博舍

人工智能时代需培养学生怎样能力 人工智能专业需要什么技能和能力要求

人工智能时代需培养学生怎样能力

“未来人工智能环境下的课堂,可能是‘双师型’的课堂,人机交互、人机结合将成为主要形态。一堂课可能由一名教师和一个机器人共同来上,布置和批改作业、知识点训练、监督学习、学习情况的分析等工作可能由机器人来完成。”在日前召开的第四次全国数据驱动教育改进专题研讨会上,北京师范大学中国教育创新研究院院长刘坚这样描述人工智能时代的课堂。

人工智能不能代替学习

面对席卷而来、被称为人类“第二次零点革命”的人工智能浪潮,互联网时代的教育界,也不那么淡定了。“因为人工智能不是信息化的延续,技术对教育的影响,正在由‘革新’发展为‘革命’。”中关村学院学术委员会原负责人吕文清说,“高级阶段的人工智能具有类人脑的学习力和思考力,将来还能进化到自适应学习,在这个意义上,人工智能拓展了人的思维。人工智能改变的,不仅是教育的边界和方式,整个教育样态也将面临重塑。”

不过,科大讯飞教育研究院院长孙曙辉认为,人工智能不能代替人的思维,不能代替学习,技术也改变不了教育的本质。因此,在当前热炒人工智能概念的大背景下,一定要认清技术与教育的关系,搞清楚哪些是教育本身的问题,哪些是技术可以解决的问题。

高阶认知能力的重要性将更加凸显

在人工智能时代,学生应该具备怎样的能力,才能适应社会需求,在竞争中立于不败之地?

教育部副部长杜占元在去年12月召开的2017未来教育大会上提出,在机器能够思考的时代,教育应着重培养学生的5种能力,即自主学习能力、提出问题的能力、人际交往的能力、创新思维的能力及筹划未来的能力。

教育部科技发展中心原主任李志民说,今天我们说知识就是力量,讲的是如何学习、记忆和掌握更多的知识,讲究知识的系统性,而在人工智能时代,知识是开放的,随时随地可查找、可检索,因此,记忆知识以及知识的系统性不再像今天这样重要了,学生更需要学习如何从已有的知识中挖掘出新应用、新知识,通过已有知识学习新知识,与之对应的知识结构或学习过程就是思维的训练。

“低阶认知技能的重要性会下降,如记忆、复述、再现等初级信息加工任务将更多地被机器代替,而高阶认知能力的重要性会更加凸显,如识别问题、逻辑推理、意义建构、精致思考、自我指导能力等。”吕文清认为,人工智能时代应重点培养学生的终身学习素养、计算思维素养、设计思维素养和交互思维素养,培养学生5种能力——高阶认知能力、创新能力、联结能力、意义建构能力和元认知能力。终身学习素养,主要基于人工智能时代需要更强大和持续的学习力,强调学会学习和建构不断演进的知识框架;计算思维素养,主要基于学习和理解人工智能,强化思考的逻辑和精致。现在很火的编程课程,主要是培养计算思维;设计思维素养,主要基于人工智能时代学生执行困难任务,需要关注项目设计、任务设计和路径设计等高层次管理,重点引导学生学会选择、学会决策、学会判断;交互思维素养,主要基于人工智能时代学生交往方式的变化,需要高级信息素养、媒体素养、沟通交流和技术伦理,重点引导学生学会开源共享、参与协商、组建社区等,理解复杂的相互关系。高阶认知能力,强调独立思考、逻辑推理、信息加工等;创新能力,强调好奇心、想象力和创新思维、创新人格等;联结能力,强调学会统筹、组织资源、建立联系,特别是包括人工智能在内的多个空间的联结;意义建构能力,强调社会情感、责任意识和高感性、高概念等要素;元认知能力,强调学习自我认知、自我监控和自我指导。

“我认为,没有什么能力是贴有人工智能时代专属标签的。随着时代的发展,人类已有的知识和经验变得不重要,而培养学生的综合素质、高阶思维、创新能力等,这些要求无论在哪个时代都是需要的、共通的、不会过时的。”孙曙辉说。

