人工智能的六个发展阶段,一起来看看吧
原标题:人工智能的六个发展阶段,一起来看看吧人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能充满未知的探索道路曲折起伏,人工智能的发展历程基本划分为以下6个阶段:
1、起步发展期:1956年—20世纪60年代初人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
2、反思发展期:20世纪60年代—70年代初人工智能发展初期的突破性进展大大提升了人们对人工智能期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标落空使人工智能发展走入低谷。
3、应用发展期:20世纪70年代初—80年代中20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
4、低迷发展期:20世纪80年代中—90年代中随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
5、稳步发展期:20世纪90年代中—2010年由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。
6、蓬勃发展期:2011年至今随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长新高潮。
展开全文想学习云计算、大数据、新媒体的同学注意啦,博雅环球教育针对此次疫情特推出线上免费直播课程,同学们可以趁这个时期,好好充实一下自己,待到春暖花开时,学以致用,大展身手。想报名的同学快来联系我们吧!
北京|内蒙古|呼和浩特|IT计算机培训|云计算|大数据|新媒体|线上培训|免费课程|高薪就业
返回搜狐,查看更多
责任编辑:新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]人工智能的三次浪潮与三种模式
■史爱武
谈到人工智能,人工智能的定义到底是什么?
达特茅斯会议上对人工智能的定义是:使一部机器的反应方式就像是一个人在行动时所依据的智能。
百度百科上对人工智能的定义是:它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
尽管人工智能现在还没有非常严格准确或者所有人都接受的定义,但是有一些约定俗成的说法。通常人工智能是指机器智能,让机器达到人智能所实现的一些功能。人工智能既然是机器智能,就不是机械智能,那么这个机器是指什么呢?是指计算机,用计算机仿真出来的人的智能行为就可以叫作人工智能。
2017年7月,国务院印发了《新一代人工智能发展规划》。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。这一国家级战略和社会流行趋势标志着,人工智能发展进入了新阶段,我国要抢抓人工智能发展的重大战略机遇,构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
人工智能的三次浪潮
自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
第二次浪潮(1976—2006年,30年),联结主义盛行
在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就是深度学习取得突破。这里既有硬件的进步,也有卷积神经网络模型与参数训练技巧的进步。
若观察脑的内部,会发现有大量称为“神经元”的神经细胞彼此相连。一个神经元从其他神经元那里接收的电气信号量达某一定值以上,就会兴奋(神经冲动);在某一定值以下,就不会兴奋。兴奋起来的神经元,会将电气信号传送给下一个相连的神经元。下一个神经元同样会因此兴奋或不兴奋。简单来说,彼此相连的神经元,会形成联合传递行为。我们透过将这种相连的结构来数学模型化,便形成了人工神经网络。
