博舍

人工智能论文2000字范文(精选8篇) 人工智能与语音识别的区别和联系论文范文怎么写

人工智能论文2000字范文(精选8篇)

   人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。本文精选了8篇最新"人工智能论文范文",以供大家参考和研究。

   

   人工智能论文2000字范文一:浅谈人工智能与机器人的发展

      摘要:随着社会经济的飞速发展,在当今信息时代,人工智能与机器人已经属于前沿研究领域。在大部分人的意识中,对机器人是有一定概念的。但是这种概念,更多的是通过科幻小说的描写和人们的想象得到的。在现实发展过程中,虽然也有机器人的身影,但是版本都太低,仅停留在表面,智能效果并不好,在发展阶段还处于突破阶段,人工智能也同样如此。人工智能与机器人发展这两者是相辅相成的,目前对机器人研究要发展,其突破方向就是培养高智商的机器人。该文从人工智能发展史、人工智能在发展中所遇到的困境以及人工智能在机器人领域中的发展三个方面来做具体阐述,为以后相关行业人员,提供参考订阅。      关键词:人工智能;机器人;自动化;发展趋势      人工智能与机器人都同属于计算机的分支,是从20世纪中叶兴起来的。从定义上来讲,理解起来还算简单,但是对工智能与机器人比较难定义。虽然大家都清楚这两者的意义,然而,如果是比较统一的文字定义,网络上或者是相关书籍上是无法查阅到明确定义的。在对人工智能和机器人的研究过程当中,其涉及学科多,以至于这两者的发展慢慢已经渗透到高中生的学习领域。在很多时候,包括笔者在内的很多人,都会把人工智能和机器人的定义搞混,单纯觉得两者说的是同一个东西。但实际上人工智能比机器人更加复杂。人工智能是通过计算机应用,对人大脑的思维和智能进行模仿;而机器人则是应用某些技术,造出与人的行为较为相似的机器做的人,模仿人类行为。对于高中生而言,不仅需要详细深入了解这两者的定义和区别,更需要从古至今了解这两者的发展以及现状,为将来的研究提供理论合基础,时刻准备着为祖国科技做出贡献。      1人工智能发展史      说起人工智能,发源时间是从20世纪中叶开始。在1956年的达特茅斯学院会议上"人工智能"这个词正式出现在世界上,科学家也是从这个时候开始真正踏上智能研究的道路。通过科学家的研究,10年的时间,人工智能迎来第一次发展高潮,计算机被应用于社会的各个领域。也是通过这个现象,在数学方面、自然语言方面领域的应用给了很多科学家希望,因此,各大项目都逐渐建立起来。      因为内基梅隆大学为数字设备公司设计了一套名为XCON的"专家系统"的系统,处于冰冻期的人工智能迎来第二次发展高潮,这套专家系统主要用于商业模式,通过利用人工智能,建立了具备完善专业知识和经验的计算机智能系统。但是,好景不常在,没过多久又处于冰封状态了。      在1987年,专家系统并没有发展得那么好,在苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机后,专家系统光辉不在,开始走下坡路。尽管如此,人工智能的研究始终在继续。于1997年,IBM公司所生产的深蓝打败了国际象棋世界冠军卡斯帕罗夫;在2009年,螺丝联邦理工学院发起又一计划"蓝脑计划",生产已经成功模拟了部分鼠脑;在今年,大家都关注的谷歌AlphaGO战胜韩国李世乭。这3个案例的成功,都展现出了人工智能方面的研究成果,其研究成果也跟随时间的推移在不断刷新。社会经济在发展,人们在智能科学技术上投入的资金和技术还有精力也越来越多,这一方面的发展只是时间问题。

