博舍

人工智能给未来教育带来深刻变革 人工智能时代下的教育变革心得体会作文500字怎么写

人工智能给未来教育带来深刻变革

当前,在云计算、大数据、物联网、互联网、智能识别、知识管理等新技术新理念快速发展和经济社会需求的双重驱动下,信息技术疾步迈入智能化阶段。国内外高科技公司纷纷布局人工智能、国务院出台《新一代人工智能发展规划》等表明,人工智能发展迎来了新纪元。

因此,当教育信息化基础设施尚在普及完善、“互联网+”和教育尚在互相催化融合时,人工智能作为信息技术的更高发展阶段,毫无疑问会深层次推动教育教学改革与创新发展,进而给未来教育带来机遇和挑战。

一方面,人工智能改变了育人目标。正如机器取代简单的重复体力劳动一样,人工智能将取代简单的重复脑力劳动,司机、翻译、客服、快递员、裁判员等都可能成为消失的职业,传统社会就业体系和职业形态也将因此发生深刻变化。适应和应对这种变化与趋势,教育必须回归人性本质,必须褪去工业社会的功利烙印。当人工智能成为人的记忆外存和思维助手时,学生简单地摄取和掌握知识以获取挣钱谋生技能的育人目标将不再重要。教育应更加侧重培养学生的爱心、同理心、批判性思维、创造力、协作力,帮助学生在新的社会就业体系和人生价值坐标系中准确定位自己。教育目标、教育理念的改变将加速推动培养模式、教材内容、教学方法、评价体系、教育治理乃至整个教育体系的改革创新。

另一方面,人工智能改变了校园环境。未来,校园环境信息化将向更高层次的智慧校园迈进,各种智能感知设备和技术无处不在。校长、教师、学生不知不觉已经镶嵌到有形的校园物理空间和无形的虚拟数据空间中。当学生踏进校园就可以完成签到,离开校园自动告知家人,进入教室多媒体设备已经开启,身体不适发出报警求助,上课开小差收到友情提醒,练习测验后生成学情分析报告……这些都表明,校园物理环境、教室教学环境、网络学习环境已经充分融合,实现了从环境的数据化到数据的环境化、从教学的数据化到数据的教学化、从人格的数据化到数据的人格化转变。校园看上去还是那个校园,却充满了人类的温度和智慧。

人工智能也改变了教师角色。有专家指出,“创意工作者”“人际连接者”和“复杂模式的判断者”这三类人是最不可能被人工智能替代的。教师这一职业同时满足这三类人的特点,因为教师必须适应变化的教学政策和教学环境,面向不同性格特点和需求的学生,处理多样化的教育教学问题。所以,人工智能并不能轻易取代教师这个职业。但在未来,人工智能可以改变教师的角色和作用。教师可以从低附加值的简单重复工作中自我解放,从而更加专注于构建和谐稳固的师生关系和促进学生全面长远发展。教师就不再仅仅是知识的传授者,而是满足学生个性化需求的教学服务提供者、设计实施定制化学习方案的成长咨询顾问。

另外,人工智能对学习范式进行了巨大改变。语音识别和语义分析技术可以用在口语测评,图像识别技术用在作文批改和拍照搜题,人工智能可以让每个孩子拥有自己的智慧学伴,只要用手机拍一下、扫一下、说一下、点一下,就会实现答案解析、打分点评,知识点、考点、难点的自动生成和推送。随着认知科学、脑科学和学习科学的快速发展,人机协同增强智能、群体集成智能成为人工智能发展的新方向。人工智能不仅能从知识关联和群体分层方面分析学生知识掌握情况、推送学习建议,更能从大脑思考方式、个体性格特点、所处环境特征等方面,为每个学生提供个性化、定制化的学习内容、方法,激发学生深层次的学习欲望。

