人工智能带给各行业的冲击和机遇
随着科技的发展和社会的进步,高新技术正在慢慢地改变人类的生活方式,在这些巨大变化的背后是无数科研人员辛勤努力的结果。下面结合人工智能领域的文本理解研究方向,介绍人工智能领域近些年的发展和带给各行各业的变化。
人工智能技术指的是获取某一领域的海量信息,并利用这些信息对具体案例做出判断,以达成某一特定目标的技术。这些技术在给定任务中所展现出的工作能力已经被证明可以完全超越人类的表现。例如目前的信贷风险评估已经逐渐从人为评估转变为自动化评估,如何做到的呢?金融机构利用大量的历史借贷记录以及分析后的借贷的结果作为训练集,让计算机学习并理解如何评估是否实施借贷,也就是学习一系列的规则。当计算机学习完毕后,我们再给计算机一些新数据时,计算机就会利用原有的规则分析这个机构或者人的借贷条件,最后判断是否给予借贷。从而解放了人为的繁复工作,仅仅依靠计算机就能轻松解决。再例如,传统的客服行业都是雇佣大量的人员接线,成本巨大,目前随着人工智能的迅猛发展,已有很多公司如微软、百度、阿里率先实现了智能客服服务,用户输入问题后,计算机先理解问题然后在答案库里匹配答案,将结果反馈给用户。
今天,这样的人工智能技术正在被广泛应用于各个领域。随着它的进一步发展,会不可避免地对就业造成冲击。很多岗位和职业会逐步消失,如银行出纳员、客户服务代表、电话销售员、股票和债券交易员等;甚至律师助理和放射科医生这样的工作也会被这类软件所取代。假以时日,人工智能技术还会学会控制如无人驾驶汽车和机器人这类半自主或全自主硬件设施,逐步取代工厂工人、建筑工人、司机、快递及许多其他职业。人工智能技术所带来的冲击并非单纯指向
某些特定岗位和职业,如传统制造业中的手工艺者被流水线工人所取代;或只会使用纸张和打字机的秘书被精通电脑的个人助理所替代等;人工智能所带来的是对现有职业和工作版图大规模地颠覆。简而言之,就是大量重复性肌肉劳动将会被人工智能取代,并且一些高难度的具有一定危险性的工作也会被人工智能取代,例如目前研制出的手术机器人可以为艾滋病患者、乙肝患者等具有传染性疾病的病人手术,从而降低了医护人员的危险性。
但随着人工智能的发展,除去传统行业被高新技术取代,创新型工作也面临着巨大的危机。音乐领域,索尼巴黎计算机科学实验室研究人员盖坦•哈杰里斯(GaetanHadjeres)与弗朗索瓦•帕切特(FrancoisPachet)编写的“DeepBach”(深度巴赫)的神经网络,通过学习352部巴赫的作品之后几乎可以能创造出以假乱真的巴赫曲目;编剧领域,一个人工智能程序名为“Benjamin”,通过学习大量剧本后,创造出一个9分钟短片。“Benjamin”目前没法做到像人类写的剧本那样逻辑通顺,刚出来的稿子有很多让人啼笑皆非的地方,不过整体而言,人工智能创作的具备还是很有意义。同时,让人惊讶的是,Benjamin根据剧本的情节,创作了相应的背景音乐;在围棋领域,谷歌创造的阿尔法狗横扫李世石等顶级高手,颠覆了人类对于围棋中“棋谱”的认识,打击了棋类的最后堡垒。
以此看来,人工智能显然是有能力和潜力取代人类现有的各类工作的,梁建章先生说的30年,显然是非常保守的判断。
随着一些行业的被取代,同样会出现一些“新兴”的行业,如已被行业认可的“自然语言处理”、“语音识别工程师”等,还有业内人都没意识到的职位,比如人工智能/机器人产品经理;脑洞再大一点,未来可能会有“机器人道德/暴力评估师”等职位。那么在人工智能时代,社会亟需的是哪些人才呢?
1.专才+创造力。
无论是上述三类需求来源的哪一种,浮于行业表面的人,都会被AI替代。只有具备深度的专业能力和创造力,才能有立足之地。
2.如果做人工智能行业,还需要极强的多领域理解力+沟通合作能力。
如服务机器人行业,会是人工智能+互联网+机器人硬件等多领域的交集,同时能懂这三方面的人是可遇不可求的。实际工作中,一定会需要和其他背景的牛人共同协作,这时,一方面,需要多领域的知识储备,另一方面,沟通合作能力尤其重要。
综上所述,我们需要不断学习,积累更多技能,不断适应社会对于职业的需求,才能让自己立于不败之地。
探索与争鸣|人工智能在未来社会将有哪些风险与挑战
当前,人工智能浪潮风起云涌,AI时代已经成为现在进行时。就在近日,国务院印发《新一代人工智能发展规划》,将人工智能上升到国家战略高度,描绘出了中国人工智能发展的新蓝图。除了我国之外,国际社会也对人工智能给予了普遍关注,可以说发展人工智能已然成为了全球共识。但是,我们也清醒地认识到,人工智能在为这个时代注入发展新动能的同时,对就业、法律、政治、经济、伦理和安全等诸多领域也带来了新的挑战。
在人工智能“列车”滚滚驶来的今天,我们应当如何应对其带来的风险和机遇;人工智能的技术属性和社会属性如何实现融合;人工智能又会对未来社会造成怎样的冲击,这些都是亟需我们回答的问题。
2017年8月28日,由上海市社联《探索与争鸣》杂志社和华东政法大学政治学研究院共同主办的“人工智能与未来社会:趋势、风险与挑战”学术研讨会在上海社联大楼召开。来自国内知名高校和研究机构的近四十位专家学者以及业界代表齐聚一堂,针对人工智能的发展和应用,分别从技术、法律、政治、经济、人文等不同角度提出看法,展开热烈探讨。
“人工智能与未来社会:趋势、风险与挑战”学术研讨会现场。本文图片 探索与争鸣杂志微信公众号本次会议共设有六个主题,采取主题发言和自由讨论等形式,对人工智能给未来社会带来的风险与挑战进行交流讨论。
一、人工智能对未来的颠覆性影响
中科院自动化所研究员、复杂系统管理与控制国家重点实验室主任王飞跃发言的题目是“智能科技与新轴心时代:未来的起源与目标”,他从宏观历史出发,分析人工智能的发展演变,辨析物理空间与网络空间的关联,并且对人工智能的未来充满期待。著名学者雅斯贝尔斯提出了“轴心时代”的概念,在公元前800到前200年期间,古代文明涌现出许多重要思想家,对文明发展起到至关重要的作用。王教授认为,世界可分为三个部分:物理世界,心理世界以及人工智能(虚拟)世界。每个世界都要有自己的轴心时代,新的世界也要有它的轴心时代。雅斯贝尔斯所言为第一个。第二个轴心时代就是从文艺复兴一直到牛顿、爱因斯坦,代表着人类理性的觉醒。人工智能世界也要有自己的轴心时代,这个轴心时代就是从哥德尔开始。现在是哲学上的突破,再是科学上的突破,下面就要是技术上的突破。就人们普遍担忧的关于人工智能将取代人类工作的问题,王教授乐观指出,人们当前的工作正是依赖机器来提供的,人类向无用阶级转变其实是社会的进步。“无用之用,重用之基”(徐光启《几何原本》)。
上海交通大学科学史与科学文化研究院院长江晓原教授的发言,则对人工智能表示出明确的否定态度。他分别从近期、中期、远期谈了人工智能的风险,表达出忧患意识:“我认为我们正在玩一把非常危险的‘火’。”从近期来看,人工智能引起的大批失业问题,95%的人不工作,5%的人工作,这样造成的财富分配不均,引起社会不稳定;从中期来看,人工智能存在失控的可能,芯片的物理极限,不可拔掉的电源都会引起互联网和人工智能结合后的不可操控;从远期来看,人工智能的终极威胁即人类这个物种会在个体的体能和智能方面全面的衰落,把对世界的管理让给人工智能,它一定是认为把人类清除掉是最好的。”此外,江院长还指出,要考虑最根本的问题是我们为什么要发展人工智能,资本的推动作用显而易见,资本为了增值盲目且不计后果。二、人工智能是人类的福音还是恶梦?
