博舍

人工智能发展的五个主要技术方向是什么 人工智能的最新应用方向是什么呢

人工智能发展的五个主要技术方向是什么

人工智能主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:

·计算机视觉(CV)

·自然语言处理(NLP)

·在NLP领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。

·机器人

1、分支一:计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

当前阶段:

计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。

发展历史:

2、分支二:语音识别

语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

当前阶段:

语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。

语音识别领域仍然面临着声纹识别和「鸡尾酒会效应」等一些特殊情况的难题。

现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。

发展历史:

百度语音识别:

距离小于1米,中文字准率97%+

支持耳语、长语音、中英文混合及方言

3、分支三:文本挖掘/分类

这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

当前阶段:

我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

发展历史:

4、分支四:机器翻译

机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。

当前阶段:

机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。

在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。

专业领域的机器翻译(比如医疗领域)表现通常不好。

发展历史:

5、分支五:机器人

机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

当前阶段:

自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在20世纪80年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入21世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。

但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资。

发展历史:

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。

大多数早期技术至少已经处于应用阶段了,而且其中一些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

猜你喜欢:

AI人工智能——科技春晚暗藏的风口行业

什么是人工智能?人工智能和Python有什么关系?

数学不好能学人工智能课程?

黑马程序员AI人工智能培训课程

下一代人工智能的发展方向 (上)

[[349500]]

尽管人工智能的诞生已经超过半个世纪,但近十年来人工智能领域发展非常迅速。自2012年ImageNet竞赛开始深度学习的现代时代以来,只有8年的时间。自那时以来,人工智能领域的进步令人震惊,现在人工智能已经深入我们日常工作生活的方方面面。

有专家表示,这个惊人的步伐只会越来越快。从现在开始的五年后,人工智能领域将与今天大不相同。当前被认为是最先进的方法将已经过时;今天刚刚出现或处于边缘的方法将成为主流。

下一代人工智能将是什么样子?哪种新颖的AI方法将释放当前在技术和业务方面难以想象的可能性?本文重点介绍了AI中的三个新兴领域,这些领域将在未来的几年中重新定义人工智能领域和社会。

1、无监督学习

当今AI世界中最主要的范例是有监督的学习。在监督学习中,AI模型从数据集中学习人类根据预定义类别进行策划和标记的过程。(术语“监督学习”源于人类“监督者”预先准备数据的事实。)

在过去的十年中,尽管从无人驾驶汽车到语音助手,有监督的学习已经推动了AI的显着进步,但它仍然存在严重的局限性。

手动标记成千上万个数据点的过程可能非常昂贵且繁琐。在机器学习模型提取数据之前,人们必须手动标记数据这一事实已成为AI的主要瓶颈。

在更深层次上,有监督的学习代表了一种狭窄的、受限制的学习形式。受监督的算法不仅无法探索和吸收给定数据集中的所有潜在信息、关系和含义,而且仅针对研究人员提前确定的概念和类别。

相反,无监督学习是一种AI方法,其中算法无需人工提供标签或指导即可从数据中学习。

许多AI领导者将无监督学习视为人工智能的下一个前沿领域。用AI传奇人物YannLeCun的话说:“下一场AI革命将不会受到监督。”加州大学伯克利分校的教授JitendaMalik更加生动地说:“标签是机器学习研究人员的鸦片。”

无监督学习如何工作?简而言之,系统会根据世界的其他部分来了解世界的某些部分。通过观察实体的行为,实体之间的模式以及实体之间的关系(例如,上下文中的单词或视频中的人物),系统引导了对其环境的整体理解。一些研究人员用“从其他事物中预测所有事物”来概括这一点。

无监督学习更紧密地反映了人类学习世界的方式:通过开放式探索和推理,不需要监督学习的“训练轮”。它的基本优点之一是,世界上总是会有比已标记数据多得多的未标记数据(前者更容易获得)。

用LeCun的话来说,他喜欢密切相关的术语“自我监督学习”:“在自我监督学习中,输入的一部分用作监视信号,以预测输入的其余部分。可以通过自我监督学习而不是[其他AI范式]来学习有关世界结构的知识,因为数据是无限的,每个示例提供的反馈量很大。”

无监督学习已经在自然语言处理中产生了变革性的影响。NLP得益于一种新的无监督的学习架构,即Transformer,最近取得了令人难以置信的进步,该架构始于Google大约三年前。(有关Transformer的更多信息,请参见下面的#3。)

将无监督学习应用于AI的其他领域的努力仍处于早期阶段,但是正在取得快速进展。举个例子,一家名为Helm.ai的初创公司正在寻求利用无监督学习来超越自动驾驶汽车行业的领导者。

许多研究人员将无监督学习视为开发人类级AI的关键。LeCun认为,掌握无监督学习是“未来几年ML和AI面临的最大挑战。”

 

 

2、联合学习

数字时代的主要挑战之一是数据隐私。由于数据是现代人工智能的命脉,因此数据隐私问题在AI的发展轨迹中扮演着重要的角色(并且常常是限制性的)。

保持隐私的人工智能(使AI模型能够从数据集中学习而不损害其隐私的方法)正变得日益重要。保持隐私的AI的最有前途的方法也许是联合学习。

联合学习的概念最早由Google的研究人员于2017年初提出。在过去的一年中,对联合学习的兴趣激增:到2020年的前六个月,发表了超过1,000篇有关联合学习的研究论文,而在2018年只有180篇。

如今,构建机器学习模型的标准方法是将所有训练数据收集到一个地方(通常在云中),然后在数据上训练模型。但是,这种方法对全球大部分数据都不可行,出于隐私和安全原因,这些数据无法移至中央数据存储库。这使其成为传统AI技术的禁区。

联合学习通过颠覆传统的AI方法解决了这个问题。

联合学习并不需要一个统一的数据集来训练模型,而是将数据保留在原处,并分布在边缘的众多设备和服务器上。取而代之的是,将模型的许多版本发送到一个带有训练数据的设备,每个模型都在每个数据子集上进行本地训练。然后将生成的模型参数(而不是训练数据本身)发送回云。当所有这些“微型模型”汇总在一起时,结果就是一个整体模型,其功能就像是一次在整个数据集上进行训练一样。

最初的联合学习用例是针对分布在数十亿移动设备上的个人数据训练AI模型。正如这些研究人员总结的那样:“现代移动设备可以访问大量适用于机器学习模型的数据...。但是,这些丰富的数据通常对隐私敏感,数量庞大或两者兼而有之,因此可能无法登录到数据中心....我们提倡一种替代方案,将训练数据保留在移动设备上,并通过汇总本地计算的更新来学习共享模型。”

