可能已经忘却了的记忆,它都能够忠实地保留着,并依据一套算法完善自己的预测模型,做出更符合你内心和需求的选择。
换言之,这就是一个专属于我们的“内脑”。当我们有疑惑时,当我们需要搜寻信息时,当我们需要分析问题、做出判断时,都可以参考它的意见。
不过,目前的ChatGPT似乎还不提供微调的功能,但OpenAI官网是有几个模型提供微调的,只不过需要一定的技术能力。感兴趣的朋友可以试一试。
另外,现在有些工具也在往这个方向尝试。比如有一些新兴工具,尝试记录你在电脑上浏览过的一切信息;以及知名笔记软件Notion也推出了NotionAI,能够提供类似ChatGPT的功能。
那么,如果在我们的电脑中内置一个人工智能助手,或者在笔记软件中内置一个人工智能,把我们摄入和记录的信息都作为语料喂给它,似乎并不是遥不可及的事情。
到时也许可以出现这样的事情:你闲来无事,向它提问:最近有没有什么适合我看的电影?它会向你推荐一个清单。上面的内容来自哪里呢?来自它对你打过分的电影、读过的小说、有感而发的想法、平时搜索的内容、甚至跟朋友聊天的信息……这些数据进行综合分析之后,所推断出的你的喜好。
它甚至会告诉你:这部电影用到了你三年前偶然想到的一个点子,处理得非常好,有没有兴趣看一下?这部电影探讨了一个议题,正好是你前段时间一直感兴趣的,不妨参考一下……
当然,这个“内脑”无法绕开的,就是隐私安全的问题。如何确保我们的隐私不被别人所获得?我们愿意付出多少隐私作为代价来换取这样一个内脑?我们又能否接受它的存在,如何理解它与我之间的同一性?
这些,也许都是可以探讨的问题。
六、ChatGPT会替代什么职业?似乎每次聊到人工智能,都有人会问这个问题。
不过,我的答案依然是比较乐观的。就目前来看,甚至就上文所述的近未来来看,ChatGPT等AIGC工具,什么都不会替代——它只会提升我们的效率。
原因很简单:AIGC的定位不是一项“职能”,而是一种“工具”。
什么叫职能?比如有一款人工智能,功能是帮助你看X光片,那这是一项职能,它可能会替代掉一部分医生的功能;但AIGC的功能是搜索、阅读、写作,这是所有职业都需要的基础技能。它本质上是辅助性的,是一种辅助的工具。
AIGC可以帮我们做到的是什么呢?我们不需要再给每个NPC写一堆重复的台词了,而是可以设计NPC的背景,让AIGC自动生成他们的台词,甚至产生任务和剧情;我们也不再需要给小说中的每个人物设定人设了,可以先做好背景框架,再让AIGC生成一大堆人物,我们从中挑选,润色一下就好……
因此,有了AIGC的存在,我们能够想象的未来是:搜索信息更准确了,阅读效率更高了,得到的专业建议有了更多的渠道可以参考对比,游戏的剧情和任务可以更丰富了,小说和影视剧可以更多元化了,新闻可以更加实时地推送给我们……
所有的创作型职业都应该为此感到开心,因为困扰着他们的最大障碍——无聊的、繁琐的、劳动密集型的操作性工作,可以被AIGC替代掉了。
那么,面对ChatGPT等AIGC工具,最需要、可能也是最重要的一项能力是什么呢?——是明确自己想要什么,并且能够表达清楚自己想法的能力。
能够提出一个好问题,有时候比能够解决一个问题更重要。ChatGPT的出现,更加清楚地表明了这一点。
你对自己的清晰认知,对外部世界的独特见解,深入事物本质的洞察力,以及将其表达出来的沟通能力,这四点,会是我们在面对一个由人工智能驱动的世界时,更加潇洒自如的武器。
七、总结最后,用我之前写的一个想法来作结吧。
随着ChatGPT等AI工具的发展,我们还需要记笔记吗?未来我们该如何管理知识?
所有知识,大体上可以分成三类:
一是客观存在的信息和事实;
二是我们对这些客观信息的理解、总结和思考;
三是我们行动实践所获得的经验和心得。
ChatGPT等AI工具,能够替代的是绝大部分的一,以及一部分二。也就是它能替代客观信息库,以及我们对客观信息的总结。但二里面我们自己的思考加工,以及三里面我们的实践记录,是没有办法被替代的。
实际上,这也是让每个人的知识体系和知识结构真正有别于其他人的地方:重要的不是你收集和掌握到了多少信息,而是你对这些信息有着怎样的理解、形成了哪些自己的看法。
随着AI的发展,未来更好的形态,可能是一个“公用的外脑+私人的内脑”。我们可以接入这个公用的外脑,询问客观知识库所存在的一切信息和资料,包括论文、互联网文章、书籍、视频,等等。
而每个人基于他所记录的思考和项目实践,可以有一个经过自己微调和训练的内脑,让它学习自己的生活和思考方式,通过向它提问获得更加私人的、针对自己需求的答案,成为自己的秘书。
到时所谓的“记笔记”,可能就会变成向这个内脑喂材料和微调的过程。而每个人的大脑+内脑,可能就会变成一个专属于他的思考机器,也是将每个人区分开来的方式。
我非常期待这一天的到来。
本文来自微信公众号:L先生说(ID:lxianshengmiao),作者:李睿秋Lachel