经模型化的人工神经网络,是由“输入层”“隐藏层”及“输出层”等三层构成。深度学习往往意味着有多个隐藏层,也就是多层神经网络。另外,学习数据则是由输入数据以及相对应的正确解答来组成。
为了让输出层的值跟各个输入数据所对应的正解数据相等,会对各个神经元的输入计算出适当的“权重”值。通过神经网络,深度学习便成为了“只要将数据输入神经网络,它就能自行抽出特征”的人工智能。
伴随着高性能计算机、云计算、大数据、传感器的普及,以及计算成本的下降,“深度学习”随之兴起。它通过模仿人脑的“神经网络”来学习大量数据的方法,使它可以像人类一样辨识声音及影像,或是针对问题做出合适的判断。在第三次浪潮中,人工智能技术及应用有了很大的提高,深度学习算法的突破居功至伟。
深度学习最擅长的是能辨识图像数据或波形数据这类无法符号化的数据。自2010年以来,Apple、Microsoft及Google等国际知名IT企业,都投入大量人力物力财力开展深度学习的研究。例如AppleSiri的语音识别,Microsoft搜索引擎Bing的影像搜寻等等,而Google的深度学习项目也已超过1500项。
深度学习如此快速的成长和应用,也要归功于硬件设备的提升。图形处理器(GPU)大厂英伟达(NVIDIA)利用该公司的图形适配器、连接库(Library)和框架(Frame⁃work)产品来提升深度学习的性能,并积极开设研讨课程。另外,Google也公开了框架TensorFlow,可以将深度学习应用于大数据分析。
人工智能的3种模式
人工智能的概念很宽泛,根据人工智能的实力可以分成3大类,也称为3种模式。
(1)弱人工智能:擅长于单个方面的人工智能,也叫专业人工智能。比如战胜世界围棋冠军的人工智能AlphaGo,它只会下围棋,如果让它下国际象棋或分辨一下人脸,它可能就会犯迷糊,就不知道怎么做了。当前我们实现的几乎全是弱人工智能。
(2)强人工智能:是指在各方面都能和人类比肩的人工智能,这是类似人类级别的人工智能,也叫通用人工智能。人类能干的脑力活,它都能干,创造强人工智能比创造弱人工智能难得多,目前我们还做不到。
(3)超人工智能:知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能”。超人工智能可以是各方面都比人类强点,也可以是各方面都比人类强很多倍。超人工智能现在还不存在,很多人也希望它永远不要存在。否则,可能像好莱坞大片里面的超级智能机器一样,对人类也会带来一些威胁或者颠覆。
我们现在处于一个充满弱人工智能的世界。比如,垃圾邮件分类系统是个帮助我们筛选垃圾邮件的弱人工智能;Google翻译是可以帮助我们翻译英文的弱人工智能等等。这些弱人工智能算法不断地加强创新,每一个弱人工智能的创新,都是迈向强人工智能和超人工智能的进步。正如人工智能科学家AaronSaenz所说,现在的弱人工智能就像地球早期软泥中的氨基酸,可能突然之间就形成了生命。如世界发展的规律看来,超人工智能也是未来可期的!
人工智能时代特征初步显现,主要体现在哪几个方面
1、人工智能技术水平加速进步
近年来,科技进步带来了数据存储和计算能力的快速提升,智能算法不断成熟,在部分领域人工智能已达到较高水平。
例如超级电脑“沃森”在美国问答节目战胜了人类冠军;“百度大脑”通过技术模拟人类思维,已具备幼年孩童的智力水平;2014年6月,超级计算机尤金・古斯特曼成功通过了判断机器具有和人类等价智能的图灵测试,标志着人工智能发展进入新的阶段。
2、智能应用及产品快速发展
部分人工智能技术不断成熟,在新兴移动互联网领域中,智能应用和产品的普及度在逐步提升。
例如,利用了语音识别和自然语言理解技术,Siri、微软小冰等智能语音及对话系统被普遍使用,图像检索技术的进步拓展了互联网内容的检索手段。
此外,以智能穿戴设备、智能汽车、智能家居以及智能机器人为代表的智能产品,也受到了产业界的广泛关注,部分雏形产品已经问世。
