博舍

人工智能何以促进未来教育发展 人工智能的三大作用是什么呢

人工智能何以促进未来教育发展

原标题:人工智能何以促进未来教育发展

自工业革命以来,人类社会的发展总是在技术与教育的角逐互动中前行。技术作为推动人类历史发展的核心推进力,与教育这一“人力资本发动机”竞相成为推动经济社会发展的主力。人工智能作为第四次工业革命的显著标签,其飞速发展正在逐步塑造社会、经济、生活等领域的业务新形态,也不断带来颠覆性、丰富性、创新性的新业态。面对人工智能技术对整个社会发展的刺激,教育如何发展,成为值得思考的重要问题。

人工智能凸显创新人才发展挑战

作为引发第四次科技革命的核心技术,人工智能促进社会经济和科技的指数级发展,对人力资本的质量与供给产生了新的需求,人工智能与人力资源之间的相互依存关系产生了前所未有的张力,教育的超前性更是受到前所未有的挑战。第一,知识增长的指数发展使得未来人才需要哪些方面的准备具有极大的不确定性。第二,智力劳动者比重增加,创新人才成为时代发展的刚需。人工智能技术与生产过程的深度融合,会极大压缩生产领域的从业者需求,特别是那些人工智能胜出的领域。第三,人工智能技术的兴起引发高技术产业、新兴产业、新型服务行业更广阔的发展空间,从而使得创新型人才、复合型人才、高技术人才等在劳动力结构中需求激增。人工智能技术无法取代的创造性、灵活性、人文性等能力将成为智能化时代人才竞争的关键。教育肩负培养创新人才、为未来人才提前布局的使命。回溯历史,我们可以得到的经验是,只有教育领先于技术的发展步伐,为技术推进的社会提前做好人力资源的布局,社会的发展才有后劲。因此,在人工智能推进社会更飞速发展的今天,必须回答好什么样的教育才能承载提前布局人力资源的使命,以应对未知社会的人才挑战这一问题。

人工智能催生新的知识生产方式

在人工智能的影响下,人类知识生产加剧变化,知识增量呈现指数级态势。教育的传承性发展将不再局限于知识的传授与继承,而强调知识创造与创新,人工智能的介入更是催生了新的知识生产方式。其一,人工智能强大的知识发现能力缩短了知识生产周期。随着深度学习、强化学习等新的机器学习算法的发展,人工智能除了可以加快知识的生产、访问和利用,还可以从数据中提取隐含的、未知的、潜在的、有用的信息(知识),从而扩展知识创造的能力。其二,人机协同的智能模式扩大了知识创造的机会与可能性。人工智能技术不仅促进人的群智协同创新,而且可以实现人类与人工智能代理协同,后者所具有的超强计算能力,可以极大加速知识生产,催生知识的众创,以及人机协同知识创新。人工智能催生的新的知识生产方式对教育的挑战是,教育不再局限于知识传承,而更是知识的创新。未来学校教育必须教会学生如何与人工智能技术协同合作,呵护学习者“能学”,以及高度重视学生辨析知识能力的培养,召唤学习者“会学”,促进学习者在人机交互中实现知识更新与创造。

人工智能变革学习方式带来创造力与活力释放可能

人工智能已经引发了诸多领域与行业的深刻变革,对教育的系统性变革更是呼之欲出,为学习方式的变革带来了可能。首先,人工智能技术带来规模化教育的个性化可能。人工智能构建的智慧学习环境不仅创造灵活的学习空间,还能感知学习情境、识别学生特征,为学生提供个性学习支持。其次,人工智能技术带来标准化教育下的适应性可能。人工智能通过动态学习诊断、反馈与资源推荐的自适应学习机制,可以适应学生动态变化的学习需求,从而打破标准化的教育限制,释放出学生的创造力与活力。最后,人工智能改善结构化的授导方式,释放教师的创造力与教学活力而专注于人性化的学习设计。教师烦琐重复性的工作能够被智能机器所替代,智能分析技术能为教师精准定位学生的学习问题与需求,教师的角色将转向更加优秀的学习设计师,专注于“如何让学生学好”,注重培养学生的能力和思维,将更多时间用于学习活动设计以及与学生的个性化互动交流,为学生提供个性化学习支持服务。人工智能的发展以及与教育教学的深度融合,给教育的改革创新带来了更多选择,教育需要发挥技术的赋能、增能、使能优势满足教育的功用性追求,也要坚守教育的育人初心和使命传递人文性价值,以学生的成长发展为前提探索可以实践的学习方式、学习设计,通过人工智能释放出教育的更大活力。