人工智能到底是造福全人类的利器,还是毁掉世界的终极恶魔?北京大学计算机系主任陈钟教授从自己的角度对此进行了一番解读。陈钟教授的演讲主题是“从人工智能本质看未来的发展”。他首先结合自身求学、工作的经历,分享自己关于计算机的观点与看法。然后,陈教授在演讲中依次展开自己关于人工智能的三个重要观点,即“人工智能本质是计算机科学分支”、“数据驱动导致人工智能发展起起落落”和“社会科学与现实的关系比以往更加紧密”。陈教授将理论与实务相结合,帮助大家更好地理解人工智能的本质与发展趋势。最后,他表达出自己关于人工智能的中庸态度,主张要对人工智能进行规制,促使其合规发展。不同于前面几位理工科学者的讲述,中国社会科学院哲学所的段伟文研究员从哲学和人性入手,对人工智能的社会性进行思考。段伟文研究员具有深厚的哲学功底,他以人性为切入点来思考人工智能的危机和未来情境。段研究员指出,机器的使用最终都是与人的能动性有关,他崇尚一种慢科学,要更多地思考人性、伦理,审慎对待人工智能的发展。他的主要观点可以概括为五句话:一是人工智能的发展带来新的权利,二是数据框定时代、算法设定认知,三是人的机器化和机器的人化,四是智能延展认知与人工愚蠢,五是深度科技化(预防性原则和主动性原则)。宽资本董事长、奇点大学投资人关新则从行业实际发展情况出发,直指人类对人工智能的恐惧之处——人是不可能阻挡技术的,技术本身就是洪水猛兽。而人类所害怕的是技术日新月异。他认为,我们今天应该把人工智能和科技革命当做完全不可阻挡的东西,至于人怎么应对,这是挑战人本身的智慧,而不是机器。三、中国在人工智能时代会领跑世界吗?
有观点认为,人工智能的发展,为发展中的中国提供了“弯道超车”的良机。那么,世界范围内来看,AI的研发水平到了怎样的程度?人工智能的进步到了哪一个阶段?中国在这一研究领域是否占有一席之地?根据现在的研究情况,能否对未来的发展趋势进行预测?中国在人工智能时代是不是能够跑在世界前列?这些问题值得探讨。
上海交通大学电子信息学院的熊红凯教授首先做了题为“人工智能技术下对真理和生命的可解释性”的主题演讲。他回顾了人工智能从上世纪五十年代到现在的起起落落,认为人工智能发展中的不确定性和不可解释性是最大的威胁。熊红凯教授演讲之初就提出与人工智能紧密相关的机器学习、神经网络具有很大的不确定性,而人工智能的发展就要解决这些不确定性、不可解释性与因果性的问题。他演讲的重点就是人工智能技术的安全性。人工智能的推动主体是企业与资本,其最大推动力不是算法而是数据,数据的使用就不可避免带来安全性问题。这也是美国大数据医疗一直进展缓慢的原因。一切技术都是以超越人自身为推动力,从这个角度来看,熊教授认为一些人称人工智能技术是洪水猛兽有一定道理。
上海社会科学院哲学所副所长成素梅研究员则对人工智能研究的范式转换和发展前景进行分析和展望。人工智能是计算机分支学科研究出来的,但是从学科性质上来讲,人工智能不是自然科学,人工智能属于技性科学,是科学与技术相互交叉的一个领域,一开始就具有跨学科性。它是要把科学的原理变成技术的实现,倒过来技术的实现又推动了科学原理的解释和发展。人工智能研究者一旦扬弃追求通用人工智能的范式,转向追求在具体领域的拓展应用,人工智能就会走出瓶颈,迎来新的发展高峰。华东政法大学政治学研究院院长高奇琦教授也提出了重要观点,认为中国在人工智能时代有特殊的使命。高教授首先对比了中美两国的优势和劣势,认为中国的优势第一个在于庞大活跃的中国市场,这个市场规模是全球独一无二的;第二个是勤劳勇敢的中国人,让国外感到恐惧的24小时开店、周末不休息;第三,科研队伍和研究水平;第四是中国已经有了一个良好的发展基础。而最大的优势莫过于位置和文化。相比于西方,中国文化具有多元而开放的特点。最后,高教授提出未来发展的四个“智”——第一,跨智,发挥媒体之间的技术优势;第二,众智,利用群体智能;第三,合智,人工智能和人类智能的合作;第四,善智,发展的目的是为了人类的公平正义。“AI就是“爱”,我们研究AI的目的就是让世界充满AI。”
四、人工智能对法律与政府的影响
法律与政府是公平公正的代名词,面对AI在社会众多领域的应用,法律和政府部门工作也在与人工智能接轨,在实践中让AI发挥更大的作用。
四川大学中国司法改革研究中心主任左卫民教授在法律实务领域具有一定建树,他着重从形而下审思人工智能与中国智慧司法的未来。他鲜明地指出AI与法律学者有一定差距,但法律界总体上对AI是相当认同的,上海、江苏以及浙江等地已经将大数据人工智能运用到审判中来,而案多人少的现实背景、对公正效率的需求也需要发展人工智能。左教授接下来向大家讲述法律界对人工智能的运用情况,他以国家开放司法审判书为例指出司法裁判引入大数据对于建构裁判标准具有重要的意义。当然,他也指出裁判文书的过度应用也存在问题,法律具有独特性,很多现实情况很少用到裁判文书。总而言之,左教授对人工智能在司法领域的应用充满信心。“在我看来人工智能向法律提出的问题更具根本性。”上海交通大学凯原法学院郑戈教授列举了人工智能对法律职业和社会管理的种种挑战。郑戈教授主要以“电子人”为例探讨是否建构人工智能的法律人格。他首先从欧洲关于人工智能的法律法规延伸开来,介绍阿西莫提出的机器人“三大律法”,然后详细列举人工智能给法律带来的问题与挑战。人工智能所涉及的伦理和法律问题是这个时代最关键的问题之一,第二个问题是它涉及现代法律体系的基础性概念和思维方式,第三个问题是数据的实际占有者与使用者之间的界限越来越难以判定,第四个问题是过错的判断越来越困难,第五个问题是过错与损害结果之间的因果关系越来越难以确定等。郑教授主张对人工智能进行合理的法律规制,需要法律人和科学家的深度合作。
华东师范大学政治学系吴冠军教授作为政治哲学研究者,着眼于未来社会秩序。吴冠军教授的演讲用人类学机器这个概念阐述自己对人工智能的理解。人类学机器是著名哲学家阿甘本提出的一个概念,他认为人类与动物以及其他事物之间存在分级制度,人与人工智能之间是一种机器关系,上下级的关系。吴教授指出人类学机器是基于人工智能的全新的物种,这个新物种会带来一系列伦理问题、逻辑关系问题,对现实世界产生颠覆性的影响。我们在关注人工智能发展的同时也要关注它的正当性。上海社会科学院互联网研究中心执行主任惠志斌主要探究人工智能应用场景中的法律问题。他认为,人工智能能够联系大量的人、物,在这样一个联网的基础上产生大量的数据,数据通过智能化的算法,这个算法至少目前来看还是由人来设计,由人来去验证,去实施的算法,共同构造智能网络的应用场景,在各种各样的场景里面,医疗领域、环境领域,包括我们的生活等等各种场景里在应用,所以,在鼓励它发展的同时如何去规避危险,如何能按照人类所希望见到的“善智”这样一些方向发展,这是我们需要考虑的问题。还要考虑如何通过一些公共政策,如何通过法律,把它那些可能带来危害的风险点找到,进行规避。他认为,人工智能碰到的法律和经济问题,比如产权版权问题,变成具体服务和产品问题时的责任归属问题等等,要在基本安全的框架内,探讨人类和机器共同协作的方式,保持透明、开放,让人工智能产品在公众的监督之下,而不是随意设置。上海交通大学凯原法学院杨力教授的主题演讲“司法大数据与人工智能的应用前沿”介绍了司法界AI应用的前景。他介绍了法律实务中大数据应用的四套大纲:第一套大纲是AI系统,所有人工智能依赖于数据驱动,在整个司法链条上做到数据驱动最底层工作,一定要把法院、检察院的相关数据打通,这一点非常关键;第二套是在审判环节,审判环节是整个法律中的中心工作。第三套是算钱算绩效,对每一个法官每年能受理多少案件等进行测算;第四套是模拟审判,希望通过三到五年,机器法官(现在还不敢称智能法官)能够承担法院的简单案件。五、人工智能对经济、社会与传媒的影响