3、全球发达国家和企业积极布局
基于人工智能所蕴含的巨大价值,近年来全球主要发达国家和组织,在人脑基础研究和智能机器人开发等多方面均进行了积极布局。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:如何帮助推动人工智能发展,个人建议优先考虑这三个要点?http://www.duozhishidai.com/article-15867-1.html中国AI人工智能发展史,大致分为三个发展阶段http://www.duozhishidai.com/article-8524-1.html人工智能的四大发展趋势,未来十年改变世界http://www.duozhishidai.com/article-7007-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
人工智能机器学习的四个阶段
机器学习是人工智能应用研究较为重要的分支,它的发展过程大体上可分为4个阶段。
第一阶段是在20世纪50年代中期到60年代中期,属于热烈时期。在这个时期,所研究的是“没有知识”的学习,即“无知”学习;其研究目标是各类自组织系统和自适应系统;其主要研究方法是不断修改系统的控制参数以改进系统的执行能力,不涉及与具体任务有关的知识。指导本阶段研究的理论基础是早在20世纪40年代就开始研究的神经网络模型。
随着电子计算机的产生和发展,机器学习的实现才成为可能。这个阶段的研究导致了模式识别这门新科学的诞生,同时形成了机器学习的两种重要方法,即判别函数法和进化学习。塞缪尔的下棋程序就是使用判别函数法的典型例子。不过,这种脱离知识的感知型学习系统具有很大的局限性。无论是神经模型、进化学习或是判别函数法,所取得的学习结果都很有限,远不能满足人们对机器学习系统的期望。
机器学习
第二阶段在20世纪60年代中期至70年代中期,称为机器学习的冷静时期。本阶段的研究目标是模拟人类的概念学习过程,并采用逻辑结构或者图结构作为机器内部描述。机器能够采用符号来描述概念(符号概念获取),并提出关于学习概念的各种假设。
本阶段的代表性工作有温斯顿(Winston)的结构学习系统和海斯・罗思(HayesRoth)等的基于亚辑的归纳学习系统。虽然这类学习系统取得较大的成功,但只能学习单一概念,而且未能投人实际应用。此外,神经网络学习因为理论缺陷未能达到预期效果,机器学习的研究转入低潮。
第三阶段从20世纪70年代中期至80年代中期,称为复兴时期,在这个时期,人们从学习单个概念扩展到学习多个概念,探索不同的学习策略和各种学习方法。机器的学习过程一般都建立在大规模的知识库上,实现知识强化学习。龙其令人鼓舞的是,本阶段已开始把学习系统与各种应用结合起来,并取得很大的成功,促进了机器学习的发展。
在出现第一个专家学习系统之后,示例归约学习系统成为研究主流,自动知识获取成为机器学习的应用研究目标。1980年,在美国卡内基梅隆大学(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。此后,机器归纳学习进人应用,1988年,国际杂志《机器学习》(MachineLearning)创刊,迎来了机器学习蓬勃发展的新时期。
机器学习
机器学习的最新阶段始于1986年,一方面,由于神经网络研究的重新兴起,对连接机制(connectionism)学习方法的研究方兴未艾,机器学习的研究已在全世界范围内出现新的高潮,对机器学习的基本理论和综合系统的研究得到加强和发展。
另一方面,实验研究和应用研究得到前所未有的重视。人工智能技术和计算机技术快速发展,为机器学习提供了新的更强有力的研究手段和环境。具体地说,在这一时期符号学习由“无知”学习转向有专门领域知识的增长型学习,因面出现了有一定知识背景的分析学习,神经网络由于隐节点和反向传播算法的进展,使连接机制学习东山再起,向传统的得号学习发起挑战,基于生物发有进化论的进化学习系统和遗传算法,因吸取了归纳学习与连接机制学习的长处面受到重视。
