人工智能如何为教师所用
正在北京召开的国际人工智能与教育大会科技感十足。比如在论坛开幕式短片中出现的虚拟主持人,她不但能惟妙惟肖地模仿各类主持人的语音语态,还能够实时转换语言,像老师一样与来自世界各地的现场观众友好交流。
5月17日,由教育部教师工作司司长任友群主持的“人工智能赋能教学和教师”主题论坛被与会者早早挤满。
有关教师职业是否会被取代的讨论近年来热度不减。技术和教师如何完美结合,如何更好地发挥技术的作用,也成为此次大会的一个焦点。
保障教师的自主性,不能被AI牵着鼻子走
“人工智能在采用多种模式增强学生的互动性方面效果明显。”来自英国伦敦大学学院的穆特卢·丘库罗瓦(MutluCukurova)认为,和传统模式相比,人工智能能够很快判断出学生对课堂的反应是积极还是消极的。但是,是否采用这种复杂的方式来判断学生,最终的决定权在于教师。
据了解,欧盟专门启动了一个项目来处理教师、技术开发者和其他机构的金三角关系,教师采用合作的方式使人类智慧更大程度地发挥作用,但前提是教师自愿接受这种方式,而不是被动地采用人工智能手段。
人工智能只是教师使用的一种工具,能带来发展动力但不能取代教师;应该根据学生的发展能力来选择工具,不能对每名学生采取同样的人工智能手段;教师在教学方法上应该有选择的自由度,而不能被AI(人工智能)牵着鼻子走。
智能化教学情境下,更要关注学生核心素养的培养
通过人工智能精准分析学生学习的薄弱环节,可以因材施教。根据此次会上科大讯飞董事长刘庆峰透露的数据,在智能化教学的试点中,学生家庭作业的平均时间已经大约减少了50分钟,错题的解决率从原来的45%提高到了80%,也就是说,做作业时间减少了,但知识掌握的效率却提高了,学生们腾出来的时间和精力,正好去发展自己的特长。
智能化教学情境下,教师将面临一个全新的工作环境,既要实现人机协同,提供个性化、多样性和适应性的教学,又要关注学生思维方式和核心素养的培养,而后者更加重要。
“只有当教师真正关注对学生信息技术素养、问题解决能力及创新能力的培养,才能用尽量少的课程达到培养复合型、创新型人才的目的,才能让学生真正有所收获。”西北师范大学教授郭绍青说。
教师与人工智能交互产生新空间,学生成探究者发现者合作者
“教师与辅助教学智能机器交互产生新的空间。”浙江大学校长吴朝晖的发言引起了会场听众的共鸣。
按照对吴朝晖描述内容的理解,这种新空间主要体现在以下3个层面:
一是物理世界与虚拟信息世界交互产生的新空间。受教育者的任务单式的学习、团队项目式的学习、多学科的交叉学习等都能变得更加便捷。
二是教师与辅助教学智能机器交互产生的新空间。在这种空间范畴下,除了师生关系外,还存在教师与辅助教学智能机器的关系;辅助教学智能机器将部分扮演以往教师的角色,如承担自动出题与批阅、学习障碍诊断与及时反馈、问题解决能力测评、学生心理素质测评与改进等功能。
三是学生利用辅助学习智能机器交互产生的新空间。在未来,学生除了与教师进行教与学的互动外,更多的情况是与辅助学习智能机器共同学习、相互提高,如学生将在智能学习伴侣、个性化智能教学机器的陪伴下完成自主学习。
往深里想,人工智能的教育将由学生、教师、智能机器共同参与,其中,学生是探究者、发现者、合作者,教师是支持者、引导者、组织者,智能机器在物理世界、虚拟信息世界并存,而且将长期存在。(本报北京5月17日电本报记者黄蔚张东)
人工智能时代需要怎样的教师
・“人工智能与教育”系列报道之三
“我的工作会被机器人取代吗?”人工智能的迅猛发展,让越来越多的人开始担心自己的“饭碗”。而随着人工智能进军教育领域,许多教师也开始忧虑起来:“机器人会让我失业吗?”
实际上,这种担心并非空穴来风。2016年5月,美国佐治亚理工学院计算机科学教授艾休克・戈尔,在自己的网络课程中,将一款聊天机器人安排为自己的助教。这一聊天机器人在后台回答问题的功能非常强大,学生们根本没有注意到自己的聊天对象是机器人。人工智能会取代教师吗?