最近,医疗保健已成为联合学习应用中特别有前途的领域。

不难理解原因。一方面,医疗保健中有大量有价值的AI用例。另一方面,医疗保健数据,尤其是患者的个人身份信息,非常敏感;像HIPAA这样的法规丛书限制了它的使用和移动。联合学习可以使研究人员能够开发挽救生命的医疗保健AI工具,而无需从源头转移敏感的健康记录或使它们暴露于隐私泄露中。

涌现了许多初创公司,以追求医疗保健领域的联合学习。最有名的是总部位于巴黎的Owkin;早期阶段的参与者包括Lynx.MD、FerrumHealth和SecureAILabs。

除医疗保健外,联合学习有一天可能会在任何涉及敏感数据的AI应用的开发中发挥中心作用:从金融服务到自动驾驶汽车,从政府用例到各种消费产品。与差分隐私和同态加密之类的其他隐私保护技术结合使用,联合学习可以提供释放AI巨大潜力的关键,同时减轻对数据隐私的棘手挑战。

如今,全球范围内颁布的数据隐私立法浪潮(从GDPR和CCPA开始,即将推出许多类似的法律)只会加速对这些隐私保护技术的需求。期望联合学习在未来几年中将成为AI技术堆栈的重要组成部分。

3、Transformer

我们已经进入了自然语言处理的黄金时代。

OpenAI发布的GPT-3是有史以来功能最强大的语言模型,今年夏天吸引了整个技术界。它为NLP设定了新的标准:它可以编写令人印象深刻的诗歌,生成有效的代码,撰写周到的业务备忘录,撰写有关自身的文章等等。

GPT-3只是一系列类似架构的NLP模型(Google的BERT、OpenAI的GPT-2、Facebook的RoBERTa等)中最新的(也是最大的),它们正在重新定义NLP的功能。

推动语言AI革命的关键技术突破是Transformer。

在2017年具有里程碑意义的研究论文中介绍了Transformer。以前,最新的NLP方法都基于循环神经网络(例如LSTM)。根据定义,递归神经网络按顺序显示数据,即按单词出现的顺序一次处理一个单词。

Transformer的一项伟大创新是使语言处理并行化:给定文本主体中的所有标记都是同时而不是按顺序分析的。为了支持这种并行化,Transformer严重依赖于称为注意力的AI机制。注意使模型能够考虑单词之间的关系,而不论它们之间有多远,并确定段落中的哪些单词和短语对于“注意”最为重要。

为什么并行化如此有价值?因为它使Transformers的计算效率大大高于RNN,这意味着可以在更大的数据集上对它们进行训练。GPT-3训练了大约5000亿个单词,由1750亿个参数组成,这使现有的RNN显得相形见绌。

迄今为止,由于GPT-3等的成功应用,Transformer几乎只与NLP相关联。但是就在本月,发布了一篇突破性的新论文,该论文成功地将Transformer应用于计算机视觉。许多AI研究人员认为,这项工作可以预示计算机视觉的新时代。(正如著名的ML研究人员OriolVinyals所说的那样,“我的观点是:告别卷积。”)

尽管像Google和Facebook这样的领先AI公司已经开始将基于Transformer的模型投入生产,但大多数组织仍处于将该技术产品化和商业化的初期阶段。OpenAI已宣布计划通过API将GPT-3进行商业访问,这可能会为在其上构建应用的整个初创企业生态系统注入种子。

 从自然语言开始,期望Transformers在未来的几年中将成为整个新一代AI功能的基础。过去十年在人工智能领域令人兴奋,但事实证明,这仅仅是未来十年的序幕。

 

人工智能十大领域最新成果(人工智能十大科技应用)

人工智能十大领域最新成果(人工智能十大科技应用)

时间:2022-05-1918:23:02作者:writer001阅读:

分享到:

「人工智能」“当红不让”

要说最近几年最火热的“风口”,那一定是非“人工智能”莫属了,打开淘宝、抖音、微信、京东等软件,会发现智能推荐、搜索、语音转文字等人工智能的应用场景,可以说「人工智能」已经在生活中无处不在。

除了日常生活,数字经济时代,人工智能技术及产品在企业设计、生产、营销等多个环节中均有渗透且成熟度不断提升,AI应用从消费、互联网等泛C端领域,向制造、电力等传统行业辐射。

中国在2017年发布《新一代人工智能发展规划》,「人工智能」首次纳入国家战略规划,此后连续几年将“人工智能”写入《政府工作报告》。

根据2017年国务院印发的《新一代人工智能发展规划》,到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。3月,国务院发布的2022年政府工作报告指出,加快发展工业互联网,促进数字经济发展,培育壮大集成电路、人工智能等数字产业,提升关键软硬件技术创新和供给能力。

艾瑞咨询绘制中国人工智能产业图谱

那么中国目前在「人工智能」领域都取得了哪些成果呢?今天就带大家了解这些“黑科技”。

AI芯片

“无芯片不AI”,以AI芯片为载体实现的算力是人工智能发展水平的重要衡量标准。

2021年《“十四五”规划纲要和2035年远景目标纲要》指出,“十四五”期间,我国新一代人工智能产业将聚焦高端芯片等关键领域。从国家战略高度为人工智能芯片行业建立了优良的政策环境。

随着大算力中心的增加以及终端应用的逐步落地,中国AI芯片需求也持续上涨。2021年疫情缓解,市场回暖,产生较大增幅;类脑等新型芯片预计最早于2023年进入量产,因此2024及2025年或有较大增长,预计市场规模将于2025年达到1740亿元。

AI芯片在低功耗的同时处理大量数据,算力达到了传统芯片的1000倍。

中国企业如今已经是AI芯片领域最积极的参与者之一,目前AI芯片申请数量最多的国家分别是美国和中国,占比分别达到了37%和36%。

但是就当前市场的产能来看,纯国产品牌的芯片只占8%,国产芯片任重道远。

下图为中国人工智能芯片相关企业的融资情况,其中是否能有后起之秀脱颖而出?我们拭目以待。

AI计算

国务院印发的《“十四五”数字经济发展规划》提出,推动智能计算中心有序发展,打造智能算力、通用算法和开发平台一体化的新型智能基础设施,提供体系化的人工智能服务。

2022年“东数西算”工程全面启动,此工程大家想必已经耳熟能详了。

“算力”是人工智能应用的基础,用于人工智能(AI)训练的计算复杂度每年增加10倍,这其中最有代表性的就是大型计算中心和智能云。

超级计算机“神威太湖之光”

根据IDC统计,我国智能算力增长迅速,占据全球市场40%左右的份额,成为算力快速增长的驱动力。目前我国AI服务器支出规模同比大幅增长44.5%,并首次超过美国位列全球第一。但是计算服务仍未跨出地方范畴,数据中心平均IT负载率仅为20%-30%,没有为中小企业真正提供普惠算力,有待提升。

国家超级计算郑州中心

国家超级计算中心

已经建成的国家超级计算中心有天津、广州、深圳、长沙、济南、无锡、郑州、昆山八大中心,高性能算力已经走在世界前列,2021年全球浮点运算能力前500名榜单中,我国占了174位,数量保持全球第一。