上海大学社会学系顾骏教授重点探讨了人工智能研究的“灯下黑”问题。他认为,以往的研究只是将人工智能与人类智能进行简单的比较,人类的自我中心主义让大多数研究者忽略了人类创造物的内在逻辑。他在演讲中主要提出了自己担忧的人工智能发展的八个问题,比如宇宙发展是否会终结人类,人工智能是否会超越人类,人类创造物是否有自主创造力以及机器人如果能够自我进化,那么进化的结果由谁来控制等。顾教授的演讲体现出强烈的忧思。最后,顾教授认为自己关于人工智能的研究只有问题,没有答案,需要更多的人去理性思考。上海师范大学知识与价值科学研究所所长何云峰教授则持乐观态度,站在进化论视角看待人工智能。他认为,人工智能像人类一样,也是不断进化的。人类为弥补自身进化不足不断开发新的机器,所以说人工智能在很早之前就已经开始,这也可以运用康德的“先天知识何以可能”来论证。何教授对人工智能的发展同样充满自信,重要的问题不是人工智能会带来一些风险,人们在前进的过程中可以解决这些,问题的关键是人工智能大量的使用会导致人类进化危机,它比人类摆脱自身束缚更加可怕。何教授最后对人工智能发展做出乐观预测,人工智能越发展,人类从劳动中解放程度越高,人类将有更多时间来学习和提升自己,拥有更多发展机会。复旦大学哲学学院徐英瑾教授演讲的主题聚焦于认知语言学与人工智能伦理学。他认为,在主流的人工智能伦理学研究中,很少有人意识到:将伦理规范的内容转化为机器编码的作业,在逻辑上必须预设一个好的语义学理论框架,而目前主流人工智能研究所采用的语义学基础理论却恰恰是有问题的。徐教授主张在人工智能与人工智能伦理学的研究中引入认知语言学的理论成果,并在此基础上,特别强调“身体图式”在伦理编码进程中所起到的基础性作用,必须严肃思考“怎样的外围设备才被允许与中央语义系统进行恒久的接驳”这一问题。微软亚太科技有限公司副总裁王枫也参加了研讨会,他鲜明地提出:新科技应助力人工智能造福人类。第一,人工智能服务于人类,互联网和各种软件硬件都是由人制造,为人服务,这是前提。微软近期推出的盲人智能眼镜就是在这一前提下产生,帮助盲人实现以前无法做到的事情。第二,他强调,没有数据的人工智能是一个理论和空谈,数据的完整性、专业性和准确性是最基本的。弹性的云计算的应用使得人工智能不再局限与手机管家的简单问答。而与媒体合作过程中,可以看到,通过人工智能感知的技术可以保证视频内容合法合规。此外,微软最近也推出了新的应用——通过云计算和大数据,抓取照片上人的特点,进行人脸识别,用于找寻流失儿童等。王枫副总裁同时表示,人工智能的标准要依托于法律法规和整个地区国家的标准。上海财经大学讲席教授、城市与区域科学学院副院长张学良教授,从经济学框架来分析人工智能的发展与经济学的未来。他认为经济学可以看作是在不确定的世界中找出确定的因素,经济学的研究将人工智能的发展看作要素驱动。第一,从供给与需求上来看,无论是人工智能和产品的出现,还是技术的发展,它所改变的形态是供给侧。第二,从成本与收益上来看,技术的成本我们是否能看到,它往前走一步投入多少成本,用经济规律讲是有约束条件的,企业家的投资一定要带来收益。它背后有一个成本与收益的法则。要用历史阶段性与连续性的眼光看待,让市场来发挥作用。第三,从政府与市场的角度看,政府要防止垄断,做好分配工作,利益共享,在人工智能时代找准自己的定位。第四,从中国与世界角度看,就业与劳动力市场、教育、文明、社会主要矛盾都是需要考虑的问题。六、圆桌大讨论:人工智能会战胜人类吗?
在圆桌会议中,围绕本次研讨会主题,与会专家学者进行了热烈的自由讨论,纷纷提出独到的观点。
华东师范大学历史系王家范教授:今天的这个话题,我觉得有一个前提,毕竟是人在倡导人工智能,人是主体,既然能够倡导也应该能够控制。所谓的道义是什么呢,我认为它所倡导的倡导物本应该是用来帮助人类的,凡是不利于人类,危害人类的都不应该倡导。违反道德基本准则的就是危害人类的,反人类的。在欢呼进步的同时,有必要对后果进行认真的检讨。要认真思考的是不应该只关心利益,人文主义在科技里面应该占有主导地位。如果把史学看作一门人类理解自己的私密工艺——提炼人类的智慧,用来改善人类现在和未来的处境,这一类的史学工艺,人工智能做不了。搞史学的知道,任何一个有名的史学家,他只能做很少一部分,有多少人能把古今中外的文献都整合在一起?我不认同所谓的人类智慧终极论,我认为机器人永远不可能完全胜过人类的整体智慧。上海政法学院文学与传媒学院副院长张永禄副教授:在人文科学里面,机器人写作要解决两大问题,要把认知语言学形式化。非线性的,非结构化的是不能表现出来的。目前最高级的(人工智能)是能写三千字以内的小说,我们知道最好的小说不是单一类型的。河南大学博士后赵牧:许多人对人工智能可能带来灾难后果报有深深的恐惧。这些恐惧毫无疑问是站在人本主义的立场上的,但种种悲观论调却建立在对人和人类社会既有的经验和认识的基础上,并对人工智能的概念带有望文生义的理解。目前的人工智能,还不过是小部分地实现了人脑的功能模拟。人工智能离所谓的智还有着很长的路要走,但人文学的想象力却将它的自我发展想象为即将到来的现实,似乎人为自己的创造物所奴役已经迫在眉睫了。我们当然不能轻易地否定这种忧虑所包含的人文关怀,但它却在无远弗届地想象人工智能的自主性时,对人之为人的属性设定了一个不变的本质。退一万步讲,既便人工智能成为了无机智能而将来之人成为了它的奴役对象又怎样呢?当年没有走出森林的猴子对作为其进化物的人是没有报怨资格的,它们如果有反思能力的话,也只能“求诸己”,而没办法让人再变成猴子。苏州大学凤凰传媒学院院长陈龙教授:我想从批判的视角来看一下人工智能它应用过程中的问题。讲危害和恐惧,为时尚早。首先人工智能发展到现在的状态,让人们产生了忧思,这本身就是现代性的一种表现,发展到极致状态的一种现象。我们知道人工智能现在的状态,未来的状态到底怎么样,它都是处在一个漫长的量变过程。最大的问题,是权力让步的风险问题。厦门大学法学院郭春镇教授:人工智能和人类之间的关系,一个是人与人之间的关系,还有和商业之间的关系。它其实已经不光影响控制我们的行为了,而是公开的,可以得到我们的信息,政府知道我们这么多信息,商业知道我们这么多信息,这样的话我们怎么控制信息的边界?怎么让他们不滥用个人信息的利用?如何界定和控制这个边界,这个问题依然保留。清华大学博士后曹渝:人工智能会怎么走,第一,不必恐惧,因为该来的还是要来的,我们不如齐心协力把人工智能孵化出来,第二,一定要警惕资本权力的界线。我们技术人是有理想的,不要认为这些IT工程师没有意识,人骨子里追求自由、平等、博爱,会超越一切。(本文首发于《探索与争鸣》杂志微信公众号,澎湃新闻得到授权使用,内容有删节。)
人工智能的伦理挑战与科学应对
【光明青年论坛】
编者按
2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。
与谈人
彭家锋 中国人民大学哲学院博士生
虞昊 华东师范大学政治与国际关系学院博士生
邓玉龙 南京师范大学哲学系博士生
主持人
刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员
1.机遇与挑战并存的人工智能
主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?
彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。
虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。
邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。
主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?
虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。
邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。
彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。
2.人工智能科技竞争的“伦理赛道”
主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?
彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。
虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。
邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。
主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?
彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。
邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。
3.人工智能安全与人的全面发展
主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?
彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。
虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。
邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。
主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?
彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。
虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。
邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。
(本版编辑张颖天整理)
《光明日报》(2023年04月10日 15版)
[责编:曾震宇]我国人工智能治理面临的机遇和挑战:基于科技公共治理视角
卢阳旭 何光喜
[摘 要]建立健全人工智能治理体系,是保障人工智能健康发展的必然要求。人工智能治理的核心议题是风险和收益的平衡,以及相关公共决策的知识合法性和参与合法性的协调。本文基于科技公共治理视角,分析了人工智能治理的两个面相,介绍了各国在人工智能治理方面的探索及面临的挑战。在梳理我国人工智能治理实践的基础上,从原则、制度建设和工具开发三个层面提出了改进我国人工智能治理体系建设的建议。
[关键词]人工智能;科技公共治理;风险;挑战
[中图分类号]D63 [文献标识码]A
一、人工智能治理问题的提出
人工智能是引领新一轮科技革命和产业变革的战略性技术,正在对全球经济社会发展产生重大而深远的影响,[1]是当前全球科技治理的焦点议题。形成一套能有效识别、促成社会意愿“最大公约数”的人工智能治理体系,有效支撑相关公共决策的制定和执行,是促进人工智能健康发展的重要保障。
(一)科技公共治理及其核心议题
作为一种特殊类型的公共治理,科技公共治理具备公共治理的一般特征:治理主体多元化、治理机制多样化。[2]同时,科技创新活动及其影响的不确定性高、知识门槛高,又使得科技公共治理有以下两个方面的核心议题。
1.科技收益与科技风险的权衡问题
科学技术的“双刃剑”效应使得人们对于科技发展一直有一种矛盾的态度,一方面担心发展太慢,让经济社会发展失速;另一方面又担心发展太快、失去控制,伤及人类。这一矛盾态度使得人们在对待科技发展特别是新兴技术的应用上,出现了“预防原则”(precautionaryprinciple)和“先占原则”(proactionaryprinciple)的持续争论。[3]“预防原则”主张,人们要更谨慎地对待科技发展蕴含的不确定性,以防其带来不可预料的危害。“先占原则”则认为科技创新自由至关重要,不应过分强调与科技发展相关的不确定性的负面影响,反倒是要在规制科技创新方面更加谨慎,以免失去科技发展带来的机会。简单说,前者更强调“安全的科学”,后者则更加强调“科学的安全”。[4]
2.“知识合法性”和“参与合法性”的张力问题
科技活动有很强的专业性,较之一般公众,科学家具有很强的知识优势,更有可能作出“知识上”的正确决策,科技相关决策应该主要听科学家的——这是很长时间以来,科学与政治、科学家与公众之间的默契。但是,随着科学的体制化和职业化,知识权力与各种经济和社会利益的深度纠缠,科学家的独立性和客观性不再毋庸置疑。同时,科技对社会的深度纠缠使得科技决策所需的科学知识之外的“社会知识”越来越多,而公民权利意识的增强则意味着公众会越来越不愿意只是被动地接受科学家们的决定。[5][6]换句话说,没有多主体参与的科技公共决策可能在知识上是不完备的,在程序上是“不合法的”。[7]
(二)人工智能治理的两个面相:“影响的治理”与“技术的治理”
1.影响的治理:人工智能的伦理、法律和社会影响
影响的治理是人工智能治理的核心面相,基本原则是以人为本,基本问题是风险和收益的权衡。20世纪90年代人类基因组计划设立专门的研究项目,关注与基因技术相关的伦理、法律和社会议题(Ethical,Legal,andSocialIssuesELSI)。这个框架同样适合于对人工智能影响的分析,目前人们对于人工智能影响的讨论基本上也是从这三个相互联系的层面来展开的。
人工智能伦理议题的核心,是人与人工智能系统的关系,表现在两个层面:一是人工智能持续发展给人类地位带来挑战,虽然目前人工智能还处于狭义人工智能阶段,但人们对通用人工智能和超级人工智能的预期加重了这方面的担忧。二是人工智能的误用和滥用给人与人、人与自然之间伦理关系带来挑战,比如隐私、歧视、尊严、安全、公平正义等。人工智能法律议题的核心,是何种法律规制能够帮助人类在人工智能发展过程中实现“趋利避害”。人工智能社会议题的内容相对宽泛,而且随着人工智能对工作和生活渗透广度和深度的增加,还会有各种新的议题出现。当前,人们关注的主要议题,包括就业、收入分配、深度造假、政治选举等等。[8][9]
需要指出的是,虽然人们对人工智能的潜在风险有很多担心,但总体判断还是好处要大于风险,而且人类社会有机会、有办法去争取实现收益最大化、风险最小化。比如,2018年12月欧盟委员会高级专家组发布的《可信赖的人工智能伦理准则(草案)》(DraftEthicsGuidelinesForTrustworthyAI)指出,总体而言人工智能所带来的收益要大于风险。同月,日本内阁府发布的《以人类为中心的人工智能社会原则(草案)》(SocialPrinciplesofHuman-centricAI(Draft))也认为人工智能技术是其推进“社会5.0(society5.0)”建设的关键,要尽可能有效、安全地利用它并避免其带来的负面影响。
2.技术的治理:人工智能系统的治理