教师被人工智能替代的几率为0.4%
“如果你的工作包含以下三类要求,那么你被机器人取代的可能性非常小:社交能力、协商能力以及人情练达的艺术;同情心以及对他人真心实意的扶助和关切;创意和审美。”北京师范大学教育学部副部长余胜泉说,“反之,如果你的工作符合以下特征,那么被机器人取代的可能性就非常大:无需天赋,经由训练即可掌握的技能;大量的重复性劳动,每天上班无需过脑,但手熟尔;工作空间狭小,坐在格子间里,不闻天下事。”
余胜泉告诉记者,英国广播公司(BBC)基于剑桥大学研究者的数据体系,分析了365种职业未来的“被淘汰概率”。其中,电话推销员、打字员、银行职员等职业,分别以99.0%、98.5%、96.8%概率,被列为可被人工智能取代的职业;而艺术家、心理医生、教师等职业,分别以3.8%、0.7%、0.4%的概率,被列为最不可能被人工智能取代的职业。
“BBC分析认为,教师被机器人替代的概率只有0.4%,但英国教育专家AnthonySeldon则预测现在离人类教师消失只剩下3000天。孰是孰非呢?”《华东师范大学学报(教育科学版)》主编杨九诠说,“我想不可能有也不应该有肯定的答案。但值得注意的是,此‘教师’已非彼‘教师’。在未来新的社会样态、教育样态、知识样态和学习样态中,教师的思想观念、心智结构、生活方式和角色意识等,以及教师与社会、组织、学生、同行的关系,都可能发生颠覆性的全新变化。”
“传道、授业、解惑,是教师的主要职责。随着人工智能的出现,智能机器人可以代替教师传授知识、解疑答难、展示方法、考试阅卷,但在‘传道’这一块是替代不了的。”新疆呼图壁县教科局局长朱新宇说。
“目前的智能教学系统还是对优秀教师的模拟,建立教师模型、学生模型、教学法模型和交互模型等。所以说,人工智能远远谈不上对教师、特别是优秀教师的直接威胁。我们可以将人类智慧编码输入电脑,但不可能将电脑芯片植入一个健康的大脑。”北京大学教育学院教育技术系教授贾积有说。
人工智能将是教师的得力助手
“人工智能不可能取代教师,而是要成为师生的强大助手,可大幅提升教与学的效率和效果,所以学校应积极拥抱人工智能。”科大讯飞轮值总裁吴晓如说。贾积有也表示,人工智能技术在教育领域的应用与传统教学方法相比具有比较显著的正面影响。
贾积有介绍,数据挖掘技术应用到教育上,可以实现教育决策和管理的民主化及科学化;学习分析技术可以帮助教育者更好地实施个性化和适应性教学活动,也可以帮助学习者更准确地认识自己,开展针对性学习,改进学习效果,提高学习效益;模式识别技术如情感识别等可以自动识别学生的情感状态,以便实施适应性教学;自然语言处理技术一方面可以作为辅助工具应用到语言教学上,促进学生听说读写译各个方面的发展,另一方面作为人机交互手段应用到智能教学系统上,实现自动答疑。
余胜泉也认为,人工智能在教育未来的许多方面,如自动出题与批阅、学习障碍诊断与及时反馈、问题解决能力测评、学生心理素质测评与改进、青少年体质健康实时监测、学生成长发展指导、智能学习伴侣、个性化智能教学、综合素质评价报告等方面,都可以承担起教师的角色。
“人工智能将引发现代教与学的革命,众多语音图像识别、可穿戴设备、虚拟现实成像技术渗入课堂,使得现行的教学媒介、师生评价反馈、深度学习等都发生改变,学生个性化、任务单式的学习,团队项目式的学习,多学科的统整融合实践等,都将在智能设备的支持下变得更便捷。”广东省深圳市南山区后海小学校长蒋和勇说。
“人要驾驭机器,而不能被机器奴役。”北京市第十八中学校长管杰表示,有了人工智能的辅助,教师可以腾出更多的时间和精力,创新教育内容、改革教学方法,让教育变得更好。教师就不再仅仅是知识的传授者,还是满足学生个性化需求的教学服务提供者、设计实施定制化学习方案的成长咨询顾问,成为学生学习的陪伴者、动力的激发者、情感的呵护者,真正成为学生“灵魂的工程师”。
不会使用人工智能的教师有可能被淘汰
“显然,未来的优秀教师将是那些善于使用人工智能的教师,教师要主动拥抱人工智能。”教育部基础教育课程教材发展中心主任田慧生说,“我们应该积极面对人工智能带来的挑战,同时提高自身的自主学习能力,培养创造力。创新思维的培养,就是要呵护学生的好奇心和求知欲,鼓励学生发现问题。”
“人工智能不能取代教师,但是使用人工智能的教师却能取代不使用人工智能的教师。”余胜泉说,未来的教育是人与人工智能协作的时代,充分发挥机器与人类不同的优势是提高教育生产力的关键,人工智能将会取代简单重复的脑力劳动,教师要发挥人类的创新、复杂决策、情感关怀激励等优势。
朱新宇认为,在人工智能时代,教师教学必须抓住3个核心:一是教授学生有价值的知识,同时培养学生探寻知识的兴趣、欲望和方法;二是培养学生良好的品行;三是启发学生寻找人生的价值和意义。