但从算力上看,美国以32.5%的算力排名第一,日本算力大幅升至20.7%、超过中国的17.5%、排名第二,单台超算的性能落后于美国和日本。

智能云

国际分析机构Canalys日前发布的2021年中国云计算市场报告显示,中国的云基础设施市场规模已达274亿美元,由阿里云、华为云、腾讯云和百度智能云组成的“中国四朵云”占据80%的中国云计算市场,稳居主导地位。

2021年我国云计算市场规模已超2300亿元,预计2023年将突破3000亿元。

应用案例:12306铁路购票网站通过混合云部署将查询业务分担到云端,在保证本地数据安全的同时,支撑起春运期间最高每秒40万次的查询需求。

目前云计算技术产品和服务供给能力仍然不足,面向特定行业领域的解决方案依然有限,未来的市场潜力巨大。

自主无人系统

2022年4月29日,清华大学发布《智能无人系统产业研究报告(2022版)》

北醒CEO李远博士在圆桌论坛现场也谈到:“我们的激光雷达除了在诸如一汽奔腾E01电动车等汽车领域装载,也服务于冬奥会专线地铁,三峡大坝等大交通领域。目前公司产品已经累计出货近100万台,在安全和可靠性上经过了考验。目前,我们最新研发的超高性能激光雷达服务高级别的自动驾驶,支持国家交通强国战略,探索智能无人系统产业的未来可能性。”

无人驾驶汽车

国内首个24小时服务的车路协同无人驾驶接驳巴士东风悦享Sharing-VAN“春笋号”,五一期间在武汉投入使用。

“春笋号”升级版Sharing-BUS

策克口岸全国首例AGV无人驾驶跨境运输,通过道路磁钉的引导完成运煤作业。

AGV车辆额定载荷为70吨,一次拉运2个集装箱,净载重64.4吨,油电混合动力驱动,重载速度为18公里/小时,空载速度为25公里/小时。易大宗浩通能源有限公司计划今年投入24辆AGV,年运输能力达到1000万吨。

AGV无人驾驶车辆

百度/小马智行在北京获准在北京市经济技术开发区60平方公里核心区内开展无人化Robotaxi自动驾驶出行服务的权利。

百度已拥有国内最大的无人驾驶车队,旗下的萝卜快跑已在北京、上海、广州、深圳等超大城市实现自动驾驶载人出行服务,成为了全球最大的自动驾驶出行服务商。

百度已拥有国内最大的无人驾驶车队

目前的“无人化”是取消了车辆主驾驶位的安全员,并移至副驾驶位。百度智能驾驶事业群副总裁魏东透露,“全无人”自动驾驶或在今年年底能够开放。

副驾驶安全员

随着高级别自动驾驶示范区“去安全员”无人化测试开放,无人驾驶汽车正在快速走进我们的生活。

还有美团的无人配送车,驰援疫情地区。

美团外卖无人配送车

无人机

民用无人机领域,大疆无人机独领风骚,占据全球八成市场。

大疆无人机

智能工厂

“未来工厂”是数字化、智能化的工厂。

无人智能仓库

智库智能的托盘仓储机器人在立体化的货架上奔忙,通过智能调度平台,与运出运入的AGV叉车“无缝对接”,从入库到出库全流程“无人”。

京东亚洲一号仓库

去年双十一期间,京东物流武汉亚洲一号智能物流园区内,350余台智能分拣机器人正在分拣货物。

时刻关注工厂设备运行状况

预测性维护

通过人工智能系统,从车间到总裁办公室,全面了解工厂设备运行状态,消除系统风险。提前发现早期故障,减少计划设备维护时间,同时及时维护,还能延长设备寿命。

坐在办公室内就可以了解所有设备状态

智慧医疗

医疗服务质量的好坏,直接影响了居民的生活幸福指数。面对人口老龄化、慢性病增加、医疗资源分布不均、医疗人才缺失、公共卫生突发事件等问题,智慧医疗应运而生。

智慧医疗是医疗信息化最新发展阶段的产物,是5G、云计算、大数据、AR/VR、人工智能等技术与医疗行业进行深度融合的结果,是互联网医疗的演进。

华西医院智能自助挂号机

医疗信息化,比如医院的自助挂号缴费机器、电子病历等,后来再发展到互联网医院,比如阿里、腾讯等互联网公司布局的AI医疗体系。

而在5G、人工智能等新兴技术的推动下,医疗信息化正式迈入了“智慧医疗”时代。

针对智慧医院,国家卫健委曾经明确指出过它的三大工作范围,分别是:面向医务人员的“智慧医疗”、面向患者的“智慧服务”、面向医院管理的“智慧管理”。

疫情期间专家为雷神山医院重症患者“云会诊”

高效、高质量和可负担的智慧医疗不但可以有效提高医疗质量,更可以有效阻止医疗费用的攀升。在不同医疗机构间,建起医疗信息整合平台,将医院之间的业务流程进行整合,医疗信息和资源可以共享和交换,跨医疗机构也可以进行在线预约和双向转诊,这使得“小病在社区,大病进医院,康复回社区”的居民就诊就医模式成为现实,从而大幅提升了医疗资源的合理化分配,真正做到以病人为中心。

智慧城市(城市数字化)

城市数字化转型是在城市传统基础设施转型升级及“新基建”基础上,进一步触及城市治理、社会服务、产业经济、创新保障、低碳发展等核心业务,推动城市运营模式创新的数字化、智能化、系统化、高质量转型,其最终目标是构建以城市为单位的数字化组织。

2021城市数字化百强榜,数据来源:赛迪顾问

智慧城市,具体有哪些应用呢?

1、智慧公共服务,就业、医疗、文化、安居等专业性应用系统建设,提升城市运行效率和公共服务水平,例如就业系统、社保系统、数字化图审系统等。

2、智慧城市综合体,视觉采集和识别、各类传感器、无线定位系统、RFID、条码识别、视觉标签等顶尖技术,收集城市信息,将数据可视化规范化,让管理者可视化管理城市,例如道路交通实时路况。

交警指挥中心来源:中国吉林网

3、智慧社区,将门禁系统、监控系统、梯控系统、安保系统、物业系统等融为一体,从而形成基于信息化、智能化社会管理与服务的一种新型管理形态的社区。例如常见的楼宇对讲。

智慧城市涉及的面非常广泛,比如近日长沙市政府对外2022长沙市“新型智慧城市建设场景清单”。包括193个智慧城市应用场景(项目),预计总投资52.5亿元,涉及精细治理、惠民服务、基础支撑、生态宜居、产业经济等多个领域。