技术的治理是人工治理的从属面相,基本目标是保障技术系统安全、可控。具体要求主要包括:一是强调人工智能系统要可解释、透明、长期安全并符合社会价值观,要提高算法的透明性、完善数据共享标准和规范。二是要在人工智能系统的可靠性检验和安全性确认等方面寻找新的方法,以保证人工智能系统处于不间断的人类监管之中。比如,2016年美国政府发布的《国家人工智能研发战略规划》提出,在初始设计阶段就要从技术、标准、审查层面保证人工智能系统可控、安全、符合社会伦理。
但人工智能技术治理面临两个方面的挑战:一是人工智能内生偏差和不可理解问题。人工智能算法高度依赖于大数据,而在很多场景下,数据质量(比如样本的代表性)是很成问题的;不可理解性既包括开发者无法确切理解人工智能系统自我学习过程和决策结果,也包括算法对于使用者和监管者而言的不可理解性。[10]二是算法透明化的安全顾虑和法律争议。国家和公司层面的激烈竞争,以及算法、数据及其分析方法通常掌握在少数国家、少数公司手中这一客观事实,使得它们很容易从现行法律框架中搬出私人财产、商业机密、国家安全等作为拒绝公开的理由。
二、各国人工智能治理的探索和挑战
(一)各国人工智能治理的探索
1.影响的识别:共识和差异
近年来,随着研究的深入和实践的增多,全球人工智能治理的一般性议题越来越集中,主要包括人类的尊严和自主性、隐私和数据安全、就业和社会不平等、人工智能系统的可信赖性及恶意使用等。与此同时,人工智能向各领域的快速渗透也让人工智能治理的具体性议题持续增多。据不完全统计,仅在各项能从公开渠道获得的人工智能提案中,涉及的议题就已超过50个。[11]随着人工智能对各领域渗透程度的进一步加深,未来还会有更多利益点和风险点被触及和识别。
需要指出的是,各国在议题上的共识并不代表在认知、态度和政策举措方面取得共识。以隐私保护为例,虽然各国都认同应该保护隐私,但在不同的制度和文化背景中,人们对于隐私的理解,以及隐私的重要性排序存在明显差异。比如,有研究者将不同社会和群体对待隐私保护的态度划分为三种类型:“隐私优先”(High-Privacyposition)、“隐私平衡”(Balance-Privacyposition)和“隐私限制”(Limited-Privacyposition)。[12]“隐私优先”论赋予隐私更高的价值排序,认为应该赋予个人更大的“数据控制权”,同时它对于隐私的界定也相对比较宽泛。与之相反,“隐私限制”论则认为,虽然应该保护隐私,但当它与其他社会价值(比如公共安全、言论自由等)不一致的时候,应该让位于后者。“隐私平衡”论介于二者之间,在强调隐私保护的同时,也认为不应该对隐私有过于宽泛的定义和过强的保护,在隐私保护方面则强调发挥个人自主、机构和行业自律的作用。事实上,上述分歧明显地体现在美国和欧盟个人数据和隐私保护的立法和监管思路上。相对来说,欧盟在个人数据和隐私保护上更接近于“隐私优先论”,2018年5月正式生效的《一般数据保护条例》(GeneralDataProtectionRegulation,GDPR)确立了“数据可携带权”“被遗忘权”等个人数据控制权,并要建立统一的执法机构。与之相反,美国在强调个人数据和隐私保护的同时,在个人数据控制权立法保护方面要更加谨慎,更接近于“隐私平衡论”甚至“隐私限制论”。对美国、英国和德国等国企业的实证研究也发现了各国对于隐私的认知差异:美国与英国企业的隐私官员一般从避免损害消费者预期的风险管理角度看待隐私保护,而德国、法国和西班牙三国企业主要从人权角度看待隐私。[13]
2.机制的探索:参与和协同
人工智能发展迅速、渗透性强、议题多样复杂。政府、科研机构、大学、企业和社会组织等都有各自的利益诉求和信息优势,多元参与、充分沟通有利于提高人们对人工智能收益和风险的共同认知,并承担共同责任。虽然人工智能治理是个新议题,但从欧美各国的实践来看,它们基本延续了在转基因、纳米、合成生物学、信息技术等新技术治理方面的理念和架构。以一系列法律为核心的正式制度为人工智能治理提供了基本的制度框架和互动规则,例如欧美国家广泛存在的对重大科技公共议题的议会听证制度。对话会、民意调查以及政策制定者和专家之间的社会网络等非正式治理活动也有利于信息的及时传递和各方利益的表达。比如,在奥巴马政府时期,白宫科技政策办公室就人工智能主题举办了一系列旨在广泛征求社会各界意见的研讨会,在此基础上相继发布了《为人工智能的未来作准备》(PreparingForTheFutureOfArtificialIntelligence)《美国国家人工智能研究和发展战略计划》(TheNationalArtificialIntelligenceResearchandDevelopmentStrategicPlan)和《人工智能,自动化与经济》(ArtificialIntelligence,Automation,andtheEconomy)三份报告,较为系统地阐述美国人工智能发展战略、伦理规范和治理机制。2018年以来,美国国会就个人数据和隐私保护相关议题连续举行了多场听证会,Facebook、谷歌、亚马逊等企业巨头均被邀出席。2018年5月,美国政府又在白宫举办人工智能峰会,邀请谷歌、亚马逊、英特尔等企业巨头,以及顶级学术机构的专家等上百位代表参加,重点讨论AI研发、人才培养、制约AI创新发展的体制和特定部门的AI应用等4个议题。2017年6月,英国上议院成立了人工智能专门委员会,负责研究人工智能发展所带来的经济、伦理和社会问题。2018年4月,该委员会发布了《英国人工智能:准备、意愿与能力》(AIintheUK:ready,willingandable)的报告。
当然,人工智能治理过程中多方参与和协同的方式、效果受到特定国家利益集团的结构和制度环境的深刻影响。人工智能的快速发展必然会冲击现有的利益格局,不同利益集团之间的博弈直接决定了各方在相关决策中的话语权和影响力。以隐私保护为例,数据收集者、数据聚合者(主要指各类数据交易平台)、数据使用者和数据监管者这四类利益主体之间的博弈过程会深刻影响一个地区、国家甚至全球的隐私保护政策。[14]同时,人工智能治理过程中利益博弈、政策制定和执行活动都嵌入特定的政策网络当中,会受到其他领域法律法规和政策执行体制的推动和掣肘。总之,欧美国家在推动人工智能公共治理方面的基本经验,不是简单地让知识合法性或参与合法性占据绝对的优势地位,而是把二者间的张力纳入特定的制度框架内,并通过各种具体的活动程序和技术小心翼翼地保持它们之间的微妙平衡。
3.工具的建立:规范和倡导
工具的多元化和适应性是实现有效治理的重要条件。近年来,国际组织、各国政府和立法机构、研究机构等各类主体积极探索建立多样化的人工智能治理工具。法律的约束力强,是人工智能治理可依赖的重要工具,但由于其刚性强,各国在以法律来规制人工智能方面还是相对比较谨慎,尽量平衡风险规制和促进人工智能创新发展的双重需要。总体而言,以美国和欧盟为代表的一些国家和地区在人工智能相关立法方面采取的基本策略,是差别化和场景化——对人工智能不同应用领域进行专门立法。目前,美国和欧洲等国家和地区在自动驾驶方面已有比较成熟的立法,很多国家(地区)也试图加强对深度造假、智能投顾和智能医疗等人工智能应用重点领域的立法规制。[15]
行业技术标准、从业人员行为规范等也是人工智能治理的重要工具。2017年,电气电子工程师协会(IEEE)发布《人工智能设计的伦理准则(第2版)》,对人工智能伦理事项进行了扩充,而且目前还在持续更新和迭代。国际电信联盟(ITU)、国际标准化组织和国际电工委员会第一联合技术委员会(ISO/IECJTC1)等机构也在紧锣密鼓地进行相关标准的研究和制定工作。同时,一些知名科学家、企业家发起国际性的治理倡议,试图在观念和规范层面凝聚全球共识。比如,2017年1月,由未来生命研究所(FutureLifeInstitute)发起,霍金、马斯克领衔推动全球联署的“阿西洛马人工智能23条原则”(AsilomarA.I.Principles)已有超过1000名人工智能/机器人研究人员以及超过2000名其他领域专家签署。该原则从科研目标、科研经费和文化、科学和政策的互动、系统安全可控和透明性,到负责任、隐私、自主性、利益共享、符合人类价值观和不颠覆人类社会秩序等方面提出了23条人工智能研发和应用原则,呼吁全世界严格遵守,共同保障人类未来的利益和安全,在业界引起了很大反响。2018年12月,一项旨在推动人工智能治理全球合作,促进人工智能可持续发展的《负责任地发展人工智能蒙特利尔宣言》(MontrealDeclarationforaResponsibleDevelopmentofArtificialIntelligence)也开始了全球签署。这些国际性的、跨领域的努力为全球人工智能治理合作提供了重要帮助。