“最基础的教育,将不再需要教师;而‘更好教育’的需求以及市场选择中不同的支付渠道和交换方式,将大大提升教师的薪资水平和社会地位。”杨九诠认为,“教师将成为未来社会不同类型、不同规模的学习中心重要的共同规划者和运行者,从而成为社会与教育的协同创生力量;在工作性质和社会筛选的相互作用下,教师的道德水平将提升到新的境界,甚至可以想象,未来教师的薪资中将可能包含社会供养的成分。”
教育部教师工作司司长、北京外国语大学党委书记王定华说,教师要不断增长本领,善用人工智能,提高教学效果,扩展知识疆域,调动学生兴趣,不能对其漠然置之、不屑一顾。同时,教师也要体现主体地位,永做学校主人,关注学生成长。人不仅是学习知识的认知体,更是有血有肉的生命体。教师职业必将长期存在,人工智能则发挥必要辅助。
“面对信息技术和人工智能的日新月异,有关大学和中小学应加快教师发展信息化步伐,主动拥抱人工智能,进一步推动信息技术在教育教学、教育管理、教育服务过程中的应用,利用智能技术支撑人才培养模式的创新,支撑教学方法的改革,持续不断地造就一批又一批掌握信息技术、具有创新思维的教师。”王定华说。(记者苏令)
(责编:于昕君(实习生)、熊旭)分享让更多人看到
人工智能技术出现后,教师真的会被取代吗
教育部日前印发《高等学校人工智能创新行动计划》,要求推进“新工科”建设,重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,形成“人工智能+X”复合专业培养新模式,到2020年建设100个“人工智能+X”复合特色专业,建立50家人工智能学院、研究院或交叉研究中心。
人工智能是一个涉及多学科的复杂科技,需要一系列学科的基础理论支持,在进入应用的时候,亦因技术快速进步的领先优势,对很多工种具有强大的替代性,并导致法律、社会道德、监管等存在滞后性,进而衍生出司法、伦理、就业、心理等各种复杂问题。而对于这些问题,单靠人工智能自身是无法解决的,必须连接其它学科,形成“人工智能+X”复合专业交叉融合,激活人工智能和其它学科的发展潜力。
如今,世界各国都在加大人工智能的研发力度,投入大量的教育资源,为未来培养人工智能人才。那么,在人工智能时代该怎样当老师?
学生提问多虚拟助教帮回答
早在2013年,英国牛津大学发布了一份名为《就业前景:哪些工作最容易受到计算机自动化的挑战》的研究报告。
报告分析了702种常见职业后认为,需要大量社交、创造性的工作,或是需要技巧、灵活运用技能的工作,机器人都难以取代。在报告结尾处长达16页的列表中,高等教育管理者和高等教育教师分别以1%和3.2%的几率,位列未来被“计算机化”可能性最低的职业排名的第52位和112位。
而且人工智能技术的出现不仅难以撼动大学教师的工作岗位,而且还可能助教学工作一臂之力。
为学生答疑解惑是教师的基本职责,但是如果海量问题集中涌来,想一一解答却力不从心,这时希不希望有个人来分担?这就是虚拟助教存在的价值。最出名的一个例子就是助教吉尔。2016年4月,美国佐治亚理工学院计算机专业教授阿肖克戈尔开设的一门人工智能课程临近结束时炸开了锅。作为一门每学期有300多名学生学习的核心必修课,学生在课程网络平台上发布的超过1万条实时信息让戈尔教授和他的8名助教解答起来忙碌不堪。
不过当戈尔发现,学生询问的问题相对固定,通常与期末考、课程大纲和课程安排等相关,于是就“偷偷地”设计了一款人工智能程序“吉尔”作为助教与学生进行在线互动,缓解了任课教师和助教的工作压力。
虚拟助教的上岗并不意味着人类助教即将失业。毕竟目前来看它只是负责机械性地回答一些诸如正确的文件格式、数据使用,以及教职员工的日程安排等有客观答案的问题。而一些更为复杂的问题,还是需要人类助教负责回应。
教学个性化学习系统做决策
如果要问当今高等教育领域最当红的技术是什么,自适应学习技术一定会被反复提及。
“它将让学习系统自动调整课程、学习材料或学习活动,以符合学习者个人情况、性格和需求,从而为学习者提供个性化的学习体验。”由国际新媒体联盟发布的《地平线报告(高等教育版)》,在2015-2017年连续三年预测自适应学习技术未来将在高等教育中被普遍采用。而人工智能无疑为其在教育领域更好的使用提供了有力的技术支撑。
自适应学习系统可以利用基本的人工智能算法,基于学生的学习经历“算出”他们需要学习的内容,更好地实现学习个性化。同时对教师而言,由于此类系统可以在学生学习过程中更好地了解他们的学习进度,这也有助于系统向教师反馈数据、提供信息,以便分析和了解某位学生及其班级的整体需求,协助教师做出正确的教育决策。
考试评分成本高
人工智能先挑错