      2人工智能的发展困境      2.1人工智能的发展现状      目前,人工智能处于飞速发展的阶段,很多人工智能公司如雨后春笋般相继现世。在公司成立之后,相继被国际比较大型的IT企业收购,处在网络行业竞争激烈的时期,谁都在争夺行业的有利地位。在人工智能的发展进程中,当然,随着人工智能也兴起了很多新兴行业,象自然语言处理、智能机器人、虚拟私人助理、手势控制等。根据网络上相关报道以及部门统计,人工智能行业已经成为21世纪世界各国争相投资和创业的重要选择。据统计,在人工智能行业,全世界的投资金额接近50亿美元。虽然我国人工智能方面的研究相对于欧洲发达国家比较晚,但是随着社会经济的发展人工智能的发展速度较快。      2.2人工智能的发展困境      就目前所有研究资料显示,人工智能的研究困境主要体现在2个方面,分别是计算机博弈和机器翻译,而博弈说白了是竞争。计算机博弈分为多种多样,最为简单的博弈应该是只要操作就可以的,象联机作战游戏。但是实际上来说计算机的博弈主要体现在对技术的操作、应对措施以及智能模仿等方面。人与人之间的竞争涉及方方面面,主要都集中在脑力和体力2个方面,而计算机技术,它是无法根据人的思维和智能去演算出机器博弈的,而这个点就是计算机技术研究所面临的困境。而具体要解决这一世界性的难题,就必须加强人们对技术方面知识的研究,熟悉生物神经学科,不断加强对知识性学科的学习。      机器翻译很多人都会使用。如果某段话不会翻译,就打开某个软件,笔者平常会用几个软件综合一下,把你需要翻译的中文打在输入框内,然后在输入结束后按翻译按键,下框就会自动弹出所对应的英文句子,但是这是非常简单的翻译,而且个人觉得非常不准确,很多语法都无法把握,偏重于中式翻译。而在翻译过程中,实际起作用的还是程序,严格来说,并没有实现自动化翻译。笔者认为,最主要的还是要通过计算机对人类思维的了解和使用语言习惯和知识点进行比较深入地分析,才能够真正完成机器的自动化翻译。      目前来看,人工智能在计算机博弈和机器翻译出现障碍,在世界范围内,机器翻译还是比较广泛运用的,且具有良好的发展前景。      3人工智能在机器人领域中的发展      在现实生活当中,人们的认知方式和生活方式因为人工智能发生了改变。科学家们对于人工智能和计算机的完美结合给予高度重视,大家都把人工智能机器人作为研究的重要领域,而所谓的人工智能机器人,就是可以对人类行为和思维进行模仿,并且相似的机器人。但是就目前的研究状况而言,常常可以看见机器人搬运其物块或是移开物块等,机器人所做的只是在模仿人的行为。对于这些简单的行为机器人的制造并不难,但是难就难在无法将机器人赋予人的思维和智能,就像无法制造出能够与国际象棋世界冠军卡斯帕罗夫对赛的智能机器人。人工智能运用在机器人当中主要表现在2个方面,第一是人工智能系统集成,第二则是多元信息采集。这样做的目的是,将计算机和系统综合起来,使利用率更高。需要认识到的是,单一的系统是无法让计算机得到发展和完善的,计算机必须满足同时拥有多个系统,才能对突发情况进行应对和解决,进而具备了"思维".对于机器人来说,多元信息采集是极其重要的。通过对IT系统的使用,将知识进行系统整理,从而得到更加广泛的知识,这样一来,机器人的智能就会得到提高。      结语      综合上述说法,我们可以看出,人工智能的发展还是比较曲折的,从20世纪中叶到现在,经历了3次高潮,也经历多次冰封时期,几经沉浮终于在世界的发展过程中占有极其重要的地位,且在未来的发展中也将会继续受到重视。尽管如此,我国人工智能的发展相对于欧洲发达国家而言,还是比较落后的。人工智能机器人的发展是一个国家技术经济发展的重要标志,对今后社会经济的发展和中国在全球的地位也具有非常重要的意义。      因此,对于智能机器人的发展,我国应该给予高度重视。中国应当明确发展目标、认清国际形势;培养相关技术人才,有效地运用人工智能技术,缩小中国与世界人工智能方面的水平差异。希望通过国家和科学技术人才的支持和努力,能让我国智能机器人的发展进入一个新台阶,发展达到新高度,在未来的发展过程中起到重要的作用。      参考文献   [1]孙静,张帆,王国庆,等。物联网时代人工智能机器人的发展趋势探讨[J].科技经济导刊,2017(31):12-13.