基于行为主义(actionism)的增强(reinforcement)学习系统因发展新算法和应用连接机制学习遗传算法的新成就而显示出新的生命力,1989年瓦特金(Watkins)提出Q-学习,促进了增强学习的深入研究。
人工智能
机器学习进入新阶段的重要表现在下列方面:
(1)机器学习已成为新的边缘学科并在高校形成一门课程。它合应用心理学,生物学和神经生理学以及数学,自动化和计算机科学形成机器学习的理论基础。
(2)结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。
(3)机器学习与人工智能各种基础问题的统一性观点正在形成,例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。
(4)各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。
(5)数据挖掘和知识发现的研究已形成热潮,并在生物医学、金融管理、商业销售等领域得到成功应用,给机器学习注入新的活力。
(6)与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
人工智能的历史与未来,主要划分为了哪三个阶段
事物飞速发展之时,往往需要你停下脚步,回顾自己所处的位置,否则你会很容易陷入对细节的兴奋之中。构成人工智能基础的数据科技正以不同的方式向前发展,而且速度飞快。因此,在你改变职业之前,或者决定使用人工智能扩展业务时,让我们首先对人工智能做一个鸟瞰,以帮助理解我们所处的位置以及未来走向。
人工智能的三个阶段
我们倾向于把人工智能看做新事物,尤其是新技术以及和深度学习相关的新技巧。然而,人工智能已经过数十年的发展,否认过往的成功似乎不合逻辑,因为技术总是不断向前发展。
当我费力向其他人解释人工智能之时,我不断为预测分析寻找一些分界线,这些分析我们已经实践了相当一段时间,也是大众对人工智能持有的观点,主要将人工智能的历史与未来划分为了三个阶段:
1.手工知识(HandcraftedKnowledge)阶段
2.统计学习(StatisticalLearning)阶段
3.语境顺应(ContextualAdaptation)阶段
Launchbury的观点对我帮助极大。尽管阶段(ages)的比喻很有用,但是这很容易让人误解为一个阶段结束了下一个阶段作为替代才开始。与此相反,我把人工智能看作一个金字塔,其中下一阶段的发展奠定在前一阶段之上。这也清晰地表明了即使是最古老的人工智能技术也不会过时,且实际上依然在使用之中。
对于第二个阶段统计学习(StatisticalLearning),即我们目前所处的阶段,我分为了一些更细的阶段,因为第二个阶段之中有一些重大突破值得单独作解释。
三个阶段
第一阶段:手工知识
第一个阶段的典型代表是「专家系统」(expertsystems),其把大量知识转化为由中小企业团队精心制定的决策树来增强人类的智能。专家系统的代表例子是TurboTax或者做调度的物流程序,它们在上世纪80年代已经出现,且很有可能更早。
对比1
尽管我们有能力运用机器学习统计算法诸如回归、SVM、随机森林以及神经网络,且这些算法自上世纪90年代以来获得了飞速扩展,但手工系统的应用并未完全消失。最近Launchbury提及到该系统的一个应用成功防御了网络攻击。大约在2004年之前,相似的系统实际上已经成为自动驾驶车的核心(其失败的主要原因是不能解释所有的现实问题)。
Launchbury认为专家系统在推理方面表现不俗,但仅限于几个严格定义的问题,且没有学习能力,不能处理不确定性问题。
第二阶段:统计学习