(二)全球人工智能治理面临的主要挑战
1.收益和风险的有效识别与公正分配
人工智能是一项正在快速发展且具有重大深远影响的新技术,对它的治理面临着巨大的技术和经济社会影响的“双重不确定性”。如何确保收益和风险的平衡,实现收益的公正分配、风险的合理分担是全球人工智能治理面临的巨大挑战。以就业为例,虽然人们知道人工智能将推动更大范围、更具“劳动替代性”的自动化进程,并重塑全球产业链和就业结构,但替代的规模和方式,影响的大小和结构却众说纷纭、难有定论。再有,人工智能如何加速推动资本替代劳动,是否会加剧“资本回报率高于经济增长率”的趋势,[16]造成劳动参与率和劳动收入占国民收入的比例进一步下降,高端就业岗位和普通就业岗位间的收入差距进一步扩大,让人工智能带来的生产效率提高、社会财富增长等好处主要由少数大企业、大资本和高端技术人员和管理者获得?2018年2月,剑桥大学生存风险研究中心(CentrefortheStudyofExistentialRisk,CSER)等机构联合发布《人工智能的恶意使用:预测、预防和缓解》(TheMaliciousUseofArtificialIntelligence:Forecasting,Prevention,andMitigation),认为滥用人工智能不仅会放大旧风险,还会产生新风险,让数字空间、物理空间和政治领域的风险类型更加复杂。总之,不同国家、群体和个人在人工智能相关风险面前的脆弱性是存在结构性差异的,如何降低风险并更合理分配风险是全球人工治理面临的关键挑战。
2.知识合法性与参与合法性的动态平衡
人工智能具有很高的技术门槛,相比于用户、监管者等主体,技术专家拥有很强的知识优势。但人工智能技术具有极强的渗透能力,将来会出现在工作和生活的各种场景当中,与每个人的利益密切相关。在这种情况下,与人工智能相关的公共决策所需的不仅仅是客观的技术知识,公众的利益诉求和价值判断同样非常重要。探索各种能够促进政府、企业、科学共同体和公众四类主体共同参与、协商共治的方式,不仅能够增加复杂决策所需的技术知识和社会知识,更能增加人工智能治理的参与合法性。但必须指出的是,在现实的人工智能治理活动中,四类主体内部并非“铁板一块”,而是普遍存在着各种观念和利益的分化与差异:政府内部存在不同级别和不同部门间的观点或利益差异;科学界内部存在不同学科间、不同技术路线的差异,而且很多所谓的“科学之争”还混杂着复杂的利益纠葛;产业界内部存在不同产业、不同厂商间的利益差异;公众内部的观念、利益分化则更加普遍。总之,纵横交错的利益关系、知识和政治的深度交织都增加了人工智能治理知识合法性和参与合法性之间的张力和平衡难度。
3.全球人工智能产业竞争和治理合作的良性互动
加强人工智能治理的全球合作是国际社会的共识,但各国、各大企业积极争取掌握更大话语权也是全球人工智能治理的客观事实。2019年2月,美国总统特朗普签署《美国人工智能倡议》,提出要应对来自战略竞争者和外国对手的挑战,并确保美国在人工智能领域的领先地位。2018年3月,欧洲科学与新技术伦理组织(EuropeanGrouponEthicsinScienceandNewTechnologies,EGE)发布的《关于人工智能、机器人与“自主”系统的声明》(StatementonArtificialIntelligence,Roboticsand‘Autonomous’Systems)提出,欧盟要启动相关流程,为机器人技术和自主系统的设计、生产、使用和治理制定一个共同的、国际公认的伦理和法律框架。2018年4月,英国议会发布的《英国人工智能:准备、意愿与能力》(AIintheUK:ready,willingandable)更是提出,英国要利用法律、研究、金融服务和民间机构方面的优势,通过在人工智能伦理与准则制定方面的领先来引领人工智能的发展。
三、我国人工智能治理的探索和挑战
(一)我国加强人工智能治理的主要探索
1.高度重视人工智能发展风险研判和防范
2017年7月,国务院发布《新一代人工智能发展规划》,要求必须高度重视人工智能可能带来的安全风险挑战,加强前瞻预防与约束引导,最大限度降低风险。2018年10月,习近平总书记指出,要加强人工智能发展的潜在风险研判和防范,维护人民利益和国家安全,确保人工智能安全、可靠、可控;要加强人工智能相关法律、伦理、社会问题研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。
2.积极推进法律法规和政策体系建设
近年来,我国通过分散式立法的方式,修订和出台相关法律法规,重点加强了对个人数据、电子商务、智能金融、自动驾驶等与人工智能发展紧密相关领域的修法和立法工作,努力完善促进人工智能健康发展所需的法律框架。比如,2018年8月十三届全国人大常委会审议通过《中华人民共和国电子商务法》,努力在允许算法推荐和大数据画像等新技术发展和消费者合法权益保护之间寻求平衡。中国人大网公布的《十三届全国人大常委会立法规划》显示,个人信息保护法、数据安全法均被列为第一类项目,即条件比较成熟、任期内拟提请审议。一些政府行业监管部门也陆续出台了一系列部门规章,积极适应本领域人工智能应用的监管需要。比如,中国人民银行等部门联合出台的《关于规范金融机构资产管理业务的指导意见》规定,金融机构应当向金融监督管理部门报备人工智能模型的主要参数以及资产配置的主要逻辑,在促进算法透明和人工智能监管框架等方面做出重要尝试。
3.搭建人工智能治理多方参与平台
2017年11月,由科技部、发改委等15个部门共同构成的“新一代人工智能发展规划推进办公室”宣布成立,负责推进新一代人工智能发展规划和重大科技项目的组织实施。来自高校、科研院所和企业的27名专家组成的“新一代人工智能战略咨询委员会”也同期成立,负责为新一代人工智能发展规划和重大科技项目实施,以及国家人工智能发展的相关重大部署提供咨询。为进一步加强人工智能领域相关伦理、法律和社会问题研究和人工智能治理国际交流合作,2019年2月,新一代人工智能发展规划推进办公室决定成立“新一代人工智能治理专业委员会”。2019年4月,科技部发起“为了AI健康发展:新一代人工智能治理准则建议征集”活动,向政府部门、企业、高校、科研院所和各界人士公开征集建议。在人工智能标准化方面,2018年1月,国家标准化管理委员会宣布成立国家人工智能标准化总体组和专家咨询组,负责全面统筹规划和协调管理中国人工智能标准化工作。
(二)我国人工智能治理面临的主要挑战
1.从跟随者到领跑者的角色转换
长期以来,我国科技发展处于“跟跑”状态,科学研究和产业应用方面会遇到的伦理、法律和社会问题大部分都已由先发国家“蹚过”了,我们可以跟在后面学习借鉴国际经验,不走或少走弯路。当前,新一代人工智能对全世界来说都是一个新事物,在治理方面没有现成的经验。我国人工智能部分领域核心关键技术实现重大突破,市场应用深度和广度迅速增长,与之相关的伦理、法律和社会问题的研究和治理不可能再跟在后面学了——从“跟着学”到“带头做”是一个巨大的角色转变。
2.科技公共治理机制不健全
人工智能治理活动嵌入在特定的科技公共治理制度中,而后者是一个从理念到制度、程序再到具体技术的完整系统。虽然近年来我国在人工智能治理领域已经作出富有成效的探索,但我国科技公共治理体制机制方面的诸多不足还是会给人工智能治理带来诸多挑战,突出表现在以下几个方面:一是产业界、公众参与科技公共决策的依据、程序等仍然缺乏明确、详细的法律规定。二是以知识生产、共识达成和决策扩散等为目标的系列公共治理方法和工具开发不够。三是在开放创新和全球合作共治的大背景下,主动参与国际人工智能治理合作的理念、机制和专业人才准备不足。