   #p#分页标题#e#

   人工智能论文2000字范文二:人工智能技术在新冠病毒肺炎疫情防控中的应用   

   摘要:归纳了人工智能技术在新型冠状病毒肺炎疫情防控工作中的应用情况,分别从医疗辅助机器人、大数据分析、云平台、远程医疗、智能检测5个方面进行分析,阐明人工智能在疫情防控中的优势,剖析人工智能在医疗领域的发展前景,为今后人工智能在医疗领域的广泛应用提供参考。      关键词:新型冠状病毒肺炎;人工智能;大数据;机器人;云平台;远程医疗;智能检测      2019年12月,新型冠状病毒肺炎病例在武汉出现,2020年1月20日,国家卫生健康委员会将新型冠状病毒肺炎纳入《中华人民共和国传染病防治法》规定的乙类传染病,并采取甲类传染病的预防、控制措施[1,2].截至2020年2月12日24:00,全国新型冠状病毒肺炎确诊病例52526例,死亡1367例[3].面对疫情全面暴发的严峻形势,医疗防护物资紧缺,医护人员高强度负荷,疫苗和新药亟待研发,公众居家恐慌,疫区优质医疗资源匮乏等,人工智能(artificialintelligence,AI)利用虚拟现实技术,在疫情防控的关键作用逐渐显现,如机器人配送物资,5G网络查房问诊,大数据助力新药研发,远程医疗会诊,智能筛查疑似病例,云平台办公和在线学习。本研究对人工智能技术在此次疫情中的实际应用进行综述,旨在凸显人工智能在疫情防控中的优势,为今后人工智能在医学领域的广泛应用提供参考。      1概述      人工智能是计算机科学的一个分支,由计算机科学、信息学、语言学、控制论、心理学、语言学等多学科相互融合发展起来的,旨在对人的思维、学习、知识储存过程进行模拟和系统应用[4].人工智能技术企图通过挖掘智能的实质,生产出新的类似人脑且能做出快速反应的机器,涵盖算法、芯片、软硬件平台和应用[5].人工智能的核心是算法,基础是数据及计算能力,该领域的主要研究包括自然语言、机器学习、图像识别技术、语言识别技术、神经网络学习等[6,7].随着人工智能技术的逐渐成熟,开展智慧医疗成为医疗领域的热点,也是今后发展和优化医疗服务的趋势[8].目前,该技术在我国医疗健康领域的应用才刚刚起步,并未广泛投入使用,此次新型冠状病毒肺炎疫情的防控,给人工智能技术的开拓应用提供了一个实战平台,让我们看到了人工智能技术在医疗领域的巨大潜力和重大价值。      2人工智能技术在新型冠状病毒肺炎疫情防控中的应用      2.1医疗辅助机器人      医疗辅助机器人的开发应用一直是人工智能在医疗领域应用中备受关注的一大领域[9].广东省人民医院在抗击新型冠状病毒肺炎疫情防控工作中引进了2名机器人"新员工",主要承担送药、送餐、回收被服和医疗垃圾、实时影像监控病区动态等工作;它们集成先进的无人驾驶技术,可自主识别地图和工作环境,自主避开障碍物,实现点对点的物资配送,每台机器人相当于3名配送员,减少了医务人员进入隔离区的频次,在提高配送效率的同时降低了临床工作人员交叉感染的风险。火神山医院投入使用了一批医疗服务机器人--"豹小弟",它们分工明确,承担着红外测温、发热问诊、引领病人、初步诊疗、化验单递送、药品运输等工作,代替了医护过程中简单重复且耗力的工作,在减轻医护人员工作量的同时,减少了医护人员在诊疗过程中交叉感染的机会。这次疫情中投入使用的不止是医疗机器人,还有物流机器人,京东物流的智能配送机器人、苏宁的无人智慧物流仓在武汉市医疗物资的打包、分拣、配送中发挥了高效的作用。#p#分页标题#e#