智慧金融

智慧金融领域最典型的三种案例分别是智慧银行、智能投顾、消费金融。

智慧银行

这个大家都很熟悉,现在几乎所有的银行都在推广自己的手机银行APP,智慧门户是智慧银行的支撑平台。同时,线下也布局智能化网点,实现智能联网排队、智能填单、精准营销、智能互动、电子大堂、掌上大堂、辅助决策等多功能。

工商银行的5G智慧银行

智能投顾

其实就是“机器人理财”,是将人工智能导入传统的理财顾问服务,依据需求者设定的投资目的及风险承受度,透过计算机程序的算法,提供自动化的投资组合建议。

消费金融

这个大家就更熟悉了,支付宝里的花呗就是其中之一,但消费金融公司还有许多,下图是2021年29家消费金融公司的业绩。(蚂蚁消费金融于2021年6月成立,自开业以来逐渐承接蚂蚁集团旗下小贷公司中符合监管规定的消费信贷业务,自2021年11月起,“花呗”已成为蚂蚁消费金融的的专属消费信贷品牌。)

来源:界面新闻

智能安防

智能安防与智能家居互有重叠,这里单独从中摘出智能安防,是因为智能安防在智能家居中是目前需求最高产品。

据权威机构发布的数据显示,从中国智能家居产品用户需求度情况来看,家庭安防是用户需求度最高的智能家居产品,需求度高达92%。

安全问题,不管是城市还是农村,人们都舍得在安全问题上投入,而且相对来说性价比也最高。据公安部统计,每年因入室盗窃造成的家庭损失高达11300亿元。

人工智能植入安防系统后,使得原本的监控系统变得更加实用便捷。

智能摄像头

摄像头除了像素竞争,是否具备视频通话的功能、环境感知的功能、物体识别、行为识别功能会逐渐成为家用摄像头“智能”与“智障”的分水岭,人工智能技术可以让摄像头不仅仅提供拍摄的功能,发现、识别、验证、拍摄、传输,一步到位。

家用可视频通话监控摄像头

智能门锁

除了摄像头,智能门锁是另一员“大将”。智能门锁实现了与家居安防、安保物业、社区安保等的联动,真正诠释了物联网“万物互通连接一切”的本质。

智能锁通过人脸识别、远程可视、智能门锁的联动防御,可做到人脸识别的一体化,精准、快速、高效地进行人脸识别,真正的做到无感知通行。而智能门锁连接的多功能报警器则可以连接社区物业平台与公安系统,全方位为用户提供一个安全、舒适的家庭环境。

2022年5月17日,OPPO发布了首款智能门锁,可见各大智能厂商也都已经盯上了这块“肥肉”。

OPPO刚刚发布的智能门锁售价1999元

从企业布局情况来看,除了以海康威视、大华股份为代表的传统安防巨头积极推动安防产品智能化转型外,互联网企业、家电企业和3C企业也纷纷布局智能安防市场。

AI虚拟人

大家还记得北京冬奥会上惊艳全场的“虚拟冰冰”吗?

虚拟:冰冰

这个“冰冰”是采用了科大讯飞最新语音合成、AI口唇表情驱动、定制3D虚拟形象等多项人工智能技术,虚拟人不仅拥有媲美真人的立体化身形,声音、语气、肢体动作,同时还有着外表、行为、交互等多重人类特征,还支持东北话、英语等31种语言及方言。

阿里巴巴的数字人“冬冬”

冬奥期间,阿里巴巴全球科研机构达摩院还推出了首个会智能互动的数字人冬奥宣推官——冬冬。

冬冬在淘宝“带货”

为了服务中国2700万听障人士,“百度智能云曦灵”团队,打造了这个虚拟人AI手语主播可以实现快速准确的手语翻译。

央视主持人朱广权和AI虚拟人手语主播PK

还有之前在抖音火爆全网的虚拟美妆达人“柳夜熙”,形象与真人相差无几,她拥有清晰精致的五官,第一条视频就获赞超过300万,涨粉百万,立刻登上了热搜。

虚拟美妆达人“柳夜熙”

虚拟美妆达人“柳夜熙”

国外“虚拟人”公司的底层技术相对发展较快,在CG、驱动等方面更具优势,而国内虚拟人更加多元化,在触达用户的广度上更具优势。随着“元宇宙”场景的日益拓展,“虚拟人”会更加商业化,未来将延伸到更多产业。

AI互联网生活

正如文章开头说过的,AI互联网时代,我们生活中处处都是移动互联网的痕迹,比如你正在打开的“今日头条”,他正在按照AI算法给你推送你想看的内容,包括我写的这篇文章。

如今,手机俨然已经成为了人类的“外延器官”。而AI+互联网正借助手机和其他智能产品,渗透到你身体和精神的每一个角落。

AI伴随你的一天

清晨,你伴随着智能音响“天猫精灵”准时为你播放的音乐缓缓醒来,播放的音乐是按照你收听喜好智能推送的“抖音”上最热新曲。

你抬起胳膊解下“华为智能腕表”去洗漱,一边打开手机,上面显示的是通过手表收集的你昨晚的睡眠状况。

洗漱后你来到厨房,按照预定时间,智能电饭煲里已经按照你的口味,将你提前放入的食材加工好了,你一边吃饭一边打开“今日头条”,上面推送了最新要闻和你偏爱的文章。

早饭后,你下楼开上自己的小车,百度地图自动为你开启导航模式,选择了最优路线,规避事故拥堵路段。

到公司楼下了,钉钉自动考勤打卡,你来到工位,打开电脑登录各种办公软件,开始了一天忙碌的工作。

中午12点,你在美团上提前订的外卖送到了,你一边吃着美味的午餐一边刷着快手视频,度过你放松的午间。

晚上下班路上,你开车回家,通过远程控制,家里的智能空调已经提前为你打开。而与此同时你定的蔬菜鲜果已经在配送的路上了,App上你能实时看到配送路线。

晚饭后,你打开电视,使用手机投屏,跟随健美操视频跳一曲《本草纲目》。

夜深了,智能音响为你特别精选了睡前音乐和睡前故事,美好的一天就这样结束了。

人工智能可能正是打开下一次工业革命的钥匙,属于人工智能的时代正“扑面而来”,我们无法逃避,那就好好利用,好好享受其中吧。

标签:

本文标题与链接:人工智能十大领域最新成果(人工智能十大科技应用)https://www.lingeyizhan.com/edu/490.html

相关推荐2023-03-20人工智能创业项目商机(人工智能哪个方向前景好)2023-03-07人工智能投资项目有哪些2023-02-07人工智能培训_人工智能培训靠谱吗2022-10-30如何入门人工智能行业,小白入门人工智能专业2022-10-30人工智能行业有哪些方向,人工智能应用行业2022-07-06人工智能师数据标注员:新职业打开就业新空间新待遇上一篇:2022年值得关注的8个人工智能趋势下一篇:中国人工智能的发展为什么需要“根技术”?