在给学生作业或考试评分时,对开放性试题(如作文)的评价对教师而言是一项艰巨的任务,在大型课堂为个人提供反馈更是如此。一些人相信,由于学生的回答有其固有的句法和语义结构,因此只需对计算机“稍加训练”,用人工智能系统取代人类反馈是很有可能的,而且其成本要比靠人打分低得多。通过深度学习几百万篇作文和相应的评分,人工智能很快就能掌握批改作文的套路。想一想,一名教师在从教的四十多年里可以阅读一万份作文,那么仅在几分钟内就读完上百万份作文的人工智能似乎经验更为丰富。而且确有实验表明,人工智能给出的分数与人类教师的几乎完全匹配。
从2017年秋季学期开始,密西根大学的教师就开始用计算机辅助给学生改论文作业了。这个由该校教师团队研发的辅助评分工具M-Write,利用文本自动分析技术,借助不同的算法(如词汇匹配、题目匹配)分析学生提交的文章内容,从而找到学生论文中存在的问题。此外,老师还能通过语义分析的结果,找到在写作上需要帮助的学生。不过在将最终评分反馈给学生之前,教师还需要先对计算机的打分结果进行核对,并进行一定的修正。
类似的应用中国高校也在尝试。2017学年末,浙江外国语学院国际学院的11位外国留学生完成了一份特别的中文试卷——批卷老师为来自阿里巴巴的人工智能系统。在这批试卷上,人工智能系统用代表不同意义的符号在试卷上精确地圈出外国留学生们的多词、缺词、错词和词序错误等错误的位置,完成了对作文的批改,其准确率和细致程度接近甚至超乎人类的水平。
相关链接
对教师的新要求:
跟上人工智能时代步伐
不可否认,人工智能技术在给教学工作带来便利的同时,也给大学教师提出新的挑战。咨询管理公司盖洛普联合美国东北大学今年开展的一项有关人工智能对高等教育的研究显示,接受调查的美国大学毕业生群体中,只有22%的人表示他们的学位提供了与人工智能协同工作所需的技能。
东北大学校长约瑟夫·奥恩表示,大学需要适应即将发生的人工智能革命,这意味着学校必须提供有关“只有人类才能完成工作”的教育。这恰恰给人工智能时代的大学教师提出了新的要求——未来的课程设计中,不仅要注重培养学生人工智能目前还难以具备的素质,如创新性、创造力,而且在技术领域知识的传授中也要不断学习,更新自己的知识库。毕竟作为一名教师,如果讲授的内容不能满足学生的需求,不能跟上时代发展的步伐,即便这个岗位不会被淘汰,也可能会被这个职业的要求所淘汰。
延伸阅读
不易被取代的专业
新一轮的“工业革命”主要集中在人工智能、机器人、仿生学科等科学领域,更强调的是让机器拥有自我“思考能力”和“深度学习能力”。重复性高、能够通过大量数据学习模仿的职业将会是人工智能代替的重点,例如,无人驾驶汽车取代司机、生产型机器人取代装配车间工人、语音速记和翻译取代人工速记和同声翻译。
那些跟人文关怀和人的情感相关、无规律可循、需要根据不充分的和随时变化的信息调整应对的职业将是暂时安全的。
这些职业主要来自于以下领域:
1、跟人文关怀和人的情感相关的职业,包括所有的艺术创作工作。例如音乐、文学、绘画、雕刻、哲学、诗歌、舞蹈、戏剧、电影等等。
2、高端服务业和高档手工业特别是奢侈品行业的个性化、定制化服务。
3、探索未知和创造新事物的所有职业。这主要体现在面对不断变化的对象和目前还没有足够数据量的未知领域。人工智能最重要也是最基础的一点是有足够的样本量,然后进行深度学习,通过大数据间千丝万缕的联系寻找其中的逻辑关系。一些行业完全不具备这些特点,如地外星系探索、生命的本源、海洋深处的秘密等领域。
4、需要根据不充分的和随时变化的信息,做出重要决断的职业。如政治家、刑事警察等。
5、管理人员。即使实现全自动化生产的装配车间也需要有相应的管理人员进行监督管理,协调各种突发事件。
教育华山论剑:AI能否取代人类教师成为主导
新浪教育讯11月28日消息,“新浪2017中国教育盛典”在北京盛大举行。教育界政府领导、行业领军人物、专家学者齐聚一堂,共同围绕“教育之变”这一主题展开深度探讨。盛典现场特别设置“教育之辩”环节,妙趣横生的脱口秀与激烈到“爆炸”的“教育之辩”——辩论环节,把盛典推向新高潮。
脱口秀:阿蟹阿虾创意盘点2017热点,为中国教育打call
在脱口秀环节,知名英语教育红人@阿蟹阿虾带领现场观众进入到教育的“第二个世界”里。他们毫不“避讳”2017年那些教育热点话题,并围绕“浙江高考阅读理解”、“新高考改革”、“教育十三五规划”、“双一流”、“人工智能与教育融合”……各抒己见。盘点到最后阿虾不禁感慨:“看到中国快速发展我真的很感动,作为英语博主真的很想为中国教育打call。”阿虾创意“打电话”道:“喂,中国教育吗?让我们一起期待中国下一个五年,希望中国教育越来越好。”
名嘴激辩:以人为师的教育未来会被人工智能主导吗?