      2.2大数据分析      我国经历了严重急性呼吸综合征(SARS)、甲型H5N1禽流感、甲型H1N1流感疫情等突发公共卫生事件,此次新型冠状病毒肺炎疫情的防控工作虽然挑战艰巨,但比以往任何一次疫情所能调动的科技资源的水平都高,大数据技术的应用为新型冠状病毒肺炎疫情的防控工作提供了数据支撑,利于国家疫情防控工作制定精准、有效的决策,实时识别和监控高危人群,避免了疫情的进一步扩散。另一方面,疫情数据的实时动态更新和公开发布,避免了谣言及公众因不了解实情相互猜疑引起的恐慌。面对节后复工这一节点的来临,各省市政府机构都在积极利用大数据技术,精准掌握各疫区人员的流动动态,定向指导各类人群的风险识别,合理安排居家隔离及至医院就诊。此外,大量的数据分析也为此次新型冠状病毒肺炎新药和疫苗的研发提供了数据支持,利用人工智能的超大计算力,为大规模文献筛选、病毒基因测序、蛋白筛选等研发工作节省了研发时间。医疗卫生及互联网领域专家表示,利用互联网大数据对重大公共卫生突发事件进行群防群控,是未来疫情防控的关键手段和重要支撑。      2.3远程医疗      远程医疗以远程信息(包括影像、图片、文字、音视频)的传送和交流为主,从"互联网+"的概念来看不算新技术,但由于医疗体制和技术本身的限制,在医疗领域并未广泛应用[10].此次疫情下远程医疗系统的应用让我们看到了它不可估量的价值。面对新型冠状病毒肺炎疫情的不断蔓延,被隔离的病人陷入了极度的恐慌和焦虑情绪,将远程医疗系统引入病区,展现出不可估量的应用价值。(1)宽慰病人:隔离病人需要的更多是被安慰和关心,医生通过远程医疗设备进行远程查房,除了了解病人病情,更多的是同病人交流,给予适当人文关怀,减轻病人的恐慌和抵触情绪。(2)缓解物资紧缺:远程诊疗可以减少医务人员同病人的直接接触,减少防护用品的使用,缓解防护物资的紧缺。(3)远程会诊:基于5G网络,疫区的新型冠状病毒肺炎急重症病人通过远程医疗向其他省市临床医疗中心寻求帮助,获取了远程诊疗意见,实现了优质医疗资源的互通。由此可见,远程医疗的有序开展有利于优化隔离病房的病人管理,安抚隔离病人的紧张情绪,促进优质医疗资源下基层,更好地普及医学知识,进行专业的心理疏导,从而缓解公众的紧张情绪。      2.4人工智能检测      此次疫情防控期间,人工智能测温仪也因地制宜,投入使用。它通过温感摄像头、人脸识别、热成像体温检测系统,能够在2m内快速采集体温,并将身份信息和体温匹配形成数据表,一旦识别出疑似发热者,系统便会自动报警,帮助工作人员及时、准确锁定发热人员。人工智能测温仪可以在1min内实现200~300人同时通过单行道进行快速体温检测,同时升级了人脸识别系统,即使被检测者佩戴口罩,也能实现快速筛查。目前已在部分医院、火车站、机场等人群密集场所投入使用,具有高效、安全、可靠等特点,能够节省人力,减少体温监测人员的感染风险,满足了疫情防控的需要。此外,一些辅助诊断的智能评价体系也正式上线,如上海公共卫生临床中心应用的新型冠状病毒肺炎智能评价系统,从新型冠状病毒肺炎病人CT影像中提取智能参数,可对肺炎严重程度进行自动量化评估,为医生评估CT影像提供参考。      2.5云平台      当前疫情形势严峻,减少外出、避免人员聚集是对疫情传播最有效的遏制,在疫情防控的总体部署下,出现了新的办公和学习模式,众多企业在节后复工时采取远程办公模式,单位通过云平台组织网络会议,员工通过云平台进行居家办公;此外,教育部也连续下发通知,要求延期开学并开展网上教学,老师和学生通过线上教学、云课堂实现师生间的在线学习和交流。      3启示      此次新型冠状病毒肺炎的确诊人数已经超过了SARS,而且新型冠状病毒肺炎的潜伏期较长,传播力也较SARS强,但值得庆幸的是,我国现在的科学技术水平已远超SARS时期,可以调动更广阔、更先进的科技资源和技术力量。人工智能技术的应用在抗击新型冠状病毒肺炎疫情中发挥了积极作用,它不再只是停留在人们概念里的高新技术,从医疗辅助机器人、大数据分析、云计算、远程医疗、智能检测的设想到变为一个个切实可行的案例,人工智能彰显了它在医疗领域广阔的应用前景。随着人口老龄化的出现和慢性病病人数量的逐年上升,公众对医疗健康的需求不断增加,人工智能在临床的应用能够解放人力、提高效率,让有限的医疗资源发挥最大的价值。      参考文献   [1]国家卫生健康委员会。中华人民共和国国家卫生健康委员会公告(2020年第1号)[EB/OL].[2020-02-07].   [2]国务院应对新型冠状病毒感染的肺炎疫情联防联控机制。关于印发近期防控新型冠状病毒感染的肺炎工作方案的通知[EB/OL].[2020-02-10].      [3]国家卫生健康委员会。新型冠状病毒肺炎疫情防控工作疫情通报[EB/OL].[2020-02-13].   [4]贺倩。人工智能技术发展研究[J].现代电信科技,2016,46(2):18-21.      [5]孔祥溢,王任直。人工智能及在医疗领域的应用[J].医学信息学杂志,2016,37(11):2-5.      [6]HAMETP,TREMBLAYJ.Artificialintelligenceinmedicine[J].Metabolism,2017,69:36-40.TAGS:人工智能人工智能技术人工智能论文