人工智能

新闻

新品曝光

行业动态

深度解析

最新消息

人物专访

评测

单品评测

横向评测

对比评测

专项评测

导购

常规导购

报价

热门频道

手机频道

Hi5G

智能汽车

智能家居

科学技术

追新求异

人工智能

电脑平板

消费数码

互联网

智能家居产品

视频

手机视频

评测视频

创意视频

上手视频

智能硬件视频

手机周边视频

查手机

手机大全

品牌大全

手机排行榜

手机评测排行

汽车大全

品牌找车

新能源汽车

紧凑型车

SUV汽车

论坛

苹果论坛

三星论坛

华为论坛

小米论坛

vivo论坛

一加论坛

图片库

手机图片

样张美图

智能家居图赏

汽车图赏

酷软汇

Android应用

苹果应用

其它

小道消息

手机汇

发布会直播

专题

人工智能发展与应用综述

人工智能发展与应用综述摘要

自人工智能的概念在1956年被提出以来,研发者们就不断研究,六十多年的发展,在理论研究以及应用领域都已取得了喜人的成果,人工智能在医疗,交通,教育,商业,信息安全等领域已经深入国民生活。本文对人工智能概念进行解读,并对人工智能发展与应用进行综述,探索人工智能发展轨迹,以更好认识人工智能,对行业技术与发展有更深刻的理解。

关键词:人工智能发展应用综述总结1、引言

人工智能的概念越来越深刻影响着人类的生活,如同蒸汽时代的蒸汽机,电气时代的发电机,信息时代的计算机,人工智能已经成为推动人类进入智能时代的决定性力量。当然,人工智能并不是凭空产生的,其发展具有一定的过程,在无数科学研究者,学者的辛勤努力下,人工智能研究的研究体系已经初见成果。人工智能的概念产生于欧美、日本等国家,并迅速风靡全球,可喜的是,根据清华大学发布的《人工智能发展研究报告2018》统计,我国已经成为全球人工智能投资融资规模最大的国家,我国人工智能在人脸识别,语音识别,安防监控,智能音箱,智能家居等人工智能应用领域处于国际前列。根据2017年,爱思唯尔文献数据库[1]统计结果,我国在人工智能领域发表的论文数量已居世界第一。当然,作为一项新兴事物,人工智能并非完美无缺,在许多方面仍然有较多的困难尚未攻克,本文对人工智能发展与应用进行综述[2、3],指导正确看待这一新兴事物,更好指导未来的技术发展。

2、人工智能以及核心概念

由于“智能”这一概念难以确切定义,图灵用:“机器能够思考吗?”这一问题代替。图灵提出通过对机器进行“图灵测试”,以判断它是否具有智能。“图灵测试”就是让机器当做人,与人进行对话,如果有30%的测试人相信此机器是人类,那么这台机器被认为具有智能。美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样的定义:人工智能是关于知识的学科,是怎样表示知识以及怎样获得知识并使用知识的科学。从实用观点来看,人工智能是一本知识工程学:以知识为对象,研究知识的获取,知识的表示方法和知识的使用。目前学术界将人工智能分为强人工智能和弱人工智能,强人工智能就是机器具有自我意识,要求机器有知觉有意识。弱人工智能是指没有知觉意识的智能,机器按照事先写好的程序进行工作,并不拥有智能。

(1)、机器学习

机器学习[4]是人工智能的核心技术,是使机器拥有智能的主要途径,是指让机器模拟人的学习能力,以此来增强机器的性能。早在上个世纪图灵就给出了类似机器学习的想法,他设想让机器模仿儿童思维,使其接受正确的教育成长为一个成人的大脑。这种想法与当今学者研究的方向不谋而合。后来图灵与同事一起编写了程序去实践这种想法,机器能够做他们编写过的事情,除此之外,不会向人类一样在能力方面有更多的延伸。如何让机器自主的学习,在今天仍然是人工智能发展的难题。

(2)、人工神经网络

是受人脑神经元的启发,试图设计与人脑结构类似的网络结构,模拟大脑处理信息的的过程,以提高运算速度。作为人工神经网络的一类,卷积神经网络已经广泛用于大型图像处理中。虽然人工神经网络无法与人类大脑媲美,在模式识别,医疗,智能机器人等领域取得的成果有目共睹。

(3)、专家系统

是指依靠人类专家已有的知识建立的知识系统,是一种特定领域内大量知识与经验的程序系统。它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以甚至超过人类专家的水平。目前专家系统开发最早应用最广泛的领域,多是医疗诊断,地质勘探,文化教育等领域。

3.发展历程

回顾人工智能的发展可以有以下四个时期:孕育,形成,知识运用,综合集成四个阶段。孕育期:一般认为人工智能的最早工作是Warre基本出发点。Mcculloch跟WalterPitts完成的。他们提出一套人工神经元模型,两名普林顿大学数学系的研究生在1951年建造了第一台神经元网络计算机。不少早期工作可以被当做人工智能,古希腊的亚里士多德创立的演绎法,三段论的至今仍然是演绎推理的基本出发点。形成期:人工智能诞生于1956年的一次历史性聚会。几位来自美国的数学,神经学,心理学,信息科学和计算机科学的杰出科学家齐聚一堂,由麦卡锡提出了“人工智能(AI)”这一概念。会议过后,各地的科学家、学者纷纷研究相关知识,“人工智能”这一学科以及相关研究如雨后春笋一般形成。1969年的国际人工智能联合会议标志着人工智能得到国际的认可。知识应用期:1977年费根鲍姆在第五届国际人工智能大会上提出了知识工程的概念。从此之后,各类专家系统得以发展,大量的商品化专家系统和智能系统纷纷推出。专家系统的发展,也是得人工智能的发展范围扩大到了人类各个领域,并产生了巨大的经济效益。但是专家系统发展过程中也存在很多缺陷,应用领域窄,缺乏常识性知识,知识获取困难,不能访问现存的数据库等问题被逐渐暴露出来,人工智能面临着考验。综合形成期,在专家系统方面,从20世纪80年代末开始逐步向多技术,多方法的综合集成与多领域的综合应用型发展。大型专家系统开始采用了人工智能的多种语言,多种知识表示方法,多种推理机制和多种在控制策略相结合的方式,人工智能的发展进入综合形成期。目前,人工智能技术正在向大型分布式人工智能,大型分布式多专家协同系统,并行推理,多种专家系统开发工具,大型分布式人工开发环境和分布式环境下的多智能协同系统等方向发展。但是从目前来看,无论是人工智能理论还是实践都不够成熟,人工智能研究仍然需要科研工作者长期摸索。

4、人工智能的应用(1)、虚拟各人助理

目前市面上的人工智能助理如:Siri,小娜等。个人助理能够帮助用户完成多项任务,多项服务,其推动力是人工智能技术。现阶段的人工助理一般具有基于上下文的对话能力,可以实现简单的人机对话,回答一些简单的问题。个人助理的应用包括语音识别,图像识别,深度学习等技术,其工作原理是“语音识别+云计算服务”。