人工智能引发领域与行业变革催生教育生态升级

人工智能对其他领域与行业的变革影响也会延伸到教育领域,因为教育是关乎社会发展全局的事业。一方面,人工智能所发挥的增强、替代、改善、变革等作用,突出体现在对社会生产和生活各个领域所产生的行业重塑作用,以及对人力的释放。另一方面,这些重塑作用和人力的释放,引发了社会领域与行业的变革,促使了社会人才需求的转向;而教育是社会人才资源输出的重要领地,需要为此作出有力回应,从而催生教育生态升级。人工智能加速了教育深化改革的进程,推动了系统内部的更新再造。数字技术已经对教师学生、课程、教学方式、学习体验、评价、管理等教育要素产生了深刻影响,并通过逐步的再造教育流程,变革着教育生态。而人工智能则在进一步加速这一过程,以一种颠覆性创新的态势,拓展系统内各要素的内涵,改善和延展系统内部关系,重塑教育系统功能与形态。人工智能拓展了教育边界,助推未来学校建设。未来学校将借助技术的力量,把校外学习场所(如科技馆、博物馆)和线上学习场所都纳入“学校”的范畴,整合社会各领域的教育资源,形成一种全新的育人环境。同时,数字孪生等新技术促进现实空间与虚拟空间的交互融合,通过创建人、物、环境数字孪生体,实现物理空间与数字空间的双向映射、动态交互和实时连接。对教育系统内部的升级改造以及空间资源的拓展,能够使其更好地与社会领域衔接,更好地提供适应未来生活和工作的创新人才成长场所。

人工智能关乎强国战略目标实现

教育应服务于国家战略布局,为抢占人工智能发展先机,构筑先发优势;为国际竞争、社会发展输出创新人才,支持科学技术的自主研发。当前,世界各国纷纷把发展人工智能上升到国家战略的高度,以抢占新一轮科技革命的机遇高点以及全球竞争中的主动权。《新一代人工智能发展规划》提出我国要“成为世界主要人工智能创新中心”的战略目标,全局部署了经济、教育、科技、社会发展和国家安全等重要方面。教育强国战略是科教兴国战略、人才强国战略和创新驱动发展战略等重要战略的逻辑起点,人工智能对教育的人才培养能力提出更高要求。近年来,世界各国在发展人工智能的同时也面临巨大挑战,如创新人才问题、高新技术自主可控问题等。人工智能的国际竞争本质是人才的较量,这需要教育从战略层面予以回应。因此,教育在战略上起引领作用,就要既充分发挥智能技术优势推动教育生态系统升级,又谋篇布局为国家发展提供人才支撑。立足技术与教育在角逐中互为塑造的视角,对人工智能促进未来教育发展的探索,更需要在战略上把握先机,通过教育为社会各领域输出创新人才,支撑社会各领域转型升级以及人工智能等高新科技的创新发展,为强国战略注入持续活力与能量。

教育在与技术的角逐中共同推动社会的发展。教育具有超前性、人文性、传承性、战略性及生态性等特点。在人工智能技术的指数式发展面前,教育的超前性变得难以维系;需要慢工出细活的人文性与满足社会用人需求的工具性之间呈现时空拉锯和矛盾;对人类知识的传承则变身为历史传承、人际共创以及人机共创的多重特征。随着人工智能技术推动的发展加速,教育的发展战略、前瞻性谋划,是一个时不我待、任重道远的重要课题。

(作者:顾小清,系国家社科基金重大项目“人工智能促进未来教育发展研究”首席专家、华东师范大学教育信息技术学系教授)

(责编:郝孟佳、孙竞)

分享让更多人看到

人工智能的三次浪潮与三种模式

■史爱武

谈到人工智能,人工智能的定义到底是什么?

达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。

百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。

2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

人工智能的三次浪潮

自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。

第一次浪潮(1956-1976年,20年),最核心的是逻辑主义

逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。

早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。

在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。

虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。

第二次浪潮(1976—2006年,30年),联结主义盛行

在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。

在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。

这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。

第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破

如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。

若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。

经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。

为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。

伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。

深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。

深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。

人工智能的3种模式

人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。

(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。

(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。

(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。

我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!