在“教育之辩”——辩论环节,清华大学(分数线,专业设置)计算机系教授博士生导师邓志东、作家&《青年文摘》主编助理巩高峰、北京师范大学(分数线,专业设置)学生陈凌岳三位左右正方辩友,坚定地认为,“在未来的教育中,人工智能会比人类教师更占主导。”而反方辩手中国足球小将发起人董路、新东方集团讲师艾力、中国人民大学(分数线,专业设置)学生海莲娜则认为,“在未来的教育中,人工智能不会比人类教育更占主导。”
关于未来教育,究竟是人工智能“教师”厉害还是人类教师厉害呢?在邓志东教授看来,人工智能会助力教育的变革,人工智能、大数据、云平台将会让教育无处不在。此外人工智能也会有效提升教育的效率与公平,在具体的教师工作中人工智能会助力人类教师完成作业批改、在线答疑、准备教案、准备考题、语言评测,还有个性化的学习,以及教育大数据的分析等。随着人工智能迅猛发展,未来人工智能会逐渐替代人类教育占据主导地位。
董路则在一开始就对人工智能会主导教育产生质疑,并且还顺带着严重怀疑辩论环节的辩题也是人工智能来选择的。他认为,“师者所以传道授业解惑,作为人工智可以像老师这样授业,可以解业之惑,却不能解孩子成长当中的疑惑。至于传道,机器哪怕再人工智能也不能真正完成传道的功能。”
巩高峰反驳道:“刚才董路老师说老师主要是传道授业解惑这是比较久远的概念,我们讨论人工智能是不是比人类教师更占主导,不是替代,我们讨论的是未来。”而关于未来教育,他认为一切皆有可能!在目前虽然人工智能刚刚起步,但将来人工智能如果有了智商、有了情商,机器人跟人唯一区别是肤色上的差别而已。
善于发现问题的艾力则从正方辩论中找到突破点,他指出:“邓老师说一切皆有可能,我们可以换成人工智能和人类谈恋爱,没必要谈这点。而细化到知识本身是不是人工智能比人类教得好。不是的!”因为知识不仅有深度、广度,传递知识还需要温度。人类最早的老师是自己的父母,妈妈教自己小孩说话时会教语法吗?没有这样的。所有人在教自己孩子时都是充满爱的角度,以温度传授知识。老师也是一样,不管小学老师、中学老师还是大学老师,虽然温度有高有低,绝对不是人工智能完全的零度。而老师是唯一不会被人工智能取代的行业,因为教书育人是一件有温度的事情。
让陈凌岳同学高兴的看到,关于传递知识教书育人的教书部分,人工智能比人类教师有更大优越性,这点对方辩友不否认。人类灵魂工程师称为教师?这个地方给在场各位浇一盆冷水。他相信教师这个行业是社会良心的底线,每个人心中怀抱大的教育理想,想做人类灵魂的工程师,哪怕一万个好教师中只出现一个教师人性偏差,对孩子造成伤害是不可估量的。虽然人没有办法控制人性偏差,但工程师可以设计程序的对错。也许未来有人工智能,它除了能够传递信息之外,赋予它情绪、情感,并且在道德上给予它只有良善的选择,这样的控制对于程序对错的控制,对于孩子伤害风险的控制,比对人性的信任更能够还给孩子们一个美好的未来。
在海莲娜同学的眼中,教师是学生灵魂工程师,不仅是知识传递者,学生人格塑造比传递知识更重要,老师是学生的榜样,从老师言传身教中可以获得很多书以外的知识;教师可以塑造生动的课程,人工智能只能作为教学辅助的工具出现。老师能够根据声音的变化,塑造生动的课堂,让学生有亲切感;教师能够培养学生创作力,人工智能是不能创造内容和美感,人工智能有局限性,不能激发学生的创造性。
关于今天的辩论主题,在新浪商业中心总经理王屹认为这是一个非常深刻的主题。教育不仅仅是对知识的传递,同时教育是对人性的培养。就像柏拉图说的,“我们不可能想象把知识装进一个空洞的头脑里,那样就好像把视觉装到盲人的眼睛里一样不可能,而教育根本是对人心灵的培养、对人的滋养。”
之所以这样一场辩论能够给大家带来这么多的想象、这么多的思索,是因为这样的辩论是发生在人类之间的,而在机器之间永远不会发生这样的辩论。教育到底是什么?在王屹看来:“教育是教人做人,谁最有资格教人做人呢?当然人最有资格教人做人。就像所有辩论一样,其实他们都会给正反两方同样的机会,这个论题根本上是两个层面的问题。工具理性层面上,人工智能当然会越来越成为人类的助手,甚至主导我们教学的方法,就如同书籍诞生之后,就取代了口耳相传一样,我相信这一点。至于怎么教如何做人这一点上,教育不仅仅是工具理性,它同时还有它神性的那一面。我们人其实是大自然的人工智能的产物,我希望我们未来对于做人这一点主导权还是放在人的手里。”
国际钢琴大师、联合国和平大使郎朗认为,“对于音乐上来讲,它在做标准的教育上来讲,人工智能肯定是能帮助的,包括怎么来识别音符、怎么样能把这个句子弹清楚、怎么样把一个音节弹匀它会给你打分,这个没问题。”因为辩论是在未来教育的场景中。从目前来讲,郎朗认为:“从音乐的教育里,人肯定是绝对的主导,到最后必须是画龙点睛,必须有伟大的音乐家点播你,并把他们的灵魂、灵感,通过学生的演奏完全呈现出一个新的感官。”但是在未来的教育中,郎朗认为:“在未来教育中我不太清楚了,刚才像正方这几位老师说的,如果真的能制造出来像大白、机器猫这样超级带温度的老师的话,我就很难判断了。”
最终辩论环节的支持率如何呢?反方人工智能不会比人类教师占主导占60%,觉得人工智能会比人类教师占主导占40%。当然,今天辩论的作用更多的是开启观众的想象空间,关于未来教育,是人工智能“教师”占主导,还是人类教师占主导,两者并不是要必须一争输赢的,毕竟回归教育的本真或许才更重要。
更多信息请访问:新浪教育官方微博返回首页
相关专题新浪2017中国教育盛典专题标签:人工智能辩论艾力高考志愿通(收录2595所大学、506个专业分数线信息、提供29省专家服务)
三步报志愿
1专业定位适合专业测评47029人已测试2海选学校录取可能性报告100139人已测试3精选学校专业开设院校历年分数线往年考生去向分数/位次选校分数线查询
找专家报志愿
专家一对一服务申请服务咨询电话:01058983379推荐阅读聚焦应用中心新浪公益新浪游戏新浪视频新浪科技带领皇室家族赢得胜利靠反应力还不如背赛道动脑筋喂小怪物吃饼干轻松延长手机续航时间练就梦寐以求的好身材帮助保持健康生活方式随心所欲打造完美效果银河系最全新番齐放送复杂世界里一个就够了进入机器梦境寻找真相疯狂逃离恐怖的压碎机冰锋暗影古色庙殿狂奔斗巫师夺回被偷的糖果屯兵练兵出征攻占堡垒伪装胖猪混敌营救伙伴国内最专业的手机地图帮你一起保护你的颈椎随时随地轻松订火车票沈阳遭遇六级重度雾霾2万大妈齐跳小苹果禁烟范冰冰传递社会正能量未富先老养老金吃紧益调查:慈善需立法么反虐待动物法制化呼声高涨如何看待广州拟奖拾金不昧环保部即将解决红顶中介明星婚礼上的“善”姿“百名春蕾之星”评选舞剧《画皮》关注孤独症女孩患尿毒症自筹药费互联网发展基金会成立林青霞为慈善参加节目全面实施城乡大病保险儿童安全座椅强制认证办养老院真的是机会么志愿者慰问抗战老兵战舰世界海神节礼包乱斗西游2新浪独家卡倩女幽魂2夏日特权卡功夫熊猫新手高级礼包新倩女幽魂新浪特权卡灵魂战神不删档测试码我是大主宰新浪荣耀卡大话西游2免费版礼包西楚霸王新浪荣耀礼包镇魔曲神兵觉醒尊享卡完美国际2一生有你卡新天龙八部新手特权卡问道经典十年至尊礼包大战神新浪独家礼包热血传奇新区独享礼包剑网3萌宠浪浪大礼包创世2封测激活码问道手游媒体礼包极限Girl美与野性结合让萌宠当一天司机亲千万不要手贱啊超级屌的视觉错觉运动地球上最美丽的天堂鸟新一代武林最萌小道士神奇的PS造钱术大开眼界的泡面新吃法让宝宝嘴馋的菠萝炒饭经典电影镜头神级剪辑亲手教你范爷经典妆容盘点全球最糟糕山寨品恶搞:当一骷髅在开车健身是把整容刀三分钟看尽十年成长和TFBOYS一起过暑假不用去医院的牙美白术一分钟识别面试潜台词Windows10升级秘籍净水器的水有多深?识趣毕业季户外特辑用户关注手机哪些功能有曰:国内外展会吐槽三十年经典Moto手机ChinaJoy2015大看点东芝虚增利润财务丑闻紫光集团收购美光科技诺基亚为未来电影造球全球APP开发创意大赛享说第四期主持人李晨猎豹靠近捕食熟睡疣猪非洲血腥动物标本加工相机拍泡腾片遇水冒泡冰岛令人窒息美景懒惰青蛙蜗牛背搭便车美摄影师拍奇怪毛毛虫人工智能时代的工作变化、能力需求与培养
摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。
关键词:人工智能;工作定位;能力需求;能力培养
基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。