(2)、自动驾驶

谷歌公司一直致力于自动驾驶汽车的研究,2012年4月。谷歌公司宣布自动驾驶汽车已经行驶20万公里,这一数据已经接近汽车的最大里程数。我国自动驾驶技术的研究同样取得振奋人心的成果。2017年由海梁科技与深圳巴士集团等联合打造的自动驾驶客运巴士,正式进行线路的信息采集和试运行。

(3)、智慧医疗

医疗一直是关系到国际民生的重要范畴。随着专家系统的不断发展完善,已有实例表明,人工智能可参与到医疗建设中。Watson[5]是IBM公司研发的采用认知计算系统的人工智能平台,watson肿瘤系统是其产品之一,可以作为辅助诊疗手段,与医院数据对接,实现病例数据的信息共享,还可以为临床医生在诊断过程中推荐诊疗方案,苏北人民医院2017年正式引入此系统,开启了智慧医疗的新时代。

5、我国人工智能发展趋势与展望

人工智能技术发展至今60多年,其概念已经逐渐清晰,在生物,医疗,交通等领域孕育出了突破性的成果,但是人工智能技术能否发展到人类的水平仍然不能给出确切的答案。目前人工智能面临的问题主要是:

(1)、体系结构受限

受限于冯诺依曼体系结构,目前人工智能系统在感知,认识方面无法突破瓶颈。这主要是由于传统的冯诺依曼体系结构采用的是存储程序的方法,程序是事先设定的,无法随着外界的改变而改变,这也是限制人工智能发展的关键。不过,我们有理由相信,在不久的未来能够克服这种制约。

(2)、社会问题困扰

如果人工智能真的发展到与人类智慧媲美的程度,又会引发一系列的问题。一方面心理学上,“恐怖谷”理论就是假如机器人接近人类的时候,我们会对其产生莫名的厌恶和惧怕。另一方面,人工智能带来的社会问题同样困扰着人类,以自动驾驶汽车为例,3-18美国自动驾驶车辆车祸致人死亡的事件给自动驾驶技术的发展带来不小的冲击,事故责任的划分成为一大难题。目前人工智能的发展,主要是在弱人工智能发展并取得显著的成果,在强人工智能的研究上仍在开展,存在很多问题,有很大的发展空间,从目前的一些前瞻性研究可以看出人工智能可能会向以下几个方面发展:模糊处理,并行化,神经网络和机器情感。人工智能的下一个突破可能是赋予计算机情感能力。

参考文献

[1]中央人民政府驻香港特别行政区联络办公室副主任中国科学院院士谭铁牛.人工智能的发展趋势及对策[N].中华工商时报,2019-02-25(003).[2]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,30(02):4-7.[3]杨俊龙,柳作栋.人工智能技术发展及应用综述[J].计算机产品与流通,2018(03):132-133.[4]陈彦淇.简析人工智能的发展与应用[J].科技传播,2019(04):162-163+170.[5]曹敦煜.人工智能在心脏疾病诊疗中的应用[J].科技传播,2019(04):141-142.

人工智能产业的应用场景和发展模式

1、基础层面:主要有AI芯片、传感器、云计算、减速器等四类核心产品

(1)AI芯片——主要包括GPUFPGA等加速硬件与神经网络芯片、为深度学习提供计算硬件,是重点底层硬件。

(2)传感器——主要对环境、动作、图像等内容进行智能感知,是人工智能的重要数据输入和人机交互硬件。

(3)云计算/大数据——主要为人工智能开发提供云端计算资源和服务,以分布式网络为基础,提高计算效率,包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务。

(4)减速器——作为一种相对精密的机械,主要为人工智能产品降低转速,增加转矩,以满足不同场合下的工作需要,是重要的底层硬件。

2、技术层面:主要有计算机视觉、自然语言处理、语音识别、机器学习等四类核心技术

(1)计算机视觉——包括静动态图像识别与处理等,对目标进行识别、测量及计算。主要应用在智能家居、语音视觉交互、ARVR、电商搜图购物、标签分类检索、美颜特效、智能安防、直播监管、视频平台营销、三维分析等场景。

(2)自然语言处理——基于数据化和框架化,研究语言的收集、识别理解、处理等内容。主要应用在知识图谱、深度问答、推荐引导、机器翻译、预料处理、模型处理等场景。

(3)机器学习——主要以深度学习、增强学习等算法研究为主、赋予机器自主学习并提高性能的能力。主要应用在压缩技术、安防、数据中心、智能家居、公共安全等场景。

(4)语音识别——通过信号处理和识别技术让机器自动识别和理解人类口述的语言,并转换成文本和命令。主要应用在智能电视、智能车载、电话呼叫中心、语音助手、智能移动终端、智能家电等场景。

3、应用层面:主要分为智慧城市、智慧生产、智慧生活三大类应用场景

(1)智慧城市:智慧城市涉及到交通、教育、医疗、零售等与用户生活息息相关的场景,把这些场景集合在同一平台上,增强用户使用习惯将会增强,粘性就会提升。各类场景互联互通,最终达到提升城市运维效率、提升资源管理效率、提升居民生活品质的目的。

典型智慧城市应用场景

(2)智慧生产:形成产品生产导向向需求生产导向转变的智慧生产流程体系

(3)智慧生活:涵盖智慧居住、饮食、健康监护管理、家庭管理等应用场景

人工智能属于面向未来的新事物,应用场景是人工智能发展的主要驱动力。下面简要分析医疗、交通、教育、金融、生活、零售、安防、园区、环保、政务等10个细分领域的人工智能应用场景及商业模式。

典型应用1:AI+医疗——中国医疗人工智能处于风口期,医学影像和疾病风险管理为热点

智能医疗,从技术细分角度看,主要包括使用机器学习技术实现药物性能、晶型预测、基因测序预测等;使用智能语音与自然语言处理技术实现电子病历、智能问诊、导诊等;使用机器视觉技术实现医学图像识别、病灶识别、皮肤病自检等。从应用场景来看,主要有虚拟助理、医学影像、辅助诊疗、疾病风险预测、药物挖掘、健康管理、医院管理、辅助医学研究平台等八大AI+医疗市场应用场景,其中医学影像和疾病风险管理为热门领域。

典型应用2:AI+交通——中国市场规模庞大,形成四类无人驾驶主流商业产品

智能驾驶其涉及的领域包括芯片、软件算法、高清地图、安全控制等。目前主要商业产品有无人驾驶出租车、无人驾驶卡车、无人巴士和无人驾驶送货车;无人驾驶车辆将设计拥有更高的安全性且能极大地降低人力成本,成为诸多相关企业的关注的焦点。