史爱武:人工智能的三次浪潮与三种模式

人工智能的三次浪潮

自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。

第一次浪潮(1956-1976年,20年),最核心的是逻辑主义

逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。

早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。

在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好的完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。

虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。

第二次浪潮(1976—2006年,30年),联结主义盛行

在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义都在,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。

在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。

这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。

第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破

如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。

若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。

经模型化的人工神经网络,是由“输入层”、“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。

为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。

伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。

深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。

深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Framework)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。

人工智能的三种模式

人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。

弱人工智能

长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。

强人工智能

是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。

超人工智能

知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。

我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!返回搜狐,查看更多

人工智能的三大领域及其工业应用

人工智能是一门新兴的技术学科,研究和开发用于模拟人类智能的扩展和扩展的理论,方法,技术和应用系统。人工智能研究的目标是让机器执行一些复杂的任务,这些任务需要聪明的人来完成。也就是说,我们希望机器可以代替我们来解决一些复杂的任务,不仅仅是重复的机械活动,而是一些需要人类智慧才能参与的任务。

在本文中,我将解释人工智能技术的三个主要方向,即语音识别,计算机视觉和自然语言处理。

[[328302]]

语音识别

语音识别使计算机能够进行聆听,包括我们可以在日常生活中使用的iPhone上的Siri;在Google语音输入中,您可以说出一个句子,然后变成文字;与Google地图通话即可说出我要去的地方,它可以自动为您生成导航。这些是语音识别的一些应用。语音识别可以分为三个方面:

语音合成,包括在线和离线语音合成;语音识别,包括语音听写和其他方面;语义理解是使用神经网络提取语音的含义,包括语音评估和我们一些常用机器翻译的某些功能。

计算机视觉

计算机视觉使计算机看到。我们希望计算机可以代替人眼的某些功能。例如,有一种非常有用的文档分析技术,称为OCR。我们可以让计算机扫描文档并阅读。例如,我们可以获得发票,以便计算机可以立即对其进行扫描,然后从发票中提取有关金额,税率和我们关心的其他信息。在智能医疗诊断领域中有一些关于计算机视觉的研究。尽管它尚未在市场上出售,但我相信将来会有广泛的应用场景。同时,在军事领域,无人驾驶飞机正在取代人类观察和测量导弹的轨迹。

计算机视觉的流行方向是:

对象识别和检测。计算机可以快速检测出我们通常从照片中看到的内容。例如,如果我们拍出一个旅游区的风景照片,我们可以立即识别出上面的植物,人,动物或车辆,计算机也可以。对象运动跟踪。我们已经在某个帧上捕获了对象的图像。在随后的视频中,我们可以不断跟踪该对象的变化和状况。这不是一件容易的事。难以准确识别物体,因为物体会不断受到阳光和光线的影响。

另一个是计算机查看图片和说话的功能。例如,给定图片,计算机可以识别图片中包含的内容,然后告诉一些预制的内容。现在,许多展厅已经使用了这项技术。它可以预制解释性单词和指导性单词。参观者仅需使用手机或其他设备即可扫描展品或展区中的某些指定位置,以听到相关的指导词。

自然语言处理

从现在开始,我们的计算机可以听我们说的话并看到我们看到的内容。但是我们想要更多。我们更喜欢与计算机交互,使用自然语言进行交流,这是自然语言处理的目的。现在,自然语言处理已用于机器翻译,信息检索和对话系统中。

计算机翻译:主要包括机器同声翻译。

信息检索:例如,当我告诉计算机我要寻找的内容时,它可以为我搜索相关的内容。智能的客户服务:我们通过语音与计算机互动,并让计算机回答我们的问题。

自然语言处理不是那么简单。这是相对困难的。我们必须解决以下问题。第一个是语言上的歧义,有时可以用两种或更多种可能的含义或方式来理解一个句子。例如,"我去了银行。"银行可以是存放金钱的地方,也可以是河流的边缘。

[[328303]]

另外,我们需要解决语言的鲁棒性。我们经常在日常演讲中说错别字,或者说少一些单词,或者说多于原始含义的单词,这会影响该语言的鲁棒性。另外,可能还有其他昵称可能指向同一个人。

另一个是知识依赖。我们通常使用知识图来解决知识依赖问题。假设"大鸭梨"(中文是大梨)是一种水果,也是北京一家非常有名的烤鸭店的名字。就像"七日游"一样,它可以代表时间,也可以代表酒店的名称。这些都取决于一些背景知识,我们需要使用知识库或知识图来解决此问题。

另一个是上下文。根据对话的上下文,我们可以准确地判断该说些什么。例如,"我想吃大亚里","大亚里"可能代表一种水果。"我们去大亚里",然后"大亚里"代表一家餐馆。在不同的对话中,不同的表达方式表现出不同的含义。