未来的学习将更加个性化

未来的学习,在哪儿学、跟谁学、怎么学?原有的概念可能都会被颠覆。教育又该如何作出调整,以适应新的时代要求?吕文清认为,人工智能时代对学生的学习目标、学习内容、能力层级甚至心智模式,都提出了新的需求。在教学上,人工智能时代要以“思维教学”为主线,既强调基于认知能力的信息加工、分析综合、逻辑推理等高阶思维的培养,还要增加和突出计算思维、设计思维和交互思维的培养。具体落点上,要强调概念性知识、方法性知识和价值性知识的教学,要注重教原理、教统筹、教大观点、教元认知等不可替代的知识,也就是高阶认知和高阶学习。

人工智能对于当前的教育,不只是颠覆和冲击,也会带来促进和改良。李志民说,人工智能时代的教育管理,无论是宏观层面还是微观层面,都更容易做到精细化,对教师的评价会更加全面而科学;可以根据每个学生的智力程度和思维习惯以及学习方式进行教学,实现真正的个性化学习和因材施教。

据了解,目前许多中小学已开设编程、3D打印技术等与人工智能相关的课程,学生学习兴趣特别浓厚。一些学校还以社团和选修课的形式推进机器人、智能汽车、计算机编程等课程的开设与完善,提升学生信息化素养,促进学科知识融合。

人工智能时代,学生获得知识及能力、素养的提升途径无疑会更多元,其中互联网发挥的作用会更大。而人工智能的应用,会让教师从机械重复的工作中解放出来,去做更有价值的工作。孙曙辉认为,在中小学开设编程等人工智能相关课程,有助于训练学生的思维方式,但主要意义在于普及相关科学知识,并不能帮助学生“赢在起跑线”。目前,很多所谓人工智能的应用,包括一些针对职业人群的人工智能培训,都是炒作概念的“伪人工智能”,人工智能在短期内尚难发展到较为高级的阶段。当前市场上已经出现针对中小学生的打着“人工智能”旗号的相关培训班,家长完全没必要怕“掉队”,在现阶段,保持清醒的头脑,不盲目跟风至关重要。(本报记者汪瑞林)

搞AI(人工智能)都要掌握哪些知识

大家好,我是YESLABAI的产品总监,大家可以叫我小产。

那个啥,YESLAB的华为AI课程HCNA快开班了,很多后续的AI课程也会很快陆续和大家见面。面对铺天盖地的咨询,我认为自己很有必要解答一下大家经常提出的疑问。

话说,在过去几个月,售小姐姐们最常被问到的问题是,学AI都要掌握哪些知识呢?今天我就回答一下大家的这个问题。

如果上网查查,你会发现各方牛人们都在说,入门级的AI玩家需要至少拥有:

•包括高等数学、线性代数、概率论与数理统计在内的大学数学知识;

•使用一种到多种编程语言的能力,如Python、C++、Java;

•比较熟练的英语阅读能力,用于阅读论文;

•相当的人工神经网络知识;

•……

等会儿啊,我还没说完,你们怎么都走了……

别着急啊,上面只是间接引语,我还没说我的看法呢。上述技能确实是从业AI领域所需的几大技能,但是这并不表示所有人都必须熟练掌握所有的技能。所以,一听学AI就觉得高不可攀的朋友,真的不用过于担心这个问题。

下面,我来逐项地和大家分析一下,上述技能是不是学习AI必须掌握的知识和技能;如果不是必备技能,那么掌握它们有哪些好处,不具备又会遇到哪些问题。

一、大学数学基础

很多朋友兴致勃勃地准备从事AI,但是一听到学习AI需要掌握大学数学基础知识,立刻感觉自己受到了10000点伤害,其实没有必要啊。

首先,大家在大学里面学习数学课程的侧重点是逻辑推论和举一反三。上课的时候,老师疯狂点击PPT演示推导过程和求解例题,大家则在下面兴致勃勃地……刷微信。

不过,在AI项目中学习这些数学课程,侧重点则是各类数学模型在AI中要如何使用,或者说如何在应用场合中套用这些数学模型。反而是平时数学上大家最头疼的那些推论啊、题海战术啊,在AI学习过程中可以暂时忽略掉。