第二个阶段是我们现在所处的阶段。尽管Launchbury倾向于关注深度学习方面的进步,实际上早在我们使用计算机寻找数据中的信号之时就已经步入了第二阶段。统计学习阶段开始于数十年之前,但是在上世纪90年代获得了牵引力,并通过处理新数据、容量甚至是数据流而不断获得扩展。
由于不断增加的深度学习技术工具箱(比如回归、神经网络、随机森林、SVM、GBM),统计学习阶段伴随着从数据之中寻找信号能力的爆炸性增长应运而生。
这是一种不会消失的基础数据科学实践,它可以解释消费者(他们为什么来、为什么留、为什么走)、交易(是否存在欺诈)、装置(它是否有问题)、数据流(30天之后其价值是什么)的所有行为问题。统计学系对人类智能的增强是不断发展的人工智能的部分之一。
在第二阶段之中,至少有另外两个重大突破极大地提升了人类的能力。第一个是Hadoop与大数据。现在我们已经有了大规模并行处理以及储存和查询大的非结构快速移动数据集的方法。2007年Hadoop首次开源,直到现在。第二个小的突破是现代人工智能工具集的兴起,其由以下6种技术组成:
1.自然语言处理
2.图像识别
3.强化学习
4.问答机
5.对抗式训练
6.机器人
除了少数例外,这些技术可被整合为依赖于深度学习的一类,但是如果你查看深度学习工作方式以及深度神经网络运行方式的详情,你很快会意识到这些并不是问题的核心。
在卷积神经网络、循环神经网络、生成对抗神经网络、强化学习之中的进化神经网络及其所有变体之中通常有很少;反过来在问答机(Watson)、机器人或者不使用深度神经网络的强化学习变体之中存在更少。
由于这些技术的共同之处是它们生成自己的特征,也许我们应该称之为无特征建模的阶段(EraofFeaturelessModeling)。你仍然不得不使用已知的标注实例进行训练,但是你不必在列中填入预定义的变体和属性。它们在极其大的计算阵列上也需要大规模并行处理,很多次需要专业芯片(比如GPU、FPGA)以在人类时间尺度上搞定一切。
因此,重要的区别就是第二阶段的人工智能可以延续几十年,并且其主要从机器学习、大数据/Hadoop和无特征建模三个方面已经对新技术进行了三次大的变革。但这些突破仍然在统计学习方法这一阶段内,该阶段还会继续发展并产生更多的突破。
Launchbury表明,到目前为止,我们已经拥有非常先进、细分和强大预测能力的系统,但是仍然还没有理解语境和最小推理能力。因为我们的技术对数据有更大量的需求,这已经成为了一个障碍,而对我们仍然有价值和高效的预测分析技术并不应该是这样的。但我们在这个阶段早期无法解决的困难,包括自动驾驶汽车、机器赢得日益复杂游戏的能力、图像、文本和自然语言处理等方面目前都已经取得了重大的突破。
第三阶段:语境顺应(contextualadaption)
接下来呢?Lauchbury说,当前统计学习时代出现了两个问题,第三个阶段要解决两个问题。
解释推理行为的模型:虽然我们的深度神经网络善于分类,比如图片,但是处理原理仍然显得神秘莫测。我们需要既可以进行分类也可以得到解释的系统。理解推理就能让对处理过程的修正真正有效。
生成模型:这些模型可以从潜在语境中进行学习,比如一个模型,掌握了每个字母的笔画,而不是基于大量糟糕的书写样本进行粗暴分类。我们今天使用的生成模型有望显著减少对训练数据的需求。
鉴于这些特点,处在这一阶段的人工智能系统就能使用语境模型(contextualmodels)进行感知、学习、推理以及抽象,将从一个系统中学习到的东西应用到一个完全不同的语境中。
全景视野
新阶段的开始并不意味着前一阶段会戛然而止。一些技术、功能的有用性或许会降低,但是完全被淘汰出局也不太现实。比如,最新技术所需的大量计算力、研发的复杂性以及训练都会制约这些技术退出历史舞台,将来某个时候出现的高价值的问题可能还会用到这些技术。
其他情况,比如语境采用阶段,我们可能不得不等待新一代芯片的出现,这类芯片更加类似人脑。这些被称为神经形态或者脉冲神经网络的第三代神经网络都会用到现在研发最早阶段的那些芯片。
现在,我们处在第二阶段(统计学习)的什么位置?