人工智能中的图像识别技术

点击上方“小白学视觉”,选择加"星标"或“置顶”

重磅干货,第一时间送达

伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。

这也给学生思考课题给了更多的空间,今天小编就来浅谈热门课题方向中图像识别技术,希望给学生更多的启发!

图像识别技术概述

图像识别技术的含义

图像识别是人工智能的一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理。

在具体应用实践中,特别识别除了要弄清识别的对象具有是什么样的物体外,还应该明确其所在的的位置和姿态。当前图像识别已经被广泛应用到各个领域中,例如交通领域中的车牌号识别、交通标志识别、军事领域中的飞行物识别、地形勘察、安全领域中的指纹识别、人脸识别等。

图像识别技术的原理

图像识别原理主要是需处理具有一定复杂性的信息,处理技术并不是随意出现在计算机中,主要是根据一些医学研究人员的实践,结合计算机程序对相关内容模拟并予以实现。该技术的计算机实现与人类对图像识别的基本原理基本类似,在人类感觉及视觉等方面只是计算机不会受到任何因素的影响。人类不只是结合储存在脑海中的图像记忆进行识别,而是利用图像特征对其分类,再利用各类别特征识别出图片。计算机也采用同样的图像识别原理,采用对图像重要特征的分类和提取,并有效排除无用的多余特征,进而使图像识别得以实现。有时计算机对上述特征的提取比较明显,有时就比较普通,这将对计算机图像识别的效率产生较大影响。