不怕大家不信,熟悉数学模型的应用虽然特别简单,但有的时候还能反哺到推论的学习。所以,学不会大学数学课程的朋友,说不定反而能在我们的AI课程上找到突破,实现借道超车呢。

总而言之,即使是那些大学数学课基本都用来刷朋友圈的学渣同学,你们也可以应付AI课程的学习。打个比方,如果大学数学课程是教大家研发汽车,我们AI课程中的数学部分就是教大家学开车。

那么,如果我不想去掌握这些数学知识,可以学习AI吗?

可以,其实AI从业者中,拥有强大数学背景、数学知识足以支持一切AI应用场合的人依然是少数。只是,数学基础的缺陷,容易导致大家在从业中遇到一些障碍。那时,大家就需要按照查字典的方式,有针对性地去补充项目中用到的那个数学知识点了。另外,完全不掌握这些数学知识,学习人工神经网络的过程可能会痛苦一些。

二、编程语言

完全不会编程的人可以从事AI吗?

其实可以,不会写代码的AI从业者数量并不少。在AI领域,有一些拥有丰富从业经验的人喜欢大量钻研前沿的科技论文,然后构想怎么把这些最新科技动向投向产业。这类人群往往并不写代码,他们也不会写代码,但他们对于前言科技发展的眼光是敏锐而独到的。怎么说呢?程序猿的工作是满足AI的应用需求,这种人的工作是提出AI的应用需求,也就是充当PM。

所以,编程语言只是AI的实现工具,把编程语言培训美化成AI培训只是培训机构的宣传策略。YESLAB也一直强调,不讲人工神经网络的AI培训都是耍流氓。

不过在这里,小产还是得把丑话说在前面,拥有大量论文积累但不会写代码的人大量存在,并不代表大家应该这样规划自己的职业发展路径。对于新入行的朋友,把广泛阅读科技论文当成绕过学习编程语言的近路,有可能会在入行时遇到求职问题,因为一家企业很难相信一个没有写代码能力、也没有从业经验的新人在AI前沿科技方面能够拥有独到的眼光。

要不然,YESLABPython课程了解一下?

三、阅读论文

阅读科技论文的重要性,小产在前面刚刚介绍过了。那么,对英语阅读能力没有信心,或者不想在论文库里皓首穷经的人可以从事AI吗?

可以,只不过这样一来,大家的职业发展就会遇到瓶颈,或者说会固定在长期从事一线工作的状态。当然,长期从事一线工作也没有什么不好,只是如果大家关注大企业的AI人才需求,一定会发现它们都是十分青睐于那种同时拥有编写代码能力,和积累了大量前沿论文的人才。

那么,很多朋友可能想问,阅读科技论文对英语的要求是什么水平呢?

这么说吧,如果大家雅思阅读考到8.5以上,或者托福阅读考到28……

回来回来,我是说,如果大家四级都考不过,那也不要紧……

英语和数学确实是很多人的老大难,销售小姐姐们也确实反映很多朋友在咨询时都提出了论文阅读的问题。其实,英文水平的提升和论文阅读量的积累都是一个循序渐进的过程,可以提高大家职业发展的上限,但是并不会影响大家进入AI这个行业。

当然,小产注意到大多数负责任的AI培训机构为了消除这个门槛,都在课程中插入了一些论文带读的分享课。YESLABAI公会也决定在例行活动中,适时地选取一些在业内公认很有价值的经典科技论文,和一些比较有潜力的前沿科技论文来为大家进行带读,帮助大家彻底消除英语阅读障碍对诸位了解AI领域前沿科技动态造成的影响。

英文的事情,AI公会可以搞定,近期优惠呦。

四、人工神经网络

如果大学的专业与人工智能不相关,那么人工神经网络可能是大家在大学期间完全没有接触到的一个领域。于是,也有很多人问,不懂人工神经网络可以从事AI吗?