摘要

在我们转向人工智能的工业应用之前,我们先总结一下在上一部分中学到的知识。我们学习了语音识别。计算机可以听到我们的声音并做出一些响应,例如将我们的单词翻译成文本。然后我们研究了计算机视觉,它让计算机看到了。计算机可以通过查看图像来识别图像中的某些对象,并且还可以跟踪连续图像中对象的变化。这些是计算机解决的一些热门话题。然后,最后,我们了解了自然语言处理,也就是说,计算机不仅需要听我们说的话,他们还可以理解我的话,然后他们才能给我们一些反馈。

人工智能的行业应用

民安

首先,让我们告诉您有关民事安全领域的信息。随着智能家居的普及,人工智能逐渐在民安领域中发挥了作用。例如,家用安全摄像机可以从视频中学习并通过日常拍摄来识别属于我们家庭的摄像机。当我们的家庭进入视频监控范围时,它不会触发警报。但是,当外人非法进入时,它将立即向我们发出警报,例如向我们发送短信或发出响亮的警报声。这些是智能安全摄像机的一些简单应用。

[[328304]] 

运输

在交通领域,我们可以通过人工智能分析交通视频,并利用数据做出决策。我们可以分析当前道路是否拥堵以及情况如何,然后使用人工智能自动做出决策。例如,让AI调整交通信号中的时间以指挥交通,或者实施大规模的交通联动调度以提高整个城市的运营效率。

[[328305]]

公安

在公共安全领域,人工智能还具有使用图像识别和面部识别的特别明显的应用。例如,我们在大量视频信息中发现了嫌疑人的线索;或给定特定特征,人工智能从与视频特征匹配的人员或物品中提取信息,这是快速而准确的。

自动驾驶

人工智能在自动驾驶领域也有许多应用。自动驾驶实际上需要很多技术,包括对环境的感知。我们通过一系列设备(例如相关的摄像机,激光测距仪,微传感器,车辆雷达等)感知周围环境,然后通过人工智能将这些信息整合在一起,以确定周围环境的状况。在基于环境感知的结果收集了行为决策所需的所有信息之后,有必要使用人工智能来决定汽车接下来应该做什么,是应用制动器还是加速器。最后一个是动作控制模块。AI做出决定后,必须将该决定传递给运动控制模块以控制汽车,例如实际踩下制动器或实际踩下油门踏板。

智能机器人

智能机器人在服务行业,教育行业和医疗行业中具有巨大的应用潜力。例如,许多银行现在都具有自动问答机器人,该机器人可以引导来银行的人进行业务,排队排队或只是介绍一些业务,这提高了银行的效率,并且为方便客户,大多数人去银行开展业务。

人工智能在电信行业中的应用

 [[328306]]

在网络领域,网络自助服务机器人,智能VoLTE语音质量测量,智能家庭宽带安装已实现了人工智能技术的大规模应用。在安全领域,反欺诈系统已经能够拦截骗局电话在中国,每月的拦截量超过1400万次。在管理领域,合同和账单的审计点也已实施。智能机器取代了人工审核,每年可以节省数亿美元的成本。在客户服务领域,智能客户服务问答机器人目前每月可以回答超过2.1亿次。在垂直行业中,电信公司正积极在各个行业中部署AI应用程序,包括智能教育,智能医疗,智能交通,智能工业,智能农业等方面。

摘要

最后,我们总结了这一部分的学习内容。在这一部分中,我们已经学习并了解了民用安全领域的人工智能安全摄像机。通过视频识别,交通领域的人工智能可以通过机器学习为我们的交通决策提供基础,甚至可以自动做出决策。在公共安全领域,图像识别可以为检测公共安全案件和嫌疑人的位置提供快速的基础。

自动驾驶汽车不仅使用人工智能技术使汽车能够感知周围环境,而且还可以让汽车做出下一步的决定,并操纵汽车以达到自动驾驶的目的。智能机器人在我们的生活中也很常见。他们通常扮演客户服务的角色来帮助我们。最后,我们简要介绍了人工智能在电信行业中的应用和发展,主要介绍了移动公司和人工智能客户服务机器人所使用的人工智能网络平台。

 

人工智能技术应用的领域主要有哪些

随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?

什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。

##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

1、深度学习

深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;

2、计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

3、语音识别

语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。

语音识别技术原理:

1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;

4、虚拟个人助理

说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。

虚拟个人助理技术原理:(以Siri为例)

1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。

5、语言处理

自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。

语言处理技术原理:

1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;

6、智能机器人

智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

智能机器人技术原理:

人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。

智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐

不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。

Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。

关于人工智能的展望

除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。

当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。

转自:http://www.arduino.cn/thread-45848-1-1.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