图像识别技术的过程

由于图像识别技术的产生是基于人工智能的基础上,所以计算机图像识别的过程与人脑识别图像的过程大体一致,归纳起来,该过程主要包括4个步骤:

1是获取信息,主要是指将声音和光等信息通过传感器向电信号转换,也就是对识别对象的基本信息进行获取,并将其向计算机可识别的信息转换;

2是信息预处理,主要是指采用去噪、变换及平滑等操作对图像进行处理,基于此使图像的重要特点提高;

3是抽取及选择特征,主要是指在模式识别中,抽取及选择图像特征,概括而言就是识别图像具有种类多样的特点,如采用一定方式分离,就要识别图像的特征,获取特征也被称为特征抽取;

4是设计分类器及分类决策,其中设计分类器就是根据训练对识别规则进行制定,基于此识别规则能够得到特征的主要种类,进而使图像识别的不断提高辨识率,此后再通过识别特殊特征,最终实现对图像的评价和确认。

图像识别技术的常见形式

首先图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。

文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。

数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。

物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。

随着计算机及信息技术的迅速发展,图像识别技术的应用逐渐扩大到诸多领域,尤其是在面部及指纹识别、卫星云图识别及临床医疗诊断等多个领域日益发挥着重要作用。通常图像识别技术主要是指采用计算机按照既定目标对捕获的系统前端图片进行处理,在日常生活中图像识别技术的应用也十分普遍,比如车牌捕捉、商品条码识别及手写识别等。随着该技术的逐渐发展并不断完善,未来将具有更加广泛的应用领域。

基于神经网络的图像识别技术

目前,基于神经网络的图像识别是一种比较新型的技术,是以传统图像识别方式为基础,有效融合神经网络算法。在此,神经网络主要是指人工神经网络,换而言之就是本文中的神经网络不是动物体的神经网络,而主要是指人类采用人工模拟动物神经网络方式的一种神经网络。针对基于神经网络的图像识别技术,目前,在基于神经网络的图像识别技术中,遗传算法有效结合BP神经网络是最经典的一种模型,该模型可在诸多领域中进行应用。诸如智能汽车监控中采用的拍照识别技术,若有汽车从该位置经过时,检测设备将产生相应的反应,检测设备启动图像采集装置,获取汽车正反面的特征图像,在对车牌字符进行识别的过程中,就采用了基于神经网络和模糊匹配的两类算法。

基于非线性降维的图像识别技术

采用计算机识别图像是基于高维形式的一种识别技术,不管原始图片的分辨率如何,该图片产生的数据通常都具有多维性特征,这在一定程度上增大了计算机识别的难度。为使计算机的图像识别性能更为高效,采用随图像降维方法就是一种最直接而有效的方法。一般情况下,可对降维划分为非线性降维与线性降维两类,比如最普遍的线性降维方式就是主成分分与线性奇异分析等,该方式的特点是简单、理解更容易等,再对数据集合采用线性降维方式处理求解的投影图像使该数据集合的低维最优。

在信息技术中作为近年来新兴的图像识别技术已广泛应用于众多应用领域,随着信息技术的日新月异,图像识别技术也得到十分迅猛的发展。在众多社会领域中,有效应用图像识别技术将使社会与经济价值得到充分发挥。

小编相信,通过本次的科普,很多同学都对图像识别有了更深的理解,希望可以拓宽同学们的思路,利用人工智能的图像识别技术解决更多问题,造福社会,造福世界!