人工智能不断演进,去往何处尚未可知,能否为人类所驾驭亦引发伦理担忧,对未来教育发展提供机遇的同时也带来一系列挑战。从近期来看,尤其要避免过度依赖和隐私泄露,这就需要教育避免过度依赖人工智能。人工智能绝非万能,涉及成人育人的教育领域绝不能盲从。对一道题解法的误判也许只影响一时,但对一个人成长的误判则可能影响一生。教师的高阶脑力活动和教学经验,学生的学习能力和逻辑思维习惯,绝非天生具有,往往需要低阶脑力劳动甚至体力劳动的重复训练和积累。过度依赖人工智能可能导致眼高手低、好高骛远,知其然不知其所以然,从而容易导致师生变相成为人工智能的助手和附庸,教师失去应用的教学能力和职业素养,学生失去独立思考的能力和健全的心智性格。

同时,也要避免疏于师生隐私保护。人工智能的技术基础和前提是海量的数据积累和训练挖掘,师生的社会属性数据和教学行为数据体量越大、维度越丰富、时间跨度越长,人工智能所提供的教学服务就越精确、学习建议就越科学、知识内容就越合理,产生的教育质量和效益就越显著,与之相伴的是师生隐私泄露的风险在急剧增加。人工智能可以为未来教育插上腾飞的翅膀,但绝不能以牺牲师生隐私为代价,必须保证师生对所收集数据的知情权、选择权、访问权、所有权和控制权,必须保证数据安全,防止泄露滥用。

未来已来,对于人工智能,教育不仅要在姿态方面迎接未来、在态度层面正视未来、在认知层面读懂未来,更要抓住机遇,直面挑战,在管理决策、教人育人等实践层面积极构建属于自己的美好未来。(作者系北京教育科学研究院教育信息中心副主任 唐亮)

(责编:韩亚召(实习生)、吴亚雄)

分享让更多人看到

适应与跨越:人工智能冲击下的教育现代化

人们在科幻作品中,常通过奇幻的想象力和有序的推理勾勒出高度智能机器与人类共存的未来世界。如今,以人工智能为代表的新一轮工业革命在技术上突飞猛进,试图解构影响人类行为的生物算法,而使机器获得类似于人类的意识,并能够运用意识去创作、思考与想象,主动学习,修正错误。未来学家戈尔德·莱昂哈德(G.Leonhard)振臂高呼:“未来已来,人类在未来20年的变化,将会超过之前300年的总和。”“人工智能+教育”加速了教育现代化的进程,为教育现代化的实现提供了良好的契机,但中国教育现代化发展尚未真正达到与人工智能技术相匹配的发展程度,人工智能将对教育现代化造成一定的冲击。作为后发型国家,中国的教育现代化面对人工智能,应当如何化冲击为契机以实现跨越式发展,成为应有之思。

一、流变与革新:人工智能时代的到来

人类从18世纪起开启工业革命的历程,先后经历机械化、电气化、自动化三次飞跃,引发了一系列由生产技术变革推动的社会形态的演变,人类文明已经达到了前所未有的高度。而在21世纪初,人类悄然步入第四次工业革命智能化时代,在数字革命基础上互联网变得无所不在,移动性大幅提高;传感器体积变得更小、性能更强大、成本也更低。与此同时,人工智能和机器学习也开始崭露锋芒。人类拥有了数百年由机器代替体力劳动的经验之后,希望产生智能计算机代替人类脑力劳动。有了生产的需求,加之可以开发的现象,才能形成如今势不可挡的人工智能技术。

无论是简单还是复杂的技术,都是在应用一种或几种现象后乔装打扮出来的。技术就是那些被捕获并使用的现象,是对现象有目的的编程。新技术是在概念或实际形态中,将特定的需求与可开发的现象链接起来的过程。技术能够快速地发展,是因其凝结了特定的社会生产需求和可开发的社会生产现象,人工智能亦不例外。技术的发展,通常取决于经济繁荣程度,经济实际上是技术的表达。人类认为经济增长能够解决一切让人感到不幸福的问题,所以大多数时候是通过扩大生产来满足自身欲望。一旦经济崩溃,现有的社会秩序将会立刻崩坏,而维持人类社会经济不断增长的正是强有力的技术支持。现代社会热切渴求着经济增长,故而不断研发能够扩大生产、换取利益的新技术,使技术更新的脚步越来越快。第四次工业时代已经来临,人工智能技术将会在利益的驱使下加快渗入人类的生活当中。中国教育现代化发展不可能隔绝于现代文明的革新之外,因此理性看待、积极应对、跟上潮流才是正确的应对之法。

二、审视与思考:人工智能时代教育现代化发展的特征表现

人工智能能够在技术层面缓解当前中国教育现代化发展的诸多矛盾,如优质教师资源不均衡、教学模式单一等,对我国实现城乡教育均衡发展,配置并充分利用线上教育资源、有序引导教育投入有着较大的现实价值,以下是人工智能时代教育现代化发展的特征表现。

(一)人才培养标准重新定义

由于社会变革的速度加剧、教育产出具有滞后性等因素,当下的教育根据以往的社会需要培养未来的人才,已经难以跟上未来社会的发展步伐。改革开放以来,贫富差距加大,其中主要原因之一是呈技能偏向性的技术变革,即任何一种在相对工资固定的情况下,提高了对劳动力的技能需求的新技术引进、生产方式的改变、工作组织的变化。这种技术变革会对高技能劳动力提出更高的专业化要求,并带来更高的薪资,也造成了低技能劳动力的收入与之拉大差距。未来教育只有培养出大量不能轻易被人工智能所取代的人才,才能有效规避由于技术变革、劳动效率提升引起的大规模劳动力失业的社会风险,均衡社会财富,避免重演“第一次工业革命时期因机械化而失业的手工业工人打砸生产机器”的“人机矛盾”。

教育现代化的本质是人的现代化,而人的现代化是社会现代化的核心。只有通过教育培养现代化的人,才能走向真正意义上的现代化社会。在人工智能的冲击下,传统的人才观发生改变,人才培养标准被重新定义,教育必须着眼于“为一个尚未存在的社会培养新人”“替一个未知的世界培养未知的人才”。这意味着人工智能时代人才的培养不仅是知识的积累,还是现代性的不断增长,现代性和预见性是人才培养的关键,他们能够适应新技术变革趋势,顺应人工智能的潮流,成为人工智能的掌控者。这种人才培养的强化趋势是真正落实人工智能的战略部署,满足了国家高端人工智能人才的需求。人才的培养目标由“知识型”向“创新型”逐步转变,单纯的“知识型”人才已经不能适应人工智能时代,因为与机器相比,人脑的记忆容量和速度都处于劣势,如果不能在思维上制胜,那必将会被机器所取代。

(二)信息技术与教育深度融合

传统的教育以教室为教学场域,以教师为课堂中心,在固定的物理空间进行教学,同样的课堂时间、精准的学习进度、一致的教学节奏。教育信息化的常见模式是引入“电子白板”等设备,利用互联网传递知识与信息,并加以展示,技术是教学的辅助手段。人工智能则是借助优化算法、大规模数据分析技术以及高性能计算系统,赋予计算机逻辑判断、感知推理和独立判断能力,在特定输入条件下进行认知学习以及决策执行的智能活动,弱人工智能能够以记忆存储和传感的方式,实现一般图像识别或信息判断的功能,强人工智能则具备了自主学习和自适应特征。其核心技术深度学习,结合大数据平台,能够在未来实现“教育资源融通化”“教学模式泛在化”“教育管理数据化”“教育投入经济化”,进而使技术成为教育的核心。

信息技术融入教育分为三个阶段。第一个阶段是概念阶段,信息技术作为教育的内容而存在,它是什么?会带来什么?怎么实现?能给未来带来什么影响?第二个阶段是工具阶段,作为传统教育模式的加速器或触媒,强化原有的教与学工具,这个阶段教育流程以及教育模式可能并没有发生本质改变,知识在原来的基础上促进了效率提升,或是解放了人的部分劳动。第三个阶段是思维方式阶段,信息技术嵌入教育学习系统,促进学习方式的创新发展,深度改变人们的思维方式、认知方式以及工作方式。教育现代化背景下,以人工智能为代表的新一代信息技术对教育生态、教学方式和教育治理等产生影响,作为革命性的推动力量,支撑引领着教育现代化的发展。人工智能时代的学习突破地域时间的局限,并能满足个性化的特定需求,真正实现因人而异、因材施教。疫情期间的线上教育模式正是“人工智能+教育”的充分体现,是由理念走向实践的突破,学生通过网络则可以选择适合的课程,教师利用视频直播实时授课,并同步检测学生的反馈。

(三)教育资源高度整合

教育现代化是指与教育形态的变迁相伴的教育现代性不断增长和实现的过程。新时代的教育现代化不仅在于更新教育观念、提高教育质量,还在于教育资源的整合,我国的教育资源呈金字塔型,最优质资源处于塔尖,资源少且为少数人占有,因此,均衡教育资源、实现教育公平是实现教育现代化的关键环节。教育资源在跨区域之间的分享和建设是通过长期的交流和合作而运作起来的,通过促进区域生成性资源的产生,形成资源链条,将不同区域的资源整合,区域之间资源优势互补,从而不断地推动教育资源的建设。在这一过程中,人工智能技术作为重要引领,以强带弱的形式加快资源的应用落地,全方位推动教育资源在区域乃至全国内的共享。

人工智能时代资源不再局限于教师通过互联网主动搜索信息和整合知识,而是融通各类型的知识平台,利用记忆存储和传感等方式,迅速对学习者需要的知识内容进行识别或判断,主动提供与其相关联的知识内容。针对资源匮乏、资源供给不平衡等问题,5G技术成为技术突破口,建设多种先进技术为教育资源的整合提供了重要通道。这种教育资源的整合主要包括线上线下教育、区域之间及跨区域之间的资源整合,其整合的根本途径则是依托人工智能技术,建立庞大的资源共享平台,实现资源之间的建设与应用。人工智能时代教育资源整合是一个系统的、循环的过程,包括资源的准入批准、资源评定和资源使用评价,所有教育资源的整合并不是一劳永逸的,通过人工智能技术,不断对教育资源进行整合、更新,基于先前的数据深入挖掘,以此作为下一阶段资源整合的目标和方向,形成良好的教育资源生态。

三、探索与反思:人工智能时代教育现代化发展的现实困境

人工智能为教育现代化发展带来良好的契机,但囿于社会变革和人工智能的特性,人工智能与教育现代化发展之间缺乏适应性,人工智能的前瞻性、伦理性及投入产出等都成为影响教育现代化发展的关键,由此,人工智能时代教育现代化也面临着一系列的现实困境。

(一)教育变革与人工智能的不同步性

社会转型的原点即社会转型的起始点和起始状态。大多社会的原点结构往往不均衡、不全面或者偏态化,由此导致社会转型的过程往往也是偏态的,相关的经济、政治、文化、宗教等因素通常变化滞后,这些相对固定、落后的要素与快速前行变化的其他要素之间构成了一种独特的社会张力结构,并随着社会转型的推进而不断改变着社会张力结构。中国现代化亦是以偏态的原点结构作为起始,教育在原点结构中,就属于没有与其他要素同步转型的后发要素之一。社会各界反复对中国教育的内容进行商讨,既不能全盘西化,也不能因循守旧,这就是相对落后的教育要素与前行的现代化教育思想观念之间形成张力而奋力探索的结果。

如今,极具前瞻性的人工智能对后发型的中国教育现代化充满了技术的诱惑,前沿的技术与后发的教育之间形成了以冲突为最直接表现形式的结构性张力:中国教育的现状难以支撑起形成应用和发展人工智能的平台,但应意识到人工智能可能是能够实现新的教育目的的有效手段。人工智能预计成为中国教育现代化新的原点。后发型的中国教育现代化要想正确把握人工智能的技术诱惑,不能不考虑生产方式和经济结构是原点结构的基础性因素。教育现代化发展受中国当前社会结构的影响,而生产方式决定了中国社会结构。

(二)人类可能被人工智能取代的困惑

1930年,凯恩斯就表达了对于技术进步引起的失业的担忧,并且认为人类需要适度的劳动,如果失去劳动,没有任何国家、民族能够在期待这种多暇而丰裕时代的同时,不怀有丝毫的忧惧。事实上,技术性失业周期性发生,每当新技术引起劳动效率提升,则有一大批劳动者失业并转型,经过调整,具备高技术素质的工人将会开始向职位阶梯的下层移动,开始去担任以往通常由具备较低技术素质的工人完成的工作。

教育现代化过程中,人工智能与教育的融合程度日益加深,在推动教育改革、人才培养、知识创新等方面发挥着积极作用,但这种融合趋势也引发教育困惑,人类的地位也受到一定的威胁,如何培养不被人工智能取代的人是实现教育现代化进程中面临的困惑。首先,困惑于如何应对人工智能带来的技术性失业,倒逼教育对劳动素质的培养进行改革;其次,教育困惑于是否将拥有“自由意志”和“本我意识”的机器纳入教育的对象,引导其思想,规约其行为;最后,教育困惑于如何处理“人”与“高智能机器”的关系,人如何确保原有的“人为主导,机器为从属,机器为人服务”的人机关系。机器拥有超越人类的能力并不可怕,令人担忧的是机器坚持“本我”,要求作为“独立智能体”的权利,当人类的指令与其本我意识相冲突,后果不堪设想。

(三)人工智能技术存在被滥用的风险

我国的教育现代化目标是“围绕人为核心来发展人”。迈入人工智能时代,技术和教育以往“以人为核心”的运作机制将会被打破,人与非人的极限开始模糊。人们关注机器自我学习能够达到什么程度,如果人工智能高度发达,在输出结果上能够表现出与人类类似的社会情感,那么人类如何判断机器是依靠大数据分析和专家决策产生了类似结果,还是真正通过自我学习习得了社会情感;人类又如何与亲手创造出来的仿生人和平共处,甚至平起平坐。此时,人与机器开始实现某种程度的融合,机器能否继续甘愿充当“人”的支配,甚至实现地位反超,变成主宰人、制造人的存在。

教育不能无视伴随着人工智能技术而带来的新的教育与学习革命,但也不得不保持警惕和疑惑。若人工智能技术被滥用,师生将暴露在个人生物信息和社会信息被泄露和被收集的危机之下;机器可能利用技术,或少部分人利用技术,侵犯地球上绝大部分人类自然生存的权利;倘若被掌控的对象是生理和心理尚未发育完善的青少年,则国家的下一代处于被掌控、被误导、被鼓动的危险当中,国家的安全与稳定受到威胁;机器彻底取代人,灭亡人,制造出以机器为本体的“仿生人”,人类的历史将被改写。

(四)人工智能教育的高投入与低产出

人工智能与教育的嵌合带来技术上的革命,引领着教育现代化的方向,为加速教育现代化提供了新的方法。但新一代人工智能的应用经费投入巨大,引用人工智能作为教育辅助技术,需要在教学设施设备上实现更新换代,还需要5G网络等辅助技术。如果按照教学应用覆盖全体教师,学习应用覆盖全体适龄学生,数字校园建设覆盖全体学校的目标建设智慧校园,需要投入大量的教育经费。交通不发达的乡村地区,地方性教育支出难以承担,申请中央财政专项拨款也属于较大支出。人工智能进校园对教师的教育理念有所影响,这就需要投入大量经费对教师进行智慧化培训,实现人工智能的教学应用,更新教育理念。此外,根据以往教育信息化推行的经验,教育信息化设备更新速度快、设备淘汰率高,设备经费投入较大。

新技术的使用在已有一定工龄的资深教师中并不广泛流行,其工作模式已形成一定的路径依赖,学习并应用新教育技术需要教师投入额外的工作成本。在能够选择的情况下,教师更倾向于使用传统教学模式,“人工智能+教育”的产出较小,其合理性和必要性将会受到质疑。人工智能技术作为新生事物,有待进一步完善,目前已投入使用的“智慧课堂”“智慧学校”尚在试点当中,教育专家难以判断使用人工智能是否真正地提升了教育质量,必须在相当长一段时间内依据标准作出判断。

四、突破与引领:人工智能时代教育现代化发展的路径选择

面对人工智能技术发展给教育现代化带来的冲击与契机,教育不应止步不前,自我拘束于以往成就的路径依赖,积极适应人工智能技术,努力探寻教育现代化跨越式发展的突破才是迎接未来的正确途径。

(一)教育现代化必须坚持以促进人的全面发展为核心

人始终是中国教育现代化发展的核心,“促进人的全面发展”是教育现代化的本质。虽然未来存在发展出与人类等同或者超越人类的高度智能化机器的可能,但技术本身是无罪且中立的,将其与教育相结合,根本目的仍是培养人、发展人,促进人的全面发展。

人工智能作为新兴技术,应当坚持为教育服务的原则,坚持教育的公共属性。利用政府的行政权严格把控人工智能技术的发展方向,杜绝违反人类伦理的发展趋势,防止歪曲教育内容,或以教学方式、理念作为手段侵害教师和学生的人身权利。人工智能为教育服务,教育面向人人,人工智能结合教育的产出应以所培养的人作为最主要受众。人工智能教学设施设备的开发应当兼顾投入与产出,衡量投产比的经济性,坚持最大化的产出并为人所充分利用。享受产出成果的受众不仅包括学生,还涉及教师和学校的管理者。学生以更加便利的方式获得知识,以更加先进的教育理念接受教育。教师接受人工智能教育培训,不仅是娴熟使用人工智能教学设施设备辅助教学,还应充分了解人工智能的相关核心技术,变革传统教育理念。学校管理者转变管理思维,充分利用大数据进行信息收集和分析,同时兼顾个体的信息安全,实现科学化人本管理,提升学校管理水平。

(二)教育现代化要强化新时代人才战略布局

根据研究,人工智能对中间技能人员的替代最为严重,出现就业极化。即最不容易被人工智能所代替的一类工作是高技能行业,承担抽象任务,通常为专业技术或者管理职位;另一类是低技能服务业,承担手工任务,通常为服务和劳工性工作。那些需要人类本能反应、灵活性的体力工作很难被人工智能所替代,或者说即使机器能在这些岗位替代人类,也是成本过于高昂、在经济上不划算的。据此,社会需把握人工智能发展趋势,前瞻布局规划人才培养的规格。如果说人工智能技术将会取代一大批中等技术的“白领”职业,具有较高素质的劳动者的职位向下移动就不可避免,大量脑力劳动者将会开始与体力劳动者抢工作,那么原本的低技术型人才的市场竞争力就会进一步下降。增加受教育年限,提升综合素质,实现劳动技能多样化,成为“一专多能”型人才,是低收入阶层的低技术劳动者避免失业和提升职场竞争力的唯一途径。

为进一步强化人才战略布局,必须建设人工智能技术追踪监测机制,谨慎向市场推广人工智能技术。以政府为主体构建人工智能技术的发展追踪机制,对人工智能技术的发展进程密切关注,取代某种职业的人工智能技术相对成熟之前,及时调整相应的人才培养方向,做好失业人口再就业的紧急预案,避免出现动荡或不利局面。对能够取代某种职业的技术投产比进行科学评估,谨慎试验推广市场化,尽量保证技术的商业价值,避免在经济收获不理想时盲目推广而造成投资者撤离市场的局面,这从长远看,反而限制了人工智能的发展。

(三)教育现代化必须健全科技伦理制度体系

人工智能可能引起“知识是否会批量写入人脑”“机器能否代替教师进行教育决策”“机器是否会引起人异化”“机器是否会控制学习者”等教育伦理问题。如果失去伦理监管,技术威胁论预言将很快来临,为了避免出现人类命运共同体的危机,我国应当尽早从发展观念、“评估—审核”制度、防范意识等方面采取措施。

人工智能技术的发展不存在道德判断,将技术运用于不同的目的造成的社会后果才需进行科技价值观的道德判决。教育现代化应当摒弃对新技术、新变革的抵触心态,变“防御”为“开放”,注重“人工智能教育”,培养未来能够进行有效的人机协作所必备的人工智能素养。同时,及时关注采用人工智能所致的劳动力市场的系统性和长期性变革,包括性别平等方面的动态。更新并开发有效机制和工具,以预测并确认当前和未来人工智能发展所引发的相关技能需求,以便确保课程与不断变化的经济、劳动力市场和社会相适应。此外,人工智能对人造成侵害的可能性进行谨慎预判,提早提防,保持人工智能为人的教育服务的原则。

由“基因编辑婴儿”事件可以发现我国科技伦理存在制度缺失、监管缺位等问题,对科技伦理的危害性认识不足。组建人工智能伦理监察委员会,对相应可能涉及伦理问题的技术发展予以科学性预估,充分考虑可能发生的危害,采用多领域多学科专家共同评估、预估风险等手段谨慎控制技术发展和应用进程。“人工智能+教育”的“伦理评估—审核”机制应当坚持能够人为控制、以学习者为本的原则,围绕辅助教育、增强学习者能力的目的,避免人机伦理冲突、性别和收入等群体差异歧视、教育不公平等现象的发生,真正帮助教育现代化跨越式发展。

(四)教育现代化应当合理规划人工智能教育产出

教育是一个受教育者的智能得到提高的动态系统,是受教育者的智能在这个动态系统中得到提高的过程。人工智能的教育产出落脚点要聚焦于人的自然智能的发展。人工智能是在机器上实现人的教育,不是教育机器实现智能。

从宏观层面看,追求人工智能的教育产出首先需有清晰的规划,以避免无序教育投入造成的资源浪费。在时间上,从现在起,以2035年中国实现教育现代化为时间节点,阶段性推广人工智能技术,2035年以后根据人工智能技术的发展水平和现代化发展的状况进一步制订下阶段的目标;在空间上,以东部经济发达地区为起点,按步骤缓慢推广至中西部,从地方性教育投入水平较高的地区向地方性教育投入水平较低的地区过渡,从教育发展水平较高的城镇地区向教育发展水平较低的乡村地区过渡。

从微观层面看,必须着眼于技术应用,结合教育现代化宏观规划,充分发挥人工智能教育技术的潜能,有效规避教育投资风险、教育经费浪费、教育资源闲置等现实教育问题,真正实现人工智能为人的自然智能增长而服务,助力中国教育现代化跨越式发展。

人工智能是第四次工业革命到来的标志性技术,已经悄然进入教育现代化领域,给后发型的中国教育现代化带来了技术、伦理、理念上的冲突,同时也是中国教育现代化实现跨越式发展的重要契机。人工智能作为尚无道德判断的技术本身,基于正当的目的、正确的导向能够赋能于中国教育现代化。中国教育应当以理性、积极、开放又谨慎的心态,迎接人工智能进入教育行业,对于其中可能产生的伦理冲突、教育变革、人的发展等问题留与未来一一突破,我们期待着人工智能赋能中国教育现代化的未来。返回搜狐,查看更多

人工智能心得体会(通用11篇)

人工智能观后感推荐度:烘焙的心得体会推荐度:读书的心得体会推荐度:合唱的心得体会推荐度:服务心得体会推荐度:相关推荐

人工智能心得体会(通用11篇)

我们从一些事情上得到感悟后,不如来好好地做个总结,写一篇心得体会,这样我们可以养成良好的总结方法。怎样写好心得体会呢?以下是小编帮大家整理的人工智能心得体会,供大家参考借鉴,希望可以帮助到有需要的朋友。

人工智能心得体会篇1

今天上午线上参加了莱西市信息技术学科人工智能与编程教学研讨会,观摩了张老师《变量》一堂课,本课张老师精湛的业务知识和巧妙的驾驭课堂的能力让我受益匪浅。下面我从几个方面来谈一下感受:

一、