当前阶段的三章内容中,人们可能最关注的是新东西,深度学习、强化学习以及上述构成该阶段的六种技术之间的平衡。
这是一场演化的艰难过程,刚开始结出果实,但这些新的发展中绝大部分仍然没有准备好开花结果。尽管可以看到这些技术会往哪个方向发展,但是,只有两到三个技术有望可靠商业化(图像处理、文本和语音处理,类似WatsonQAMs的有限版本。)
当你试着将这些技术拧在一起时,这些技术也不过是松散地在一起,集成这些技术仍然是最具挑战性的事情之一。我们总会想到办法的,只是还没到这一步。
我们总会走到那一步的,甚至进入第三阶段。不过,走过这一阶段之前,或许还会出现我们未曾预料的演化或者变革。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
1人工智能概述
文章目录1.4机器学习工作流程学习目标1什么是机器学习2机器学习工作流程机器学习工作流程总结2.1获取到的数据集介绍2.2数据基本处理2.3特征工程2.4机器学习2.5模型评估拓展阅读完整机器学习项目的流程3小结1.4机器学习工作流程学习目标了解机器学习的定义知道机器学习的工作流程掌握获取到的数据集的特性1什么是机器学习-机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。
2机器学习工作流程机器学习工作流程总结1.获取数据2.数据基本处理3.特征工程4.机器学习(模型训练)5.模型评估
结果达到要求,上线服务没有达到要求,重新上面步骤2.1获取到的数据集介绍数据简介在数据集中一般:
一行数据我们称为一个样本一列数据我们成为一个特征有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)数据类型构成:
数据类型一:特征值+目标值(目标值是连续的和离散的)数据类型二:只有特征值,没有目标值数据分割:机器学习一般的数据集会划分为两个部分:
训练数据:用于训练,构建模型测试数据:在模型检验时使用,用于评估模型是否有效划分比例:
训练集:70%80%75%测试集:30%20%25%2.2数据基本处理-即对数据进行缺失值、去除异常值等处理
2.3特征工程2.3.1什么是特征工程特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
意义:会直接影响机器学习的效果2.3.2为什么需要特征工程(FeatureEngineering)机器学习领域的大神AndrewNg(吴恩达)老师说“Comingupwithfeaturesisdificult,time-consuming,requiresexpertknowledge.“Appliedmachinelearning"isbasicallyfeatureengineering.”注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。2.3.3特征工程包含内容
特征提取特征预处理特征降维2.3.4各概念具体解释特征提取
将任意数据(如文本或图像)转换为可用于机器学习的数字特征特征预处理通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程特征降维指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程2.4机器学习选择合适的算法对模型进行训练(具体内容见1.5)
2.5模型评估对训练好的模型进行评估(具体内容见1.6)
拓展阅读完整机器学习项目的流程1抽象成数学问题明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。这里的抽象成数学问题,指的明确我们可以获得什么样的数据,抽象出的问题,是一个分类还是回归或者是聚类的问题。2获取数据
数据决定了机a学习结果的上限,而算法只是尽可能逼近这个上限。数据要有代表性,否则必然会过拟合。而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数量级的差距。而且还要对数据的量级有一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。如果数据量实在太大,那就要考虑分布式了。3特征预处理与特征选择
良好的数据要能够提取出良好的特征才能真正发挥作用。特征预处理、数据清洗是很关键的步骤,往往能够使得算法的效果和性能得到显著提高。归一化、离散化、因子化、缺失值处理、去除共线性等,数据挖掘过程中很多时间就花在它们上面。这些工作简单可复制,收益稳定可预期,是机器学习的基础必备步骤。筛选出显著特征、摒弃非显著特征,需要机器学习工程师反复理解业务。这对很多结果有决定性的影响。特征选择好了,非常简单的算法也能得出良好、稳定的结果。这需要运用特征有效性分析的相关技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率、逻辑回归权重等方法。4训练模型与调优
直到这一步才用到我们上面说的算法进行训练。现在很多算法都能够封装成黑盒供人使用。但是真正考验水平的是调整这些算法的(超)参数,使得结果变得更加优良。这需要我们对算法的原理有深入的理解。理解越深入,就越能发现问题的症结,提出良好的调优方案。5模型诊断如何确定模型调优的方向与思路呢?这就需要对模型讲行诊断的技术。
3小结机器学习义【掌握】
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测·机器学习工作流程总结【掌握】1.获取数据2.数据基本处理3.特征工程4.机器学习(模型训练)5.模型评估
结果达到要求,上线服务没有达到要求,重新上面步骤获取到的数据集介绍【掌握】
数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。数据集的构成:-由特征值+目标值(部分数据集没有)构成为了模型的训练和测试,把数据集分为:-训练数据(70%-80%)和测试数据(20%-30%)特征工程包含内容【了解】特征提取特征预处理特征降维