四、结论和建议
探索形成一套有效的人工智能治理机制和平台、治理方法和工具,以实现治理结果的趋利避害、治理过程的科学民主,是保障人工智能持续健康发展的内在要求。鉴于全球人工智能治理现状以及我国的具体国情,本文提出以下建议:
一是原则层面,根据收益和风险结构进行分类、分级处理。一方面人工智能在不同领域中的应用所带来的收益和风险存在很大差异;另一方面在人工智能创新和产业化链条的不同阶段和环节,收益和风险的大小和结构也存在很大差异。没有必要,也很难用一个标准来简单地加总利害。从目前国际人工智能治理经验和我国治理实践来看,未来我国人工智能治理遵循的基本原则,是根据风险类型和大小,对不同场景下的人工智能系统开发和应用采用不同的监管模式和治理机制,努力实现创新和安全、知识合法性和参与合法性之间的动态平衡。
二是制度规范层面,人工智能公共治理法治化。首先应当在法律层面规范人工智能治理程序,将相关决策过程纳入法治轨道。其次要在科研经费投入、科研活动监管、公众参与方式和程度等方面,都明确相应的制度安排,在项目形成机制、各类利益相关方代表的产生方式和意见表达程序等内容作出可操作的程序设计。[17]
三是技术层面,开发多样化的人工智能治理技术工具箱。在充分借鉴国际人工智能治理方法和工具的基础上,围绕知识生产、共识形成和行动促进这三个人工智能治理的关键问题,开发适合我国制度环境和社会基础的系列工具。
[ 参 考 文 献 ]
[1]习近平,推动我国新一代人工智能健康发展,2018-10-31.
[2]俞可平.国家治理评估:中国与世界[M].北京:中央编译局出版社,2009:3-8.
[3]翟晓梅,邱仁宗.合成生物学的伦理和管治[N].科学时报,2010-7-19.
[4]卢阳旭,龚旭.科学资助中的控制权分配——以科学基金机构职能变迁为例[J].科学学研究,2019(3).
[5]诺沃特尼,斯科特,吉本斯.反思科学:不确定性时代的知识与公众[M].冷民,等,译.上海:上海交通大学出版社,2011.
[6]马森,魏因加.专业知识的民主化:探寻科学咨询的新模式[M].姜江等译.上海:上海交通大学出版社,2010.
[7]王奋宇,卢阳旭,何光喜.对我国科技公共治理问题的若干思考[J].中国软科学,2015(1).
[8]国家人工智能标准化总体组.人工智能伦理风险分析报告[R].2019.http://www.cesi.ac.cn/201904/5036.html.
[9]贾开,蒋余浩.人工智能治理的三个基本问题:技术逻辑、风险挑战与公共政策选择[J].中国行政管理,2017(10).
[10]汝绪华.算法政治:风险、发生逻辑与治理[J].厦门大学学报(哲学社会科学版),2018(6).
[11]曾毅.构建新一代人工智能准则[N].光明日报,2019-1-24(16).
[12]Margulis,ST.PrivacyAsaSocialIssueAndBehavioralConcept[J].JournalofSocialIssues,2003.59(2):243-261.
[13]Bamberger,KA,Muligan,DK.2015,Privacyontheground:drivingcorporatebehaviorintheunitedstatesandEurope[M],MITPress.
[14]克雷格,卢德洛芙.大数据与隐私:利益博弈者、监管者和利益相关者[M].赵亮、武青译.2016.长春:东北大学出版社.
[15]汪庆华.人工智能的法律规制路径:一个框架性讨论[J].现代法学,2019(2).
[16]皮凯蒂.21世纪资本论[M].巴曙松,等,译.北京:中信出版社,2014.
[17]何哲.人工智能时代的政府适应与转型[J].行政管理改革,2016(8).
[作者简介]卢阳旭,中国科学技术发展战略研究院副研究员;何光喜,中国科学技术发展战略研究院研究员。人工智能行业专题报告:挑战与机遇
(报告出品方/作者:中信证券,杨泽原、丁奇)
报告摘要
一、人工智能开启新一轮产业变革
1.1三大支柱支撑,向认知智能迈进
人工智能:通常是指“研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用的一门新的技术科学”。人工智能的发展需要“运算平台+数据资源+算法”。
机器学习:属于人工智能的其中一个领域,通过经验学习优化计算机算法,其根本在于海量数据的训练。
深度学习:在人工神经网络的基础上发展而来,实现了从大数据中自动提取数据特征并设计特征模型,摆脱了传统神经网络算法中需要人工工程进行各层的特征设计的弊端。
三次工业革命均引发人类社会格局发生颠覆性的改变,人工智能有望开启新一轮产业革命
第一次(18世纪60s):蒸汽机成为动力机,解放了生产力;
第二次(19世纪70s):电力得到应用,推动电气、化学、石油等重工业的兴起;
第三次(20世纪40s):进入信息时代。信息时代先后出现了计算机、互联网、移动互联网、物联网等几次技术变革。但部分领域近年来放缓趋势已经开始出现。
1.2资本+政策+需求驱动,产业高速增长
投融资:资本争相涌入
近年来人工智能投融资火热,资本争相涌入。随着AlphaGo等具有较大影响力的应用逐步落地,产业界与资本界均对人工智能前景充满期待,人工智能有望开启新一轮产业革命,大型公司纷纷展开“AI军备竞赛”。
二级市场助推人工智能企业发展。私募市场与二级市场逐渐形成衔接,助推AI企业向下一个阶段发展。在二级市场,最受资本青睐的是行业解决方案和智能风控,其次是服务机器人、ADAS系统和AI芯片,最后是智能影像医疗和智能营销。近期,伴随部分AI独角兽IPO获受理,2021年有望迎来AI企业上市潮,二级市场助推AI企业发展。
政策端:政策大力支持
确立“三步走”目标,加速人工智能深度应用创新建设,全面推动AI产业落地。国务院2017年《新一代人工智能发展规划》中确立“三步走”目标,第一步,到2020年人工智能总体技术和应用与世界先进水平同步;第二步,到2025年人工智能基础理论实现重大突破、技术与应用部分达到世界领先水平;第三步,到2030年人工智能理论、技术与应用总体达到世界领先水平。
加强人工智能与经济社会深度融合,积累经验做法、标杆案例。科技部2019年8月发布《国家新一代人工智能创新发展试验区建设工作指引》,指出要充分发挥地方在试验区建设中的主体作用,3年内形成一批人工智能与经济社会发展深度融合的典型模式,积累一批可复制可推广的经验做法,打造一批具有重大引领带动作用的人工智能创新高地。
明确“新基建”,注入“新动能”。受疫情影响,数字经济发展迎来关键窗口期。2020年3月,中央明确“新基建”进度,加固、升级人工智能长期发展创新的数字底座,开启AI发展新空间。
应用场景:落地场景丰富
AI的最终任务是实现人工智能在各垂直行业的场景化落地。从全球看,人工智能企业主要集中在AI+(各个垂直领域)、大数据和数据服务、视觉、智能机器人领域,其中AI+企业主要集中在商业(主要包含市场营销和客户管理领域)、医疗健康、金融领域。
从中国看,各垂直领域的AI企业同样集中在各类垂直行业中,渗透较多的包括医疗健康、金融、商业、教育和安防等领域,根据中国信通院数据,其中医疗健康领域占比最大达到22%,其次在金融和智能商业化领域占比分别达到14%和11%。
二、人工智能产业链各环节机遇涌现
人工智能产业链包括基础层、技术层和应用层:
1)基础层是指对AI提供支撑性服务的硬件平台,包括芯片、传感器、数据和服务、生物识别、云计算等;
2)技术层是指实现计算机感知和认知的程序算法,主要包括机器学习、计算机视觉、语音及自然语言处理等;
3)应用层是指将人工智能是现在垂直领域的应用,包括工业机器人、服务机器人、智能医疗、智能金融等。
前文我们提到了一个观点——“运算平台+数据资源+算法”为人工智能提供三大支柱,接下来我们将继续沿着这条线,分析人工智能产业链不同层次的投资机会。
三、人工智能的挑战与机遇:能者为王
挑战一:AI未来发展前景如何?