当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。
一、人工智能时代的工作变化
人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。
现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。
(一)工作变化的特征
人工智能时代工作变化的特征体现在以下三方面。
1.程序化工作被人工智能取代
所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。
2.一部分非程序化工作被人工智能取代
相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。
3.工作向高度智慧化转移
装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。
(二)人机关系与工作定位
在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。
表12018年、2022年人与设备的工作时间占比值单位:%
资料来源:作者根据世界经济论坛《职业前景报告2018》整理。
在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。
二、人工智能时代的能力需求
随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。
(一)能力的两个方面
理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。
在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。
(二)能力需求变化与预测
技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。
以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。
表22018年、2022年关键能力需求
资料来源:世界经济论坛《职业前景报告2018》。
以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。
世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。
巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。
表32030年美国、英国各职业中最重要的15项能力
资料来源:作者根据Bakhshi等(2017)整理。
2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。
表42017年、2035年最需要的前10项重要能力
资料来源:作者根据西村崇(2017)整理。
(三)符合时代要求的能力要件
综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。
1.人工智能知识
正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。
2.社会交流能力
在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。
3.创造性思维能力
人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。
4.环境应变能力
环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。
以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。
三、人工智能时代的劳动者能力培养
为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。
(一)突出个性化培养理念
在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。
(二)构建人工智能素养教育体系
把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。
(三)实施问题导向及跨学科合作探讨的学习方式
创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。
现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。
(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力
现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。
目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。
参考文献
[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.
[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.
[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.
[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.
[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.
[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.
[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.
[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.
[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.
[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.
[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.
[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.
[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.
[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.
[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.
[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.
[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.
[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.
[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.
[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.
[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.
[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.
[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.
[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.