(1)无人驾驶出租车:人驾驶出租车因为其安全性更高,因此被很多汽车服务业关注,目前,无人驾驶出租车已经处于测试阶段。2015年软件公司NuTonomy在新加坡开始无人驾驶出租车测试,计划2018年完成整个无人驾驶服务的商业化

(2)无人驾驶卡车:无人驾驶卡车能有效降低司机因长时间、长距离运输而疲惫导致的安全事故。2016年11月,中国福田汽车联合百度在上海发布了国内首款无人驾驶卡车。

(3)无人巴士:固定的行驶路径、固定的停靠车站,使得无人驾驶巴士成为解决公众出行的新办法。2017年10月,百度联合金龙客车合作生产无人公交车,预计在2018年实现整车量产。

(4)无人驾驶送货车:货物运输最后一公里为运输行业的瓶颈,无人送货车能够全天候工作,加大增加工作效率。2017年7月,英国杂货电商公司Ocado在伦敦东部测试了无人送货车。

典型应用3:AI+生活——以IoT为基础的家居生态圈,主要有八大市场热点领域

智慧生活是一个以IoT为基础的家居生态圈,其主要包括智能照明系统、智能能源管理系统、智能视听系统、智能安防系统等。市场热点集中在硬件支持、智慧场景应用、产品、平台等方面,主要有机器学习、无线模块、智能家庭平台、智能家居娱乐系统、家居安防、健康家庭医疗系统等智能家居市场八大热点。

典型应用4:AI+金融——智能金融变革金融业务全流程

AI技术赋能金融领域,主要包括智能风控、智能投顾、智能投研、智能支付、智能营销和智能客服等。从金融角度来讲,智能的发展依附产业链涉及资金获取、资金生成、资金对接到场景深入的资金流动全流程,主要应用于银行、证券、保险、p2p、众筹等领域。

典型应用5:AI+教育——千亿庞大市场规模,三大应用主体与十三大应用场景

智能教育可分为学习管理、学习评测、教学辅导、教学认知思考四个环节,全面覆盖“教、学、考、评、管”产业链条,并已在幼教、K12、高等教育、职业教育、在线教育等各类细分赛道加速落地。围绕教育机构、教师、学生等三大主体,智能教育产品主要应用于教育评测、拍照答题、智能教学、智能教育、智能阅卷等十三大场景。

典型应用6:AI+零售——实现零售购物的无人化、定制化、智能化,提升购物体验

AI+零售将实现零售购物的全面无人化、定制化、智能化,实现消费者购物体验的全面升级。典型的应用场景主要有智能提车和找车、室内定位及营销、客流统计、智能穿衣镜、机器人导购、自助支付、库存盘点等场景。

(1)智能停车和找车。为智能停车模块,帮助用户解决“快速停车及找车”的痛点。如阿里巴巴推出的喵街App中包含智能停车及找车模块,目前已经应用于几十家购物中心。

(2)室内定位及营销。在用户购物及浏览过程中快速根据用户需求、物品位置实现精准匹配。如北京大悦城等商场已经实现了室内导航及定位营销,iBeacon的技术解决方案颇受青睐。

(3)客流统计。实时统计客流、输出特定人群预警、定向营销及服务建议。如图普科技,利用开发客流统计解决方案,为天佑城的活动策划和招商部门提供客观数据佐证。

(4)智能穿衣镜。为用户提供个性化的定制服务,增加用户实际购物体验。智能虚拟穿衣镜已经在Lily、马克华菲等诸多品牌门店中部署。

(5)机器人导购。增加用户购物过程的趣味性,从而提升销售。如零售机器人“豹小贩”实现从“人找货”到“货找人”的转变,自动走到人流量大的地方,主动推荐商品。

(6)自助支付。收银服务机提供屏幕视频、文字、语音三种指引方式,引导自助支付。如国内阿里的刷脸支付尝试。

(7)库存盘点。库存盘点机器人替代仓库管理员,提升工作效率。如德国MetraLabs推出机器人Tory,为德国服装零售商AdlerModemrkte提供库存盘点服务。

典型应用7:AI+安防——平安城市、园区、校园、家居、金融等一体化智能安防建设

智能安防是人工智能最先大规模应用,并持续产生商业价值的领域,主要依托低速无人驾驶、环境感知、目标检测、物体识别、多模态交互等技术,实现目标跟踪检测与异常行为分析,视频质量诊断与摘要分析,人脸识别与特征提取分析,车辆识别与特征提取分析等,实现平安城市、园区智能安防、校园智能安防、家居智能安防、金融智能安防等一体化智能建设。

(1)平安城市——开展城市监控报警联网系统建设,公安机关建监控系统,省级监控平台,地市级平台,实现城市智能公安联网监测检查。

(2)园区智能安防——工业园区安防系统由视频监控系统、入侵报警系统、门禁管理系统、电子巡更系统、停车管理系和综合管理平台等构成。

(3)校园智能安防——主要构建透明食堂监控、校园车辆卡口系统、手机移动监控等系统,实现技防各子系统高度集成联动、海量数据智能化分析并自动导出,实现安保工作基础平台信息化。

(4)家居智能安防——家居安防系统主要包括报警控制主机、无线传感器网络节点两大模块,负责对采集的信号进行分析和处理,以及安防情况进行远程监控。

(5)金融智能安防——金融安防系统包括技术防范系统和实体防护设施,技术防范系统主要包括视频安防监控系统、出入口控制系统、入侵报警系统和监听对讲系统等,实体防护设施主要包括专用门体、防弹复合玻璃、提款箱、运钞车、保管箱和ATM自动柜员机等。

典型应用8:AI+园区——实现物业硬件互联信息化、服务智慧化、产业智能化

在智慧园区场景下,从硬件设施到系统软件,从智慧物业到智慧服务,实现物业硬件信息化互联,服务智慧化、产业智能化。园区形成微型智慧生态,物业信息化互联,并为园区企业提供智慧化办公生产相关服务,吸引智慧产业入驻发展。

(1)园区互联信息化。园区安防、管网、能源等硬件设施互联互通,信息化自动化。场景构建主要打造智能化信息系统、智能门禁系统,集成园区智能硬件系统。

(2)园区服务智慧化。为园区企业提供智慧化科技创新、办公智慧化、园区生活智慧化相关服务。商务办公智慧化场景构建主要依托智能会议系统、智能客服系统、办公场景语音系统实现;科创孵化智慧化场景构建主要打造智慧产业孵化器。

(3)产业发展智能化。集聚信息技术、智能制造企业,推动产业化升级和智慧城市发展。场景构建主要依托导入相关产业资源,形成产业集聚。

典型应用9:AI+环保——实现环境监测实时动态化、环保装备智能化、管理智慧化

智慧环保场景下,从监测到管理,从环保硬件到服务平台软件,实现环保装备智能化、环保管理智慧化,并融合机器学习、机器人、人机交互、智能语音、大数据等技术,在智能环保机器人、环保服务平台领域发力,构建场景新生态。