挑战:人工智能的发展呈现螺旋向上趋势。计算能力上,经历了早期计算、LISP机器、GPU/TPU的发展;算法演化上,经历了Perceptron、专家系统、BP、深度学习的技术发展;核心数据上,经历了从少量到大量再到海量的递进;实用效果上,历经感知、认识、决策的步步推进。
机遇一:技术持续创新迭代推动应用深化
以机器学习为主流方向的人工智能基础技术包括有监督学习、无监督学习、强化学习等技术,但这些技术只是针对部分特定场景,比如说分类、聚类、求最优解等,而现实世界往往是复杂的,深度强化学习等新兴技术的快速发展推动AI向更接近人类思维的方向进步,解决更复杂的认知智能问题。
深度强化学习:强化学习与深度学习结合。深度学习具有较强的感知能力,但是缺乏一定的决策能力;而强化学习具有决策能力,对感知问题束手无策。将两者结合起来,优势互补,为复杂系统的感知决策问题提供了解决思路。
挑战二:数据从何而来?
挑战:人工智能算法训练需要大量数据资源。例:百度人脸识别系统在2015年FDDB检测数据集和LFW识别数据集上的实验结果均获得世界最高的准确率。ImageNet数据库包括1000类150万张图片。百度使用了200万类2亿张图片,数量上是ImageNet数据库的一百多倍。
机遇二:产品+技术+场景完整方案形成数据闭环
大数据:人工智能发展的三大重要基础之一(算力、算法、数据)。大数据的作用包括挖掘、传输、存储、分析、分类等;大数据是人工智能“思考”和“决策”的重要参考,提供数据支持;物联网是促进大数据和AI结合的重要方式,大数据和AI的结合反哺物联网应用的发展。
AI公司有望依靠产品+技术+场景的完整解决方案,构筑数据闭环。2B/2C提供庞大的数据来源;物联网使得数据形式更加多样化;客户资源深厚的头部公司具备广泛的数据基础,以BATH为例,利用庞大的数据量和技术积累,切入AI领域,为中小企业提供数据来源、算力等,助力AI普惠
挑战三:商业化路在何方?
挑战:初创企业商业模式路在何方?从软件核心知识产权、定价模式、数据所有权等维度看,形式较为多样化,当前商业模式未成定局。
机遇三:实现优势赛道控盘突破
以AI技术为切入点,推动“平台+赛道”战略布局,控盘教育等核心赛道。
1)教育:2B2C闭环协同助力打造AI+教育领军,2B产品包括智慧课堂、智慧校园及区域教育云平台等,2C产品包括智能学习机等;
2)政法:智能庭审、辅助判案等产品各地持续推广;
3)医疗:智医助理等AI产品在各地区域化复制落地。
以计算机视觉为核心技术驱动,应用规模化落地。
1)平台:自主研发并建立了全球顶级的深度学习平台和超算中心。
2)应用:深入探索多个垂直行业领域,业务涵盖智能手机、互联网娱乐、汽车、智慧城市、以及教育、医疗、零售、广告、金融、地产等多个行业。
报告节选
(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)
精选报告来源:【未来智库官网】。
人工智能未来发展机遇与挑战并存
从未来发展来看,作为一门交叉科学,人工智能技术涉及到社会学、信息学、控制学、仿生学等众多领域,既是生命科学的精髓,更是信息科学的核心,具有光明的发展前景。
人工智能技术还促进了多种科学与网络技术的深度融合,解决了互联网时代看似无法解决的问题和痛点,将互联网带入到了一个全新发展的智能时代,极大影响着网络技术和信息产业的未来发展方向。
目前,人工智能技术研究正在如火如荼地展开,进入了六十年来最狂热的发展阶段。从目前发展现状来看,人工智能技术还存在着较大的市场发展空间和投资机会,例如,以大数据收集为基础的医疗、教育、消费、营销等垂直行业就尚未出现人工智能领域的行业龙头,因此将未来成为各大资本和上市公司竞相追逐的宠儿。
而随着新科技革命继续发展,人工智能技术也正孕育着新的重大变革。一旦突破,必将对科学技术、经济和社会发展产生巨大和深远的影响,深刻地改变经济和社会的面貌,并促使生产力出现新的飞跃,成为第四次工业革命的主旋律和人类社会新未来的重要支柱。
但是,我们也要看到,虽然人工智能技术给人类社会带来了极大的便利,但同样也存在着诸多风险挑战。例如,人类将面临着技术、信任、法律、道德等一系列问题。人的“机器化”和机器的“人化”是人工智能技术发展的两个必然发展趋势,很多人担心智能机器在为人类提供聪明友好帮助和服务的同时,也会给人类带来威胁甚至灭顶之灾。从理论上讲,机器的智能化程度越高,其内部电脑控制软件的规模就越庞大且复杂,出现故障的概率也就相应的越高。
如果真的有一天,机器智能化超过一定程度而控制系统又出现问题的话,将会给人类社会带来难以想象的后果:一系列毫无感情的智能机器管理着整个人类社会、一群不知疲倦杀人的智能机器走上战场,被赋予“生杀大权”,滥杀无辜,最终成为“人类终结者”……这些可怕的场景并非杞人忧天,也是未来人工智能技术发展必须思考的问题。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:人工智能技术在计算机中的发展现状和实际应用http://www.duozhishidai.com/article-13415-1.html中国AI人工智能发展史,大致分为三个发展阶段http://www.duozhishidai.com/article-8524-1.html人工智能可以实现的技术有哪些,可以应用于哪些方面!http://www.duozhishidai.com/article-10028-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站