[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.
[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.
[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.
刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.
这些工作将被人工智能取代,来看看你的行业能幸免吗
原创小北北京大学出版社人工智能拍了拍你,然后你的工作没了……没了……早在1965年,人工智能这个术语就被正式提出。
1977年,IBM深蓝战胜人类国际象棋冠军,标记着人工智能往前迈开了重要一大步。2017年谷歌旗下的AphaGo与柯洁对战,3比0获胜,至此,围棋界公认AphaGo的棋力已经超过人类职业围棋顶尖水平。含泪对弈的柯洁正是此弈之后,人工智能迅速引起社会关注,人工智能即将取代人类工作的话题被广泛讨论,引起了普遍的狂热和焦虑。
事实上,在AlphaGo成名前人工智能就已不再只是一项存在于实验室中的科技,Siri、微软小冰、小爱同学等都已经出现在我们的生活中,只不过那时的他们还没那么聪明罢了。而随着人工智能水平的不断提高和人工智能的广泛应用,确实有越来越多的岗位受到冲击——
例如从2016年到2018年,智能化建设的推进使银行业务线下人工处理率从15.69%下降到11.31%。因此,中国农业银行雇用了638名技术工程师,而26808名柜面人员则失去了工作。
这一趋势在中国建设银行的事例中更为明显,2017年中国建设银行将线下人工处理率降低至3%,柜面人员和技术工程师的数量在2018年均有所下降。
还有那些更直观的例子,高速收费站慢慢地没有了收费员,图书馆多了自助机器人,超市多了自助结账通道......所有这些在日常生活中具体可感的事例让人们“人工智能即将让人类失业”的焦虑更是有增无减。站在人类历史的角度来看,人们的这种焦虑实属变革中的常态。这不是人类技术史上第一次有人担心工作被机器取代。
根据历史经验,虽然科技进步取代了人类的一部分工作,但同时又会派生出新的工作。比如蒸汽机革命让大批使用手摇纺织机的工人失业,但英国的纺织工业却因此有了巨大发展,而由此也需要更多的人从事相关工作。但是,对于每一个个体而言,我们最关心的并不是那些宏大的历史叙事中的劳动者,而是生活在真实世界中的需要工作养家糊口的劳动者。对于历史而言,一些职业消失了,一些新的职业会填补空白,如此就业岗位数量总体是稳定的。而对于个人而言,在技术变迁中提供的新岗位往往是自己无法胜任的。因此,人们总是容易看到那些失去的工作,但不容易看到新技术带来的新工作。
人工智能对就业的影响已经初见端倪,而未来随着人工智能的普遍应用和发展,人工智能又将对就业市场产生什么影响呢,哪些人最有可能被人工智能替代?来看专家团队的分析吧。人工智能的理论替代概率这一概念可理解为人工智能取代人类智能的全部潜力。
更通俗点,就是从理论上讲人工智能可以在哪些方面在哪种程度上取代人,比如AlphaGo就能够在计算能力上完胜人类,但是它的识图水平远比不上人类。
我们将引入指数“人类水平绩效评分”(也就是人类做某项工作的平均水平)来定义人工智能理论替代概率。人工智能技术在人类水平绩效评分卡中所获分数越高,它对劳动力的理论替代概率就越高。下图显示了按目标能力划分的技术分类。
与人类能力相对应的主要人工智能技术人工智能替代的是能力而非职业,因此那些被替代的劳动力则需要依靠其他能力寻找新工作。
各职业人工智能理论替代概率的计算结果显示,对感知和操作能力、创造力和沟通技能要求较低的职业更易受到人工智能的影响,例如水利设施管理养护人员替代率高达88%,机械制造加工人员替代率为87.67%。
另一方面,人工智能虽然在过去十年中取得了巨大进展,但许多关键性的人工智能技术仍在技术生命周期的起始阶段,因此人工智能就目前而言发展尚处于起始阶段,我们依然有时间去学习新技能以满足将来的工作要求。各职业理论替代概率人工智能应用率顾名思义,人工智能应用率其实就是AI应用在各个行业的广泛程度。这一因素衡量了人工智能技术的现实收益。
当人工智能系统的能力显著提高至接近甚至超越人类水平后,AI方案会在各类行业工作场景中爆发式广泛应用,取代人类劳动。
但是,受制于投资回报、效率、改造成本甚至政治原因等现实瓶颈,人工智能在工业领域的应用以及对人工劳动的替代进度将远远落后于人工智能的理论发展速度,而且AI方案在不同行业和职业的落地速度也差异巨大。即,人工智能虽然看上去对我们工作威胁巨大,但它现在还是只刚出生的小老虎,对我们威胁有限。
人工智能时代最重要的就是各类数据的采集和获得,因为人工智能需要大量数据“投喂”如此他们才能变得更聪明。想想各大厂,如阿里、腾讯等最值钱的是什么?我们现在最担心的是什么?就是他们手中掌握的广大用户的各类使用数据。因此,我们将数据的可获得性量化为数字化率。某一行业对物联网投资越多,可用数据量就越大。而当前低数字化率是应用人工智能的主要瓶颈。此外,人工智能解决方案在行业中的应用依然严重依赖于部署定制,而且应用场景的限制不同,所应用的解决方案也会体现较大差异。