答案是可以,但是不推荐。说的直观一点吧,完全不懂人工神经网络从事AI,就像你在肯德基点了一份老北京鸡肉卷,然后告诉KFC的小姐姐不要加鸡肉。

确实,有很多根本不懂人工神经网络的人也在从事AI行业。在个别知名企业的认证培训体系中,也弱化了人工神经网络知识所占的比重。这是因为这些跨国企业的认证培训体系是服务于推广自身产品的,人工神经网络作为它们产品的核心技术架构,已经集成在了产品内部,受训者未来在工作中扮演的角色只是在它们产品的平台上用编程语言调试它们。

这种简化人工神经网络知识在培训体系中所占比重的做法,对于厂商的好处是明显的,毕竟有能力承担人工神经网络教学的人在行业中凤毛麟角,而培训师资人数受限则会限制产品推广的效果。学习这种课程的人只要拥有编程基础就可以比较快地上手,但却会在开源的时代背上比较浓重的厂商背景,压缩了职业发展的空间。当然,大多数厂商的认证培训体系,包括华为推出的HCNA认证中,还是会包含对人工神经网络的介绍。

其实,人工神经网络并不是太高深的技术。它说白了就是始于大脑仿生学的一种逻辑图,如果其中不包含数学函数,看上去比计算机网络的拓扑图都要容易很多。大家完全不需要特别担心这部分内容学不会啊。

总之,相比于担任网络工程师,从事AI技术人员的门槛确实提高了。根据入门同学大学各类基础课程的掌握水平不同,我认为门槛大概提高了10%-30%。但门槛的提高客观上增加了这个行业从业者的含金量,让从业者仅凭一段短时间内的集中投入,就可以拥有一份薪酬更加可观的体面工作。所以,有句话怎么说的来着?一件事的对与错,取决于你看待它的角度。

最后,相信大家也看明白了。这篇文章通篇就是向大家传达一个理念:学AI不怕起点低,AI从业者也不都是全才。

不过,凡事都得有个度。前一阵,一位销售小姐姐问我,有个咨询的大哥哥问她,不会数学,不懂人工神经网络,不想学编程,也不打算读论文,能不能直接搞AI?

(THEEND)

www.yeslab.net

未来人工智能人才,需要具备哪些基本特征

我们早已进入移动互联网时代,正在进入人工智能时代,新时代对未来人才的需求也截然不同。,未来社会,会需要更多深度的、创意性的人才,未来人才应该具备以下三大特征:

一是未来人才应该具有能够深度思考、分解问题的能力。与工业化大生产中重复的体力劳动被机械所取代类似,未来重复的脑力劳动有望被人工智能取代,但是不可重复的部分,针对不同场景分解问题的能力是很难被取代的,这也是未来人才必备的核心竞争力。

二是未来人才应该具有能够和机器人对话的能力。就像现代社会的我们能够操作机械一样,未来的人才需要和人工智能共存,尤其是作为专业人才,需要掌握和机器人对话的技能,其基础可能是计算思维、逻辑思维等;近年来逐渐兴起的STEAM教育模式,就是培养未来人才的这些能力。值得一提的是,网易近期推出的少儿编程与创客教育平台“极客少年”也是属于对这个领域的探索。

三是未来人才需要具备对于人性、文化、情感等方面敏锐感知的能力,这可能是未来社会中个体的差异化发展以及个人和整个社会良性、健康发展的基础。

未来学习方式的变革

人工智能时代,培养人才的方式也需要与时俱进,所以未来学习方式的变革势在必行。随着技术的推动以及由技术变革带来的用户习惯的改变,会使用户的学习体验上不断提升。比如现阶段VR、AI、大数据分析等技术的应用,使得学习体验也在升级。未来,在学习体验上会进一步向场景化、浸入式发展,使得学习的过程更加自然的被触发。

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:如何培养出真正适合AI时代发展的人才?http://www.duozhishidai.com/article-12572-1.htmlBAT人工智能人才领域发展报告http://www.duozhishidai.com/article-8327-1.html大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