下载1:OpenCV-Contrib扩展模块中文版教程在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。下载2:Python视觉实战项目52讲在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。下载3:OpenCV实战项目20讲在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。交流群欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

模式识别、机器学习的区别和联系

先上一张图看看:

模式识别:自己建立模型刻画已有的特征,样本是用于估计模型中的参数。模式识别的落脚点是感知

模式识别是70年代和80年代非常流行的一个术语。它强调的是如何让一个计算机程序去做一些看起来很“智能”的事情,例如识别“3”这个数字。而且在融入了很多的智慧和直觉后,人们也的确构建了这样的一个程序。例如,区分“3”和“B”或者“3”和“8”。早在以前,大家也不会去关心你是怎么实现的,只要这个机器不是由人躲在盒子里面伪装的就好。不过,如果你的算法对图像应用了一些像滤波器、边缘检测和形态学处理等等高大上的技术后,模式识别社区肯定就会对它感兴趣。光学字符识别就是从这个社区诞生的。因此,把模式识别称为70年代,80年代和90年代初的“智能”信号处理是合适的。决策树、启发式和二次判别分析等全部诞生于这个时代。而且,在这个时代,模式识别也成为了计算机科学领域的小伙伴搞的东西,而不是电子工程。

机器学习:根据样本训练模型,如训练好的神经网络是一个针对特定分类问题的模型;重点在于“学习”,训练模型的过程就是学习;机器学习的落脚点是思考;

在90年代初,人们开始意识到一种可以更有效地构建模式识别算法的方法,那就是用数据(可以通过廉价劳动力采集获得)去替换专家(具有很多图像方面知识的人)。因此,我们搜集大量的人脸和非人脸图像,再选择一个算法,然后冲着咖啡、晒着太阳,等着计算机完成对这些图像的学习。这就是机器学习的思想。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。相信我,就算计算机完成学习要耗上一天的时间,也会比你邀请你的研究伙伴来到你家然后专门手工得为这个任务设计一些分类规则要好。

区别与联系:

模式识别是根据已有的特征,通过参数或者非参数的方法给定模型中的参数,从而达到判别目的的;机器学习侧重于在特征不明确的情况下,用某种具有普适性的算法给定分类规则;学过多元统计的可以这样理解:模式识别的概念可以类比判别分析,是确定的,可检验的,有统计背景的(或者更进一步说有机理性基础理论背景),而机器学习的概念可以类比聚类分析(聚类本身就是一种典型的机器学习方法),对“类”的严格定义尚不明确,更谈不上检验;

针对市面上很多关于模式识别与机器学习的著作内容重合,应该这么看:①算法是中性的,两个不同的学科领域关键看思维。如神经网络的应用,如果通过具体学科,如生物学的机理分析是明确了某种昆虫的基因型应该分为两类,同时确定了其差异性的基因是会表现在触角长和翅长两个表现型的话,那么构造两个(触角长,翅长)——(隐含层)——(A类,B类)的网络可以看作对已有学科知识的表达,只是通过网络刻画已有知识而已;而机器学习的思路是:采样,发现两类品种差异最大的特征是触角长和翅长(可能会用到诸如KS检验之类的方法),然后按照给定的类目:两类来构造神经网络进行分类;同一个算法,两个学科是两种思路;②模式识别在人工智能上的前沿成果已经慢慢被机器学习取代,所以很多以AI为导向的模式识别书记包含了很多机器学习的算法也正常,毕竟很多新成果是机器学习做出的;

关于应用范围,机器学习目前是在狭义的人工智能领域走得比较快,但是广度还是模式识广,模式识别在很多经典领域,如信号处理,计算机图像与计算机视觉,自然语言分析等都不断有新发展;

从发展目标看,机器学习是要计算机学会思考,而模式识别是具体方法的自动化实现(不止计算机,还包括广义的控制系统),从立意上机器学习要高出一筹。至于现实中是否能实现,当前的机器学习热潮会不会陷入泡沫,都值得观察。

最后附上一个截至目前谷歌搜索的趋势:

感谢(参考文献):https://www.csdn.net/article/2015-03-24/2824301#q=machine+learning,+pattern+recognition,+deep+learning&cmpt=q&tz&tz黎韬:https://www.zhihu.com/question/38106452/answer/211218782

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