也就是说,各个行业内部对于人工智能的使用尚未达成某种标准协定,各个企业各自为营,自己搞自己的,这将会阻碍人工智能的大规模推广应用。
如同集装箱一样,在集装箱出现之前,各个国家都有自己的标准,跨国运输就会很麻烦,运输成本也将提高一大截,而集装箱的出现在最大程度上规避了这些矛盾和麻烦。而人工智能领域内的“集装箱”目前尚未出现。
综合以上因素和2017人工智能应用率,中国各行业2049人工智能应用率计算结果显示,批发零售业、住宿和餐饮业、金融业为应用率最高的三个行业,而其相对应的职业则是替代率较高的职业。纵观全局,人工智能无法完全替代人类智慧和所有职业,但各行业对人工智能的不同采用程度的确会使就业率受到不同程度影响。人工智能实际替代率实际替代概率等于理论替代概率乘以应用率,根据这一公式,我们根据劳动者的年龄、性别、受教育程度和收入水平等特征将样本划分为不同子样本,估算出了人工智能对不同特征劳动者的实际替代概率。
年龄
首先,根据劳动者年龄计算出人工智能替代概率加权平均值,结果如图所示。
不同年龄组人工智能替代效应结果表明,20-29岁年龄组的人工智能替代概率最低,而60-69岁年龄组的人工智能替代概率最高。
造成这一现象的主要原因是,年轻人更有可能获得新知识和新技能,而老年人适应技术变革的能力较弱,因此更有可能被人工智能所取代。
性别
下图显示了根据劳动者性别计算出的人工智能替代概率加权平均值。
不同性别组的人工智能替代效应结果表明,女性劳动者比男性更容易被人工智能替代,但差距仅为1个百分点。
一些研究表明,在求职、晋升机会和劳动报酬方面,女性在劳动力市场上比男性受到歧视的可能性更大,这可能是二者在替代概率上细微差别的来源。
受教育程度
一些研究表明,人工智能对就业的替代效应并不是技术中性的,对高技能劳动力和低技能劳动力的影响存在较大差异。下图显示了根据受教育程度计算得出的人工智能替代概率。
不同受教育程度组别的人工智能替代效应结果显示,人工智能替代概率随着受教育程度的提高而降低:文盲、小学和初中组的替代率较高,而高中及以上组的替代概率则大大低于前者。特别是具有大学及以上教育程度的人,人工智能的替代概率仅为低教育程度组的一半。
2049年这些人将被替代在前文我们已经获得了2049年各行业人工智能的实际替代概率,而根据中国目前的行业分类,劳动力就业主要分布在19个行业大类中。
因此可以根据2015年人口普查数据中的各行业就业比率和2018年中国就业人数来估算这些行业大类中的就业人数,并结合人工智能的实际替代概率,预测2049年每个行业中被人工智能替代的就业人数。
2049年被人工智能替代的就业人数估算结果显示,中国将有1.42亿城市劳动力被人工智能替代,占城市总就业人数(4.34亿)的32.7%;同时,中国农村劳动力中将有1.35亿人被替代,占农村劳动力总数(3.42亿)的39.5%;到2049年,中国将有2.78亿劳动力被人工智能替代,占中国当前就业人数的35.8%。
具体而言,城市中就业人数替代最多的三个行业是制造业、交通运输、仓储和邮政业,以及农、林、牧、渔业。农村中就业人数替代最多的三个行业是农、林、牧、渔业,制造业,以及建筑业。
而如果我们将人工智能应用率的高低因素考虑进去,那么在高应用率下2049将有3.326亿劳动者被替代,在低应用率下也将有2.007亿劳动者被替代。
其他因素的约束然而,人工智能对中国劳动力市场的影响也受制于许多其他因素。
首先,它取决于人工智能技术和人类传统劳动力的相对使用成本和收益,虽然目前中国劳动力成本显著增加,但与发达国家相比仍然相对较低,而人工智能技术的应用目前成本较高,若将劳动力成本因素考虑在内,人工智能的应用则可能需要更长时间。
其次,中国逐步加快的人口老龄化进程也会作用于人工智能对中国劳动力市场的影响,但人工智能也会反过来弥补老龄化进程加快造成的劳动力数量的减少。
根据相关专家的预测,从2018到2049,中国适龄劳动人口数量将减少1.67亿-2.57亿,而减少的劳动力将很可能被人工智能取代。换言之,人工智能技术的发展在一定程度上减轻了老龄化对中国劳动力市场的负面影响。最后,与其他技术类似,人工智能技术在产生巨大替代效应的同时,也具有非常显著的创造效应。受人工智能上下游产业发展的驱动,人工智能技术将创造出一系列相关领域的工作或新职业。
人工智能并不可怕,它如同蒸汽机和电力的出现一样,将对人类社会产生前所未有的广泛影响。而人工智能并非在取代任何行业,而是在改变所有行业。在未来,人工智能必将得到长足发展,而我们想要避免被其取代就不能让自己成为依赖单一工具的人,而要成为能够利用人工智能来提升自己的人。
中国2049-End-
编辑:山鬼黄泓
文字来源:
《中国2049》
原标题:《这些工作将被人工智能取代,来看看你的行业能幸免吗?》
阅读原文