典型应用10:AI+政务——打造政务部门数据集成共享,实现政务决策IT化

(1)城市全景精细呈现。打造GIS地理信息技术平台,依托智能化城市基础设施建设,展现城市数据。

(2)部门数据融合互通。引入信息技术集成服务商,集成市政、警务、交通、电力、等部门数据库系统,开辟数据接口,实现数据融合互通。

(3)智能化统计分析。构建城市政务管理云服务平台,实现智能化数据分析,为城市智慧化精细化管理提供决策依据和建议。

(4)对话数据,交互查询。建设统一查询系统,引入系统开发服务商,设计实现交互查询的查询系统,非隐私数据可民用开放。

(5)可视化部署、指挥调度。通过数据可视化云平台打造,实现突发事件应急联动,有效结合各部门数据资源,达到高效决策、部门联动、信息共享的指挥调度系统。

根据东滩产业内参《人工智能产业投资趋势及发展模式》的研究,中国人工智能产业空间集聚模式主要呈现智慧城市、产业集聚区/创新区、产业小镇/产业园区等三种形式。智慧城市建设、产业集聚区/创新区、产业小镇/产业园区三个层面互为促进,成为推动人工智能产业发展的主要路径。

(1)智慧城市

通过打造人工智能创新应用示范区/产业集聚区/小镇/园区等形式,形成深度应用场景,建设应用示范项目;促进人工智能在智慧政务、智慧交通、智能医疗、智能健康和养老等领域深化应用。典型的案例有上海、杭州、北京、深圳等智慧城市的建设。

(2)产业集聚区/创新区

依托区域较好的智能制造基础及信息技术优势,集聚人工智能、大数据、云计算、区块链、VR/AR等数字产业项目,将技术和应用扩散至周边区域,与其他产业交叉融合发展。典型的案例有上海张江人工智能岛、杭州高新区(人工智能)优势产业集聚地等。

(3)产业小镇/产业园区

作为大型经济开发区里的专业园区,或是以人工智能产业为特色的产业小镇,与周边科技、制造、新一代信息技术等产业协同发展。典型案例有苏州工业园人工智能产业园、杭州人工智能产业园、沧州高新技术产业开发区人工智能科技产业园等。

案例链接1:智慧上海

打造六大人工智能创新示范区

上海将着力打造6个人工智能创新应用示范区,形成60个深度应用场景,建设100个以上应用示范项目。构建“一带一区多点联动”的产业空间布局,包括“徐汇滨江-漕河泾-闵行紫竹”人工智能创新带、“张江-临港”人工智能创新承载区、华泾北杨人工智能特色小镇、上海松江洞泾人工智能特色产业基地。

上海人工智能产业空间格局

专业园区——上海张江人工智能岛

项目概况:上海张江人工智能岛位于张江科学城中区,占地面积6.6万平方米,建筑面积10万平方米,由张江集团负责开发运营的人工智能产业新标杆。产业方向以语音识别、视觉识别技术世界领先,信息处理、智能监控、生物特征识别、工业机器人、无人驾驶为主。目前吸引了包括微软、阿里巴巴、同济大学、云从科技在内的跨国巨头、BAT龙头、科研院所和独角兽企业入驻园区。成为上海市首批人工智能应用场景,并成为唯一的“AI+园区”实施载体。

产业发展策略:

(1)基金政企合作,打造开放创新平台。与龙头企业共建孵化器、共设投资基金,并搭建集创新转型工坊、创新实验室、项目实战空间、应用演进与运营四维一体的人工智能“能力开放工场”,塑造产业垂直生态。

(2)集聚世界创新大脑,引领高端发展。加强前瞻性研究,集聚世界一流科学家、学者开展人工智能基础理论、核心算法以及脑科学、基础系统等方面的基础研究,实现高端引领发展。

(3)技术与场景联合试验,助推远期产品落地。围绕智能安防、语音识别、机器视觉、深度学习等人工智能新技术,与应用场景进行深度融合,并在岛上进行联合试验和交互体验,并将技术和应用扩展至整个张江科学城。

典型案例2:智慧杭州

打造十大人工智能应用示范区

杭州人工智能产业发展规划建设10个人工智能应用示范园区和特色小镇,构建数据驱动、人机协同、跨界融合、共创分享的智能经济生态圈。构建“一廊一区多点联动”的产业空间布局。打造杭州城西科创大走廊,构筑杭州高新区(滨江)优势产业集聚地,人工智能产业基地多点布局。

专业园区——杭州人工智能产业园

项目概况:位于杭州高新技术开发区滨江区江虹路,与阿里巴巴、浙江大学等比邻而居,规划面积3.43平方公里,总建筑面积8万平方米,由四幢主体建筑合围而成。项目定位于打造集专业化服务功能、创新型孵化功能、多资源聚合功能、产学研转化功能于一体的人工智能产业新平台,成为省级人工智能技术研发、应用、产业化的示范基地,重点打造产业资源交换、孵化研发、传媒、生活等四大中心。以人工智能为特色,覆盖大数据、云计算、物联网等业态,集中力量招引机器人、智能可穿戴设备、无人机、虚拟/增强现实、新一代芯片涉及研发等领域。

产业发展策略:打造全球创客中心人工智能集聚区,广泛集聚以人工智能为代表的智慧产业创客极客,发挥创业创新集聚效应,在引领区域创新上发挥重要的作用与市场影响力,着力构建“一主三化五平台”产业发展服务体系及综合运营管理服务体系。

(1)一大生态——打造有利于人工智能产业快速发展的生态系统;

(2)三化产业载体——人工智能技术成果化(孵化器)、人工智能成果产业化(加速器)、人工智能产业资本化(倍增器);

(3)五大发展平台——产业产学研合作平台、产业技术成果交易平台、产业公共服务平台、产业企业家交流平台、产业投资发展平台;

(4)运营管理体系——建立人工智能产业联盟,与投资行业协会、国内知名投资机构、金融服务机构、投融资服务组织等建立紧密的合作关系,为创新创业者提供全面专业的资本服务。

总的看来,中国人工智能产业集聚创新发展主要体现在四方面,即集中展示AI在特点场景下的纵向应用,如:学校、医院、工厂、家庭等,整合各类AI技术,打造整体式的解决方案;体现AI在特定行业中的创新应用,如:交通、政务、安防、环保、教育、金融等行业,推动人工智能对行业产生显著的带动作用;通过AI跨领域跨行业的集中应用,如:园区、社区等,实现人工智能对区域的全面赋能;通过龙头企业的带动,搭建AI产业发展开放平台,集聚产业链上下游资源,实现区域人工智能产业的协同创新发展。

▌说明:东滩顾问·廖义桃原创文章,转载请注明出处!

▌编辑:波波

▌关注:请搜索“东滩顾问”公众号关注我们哦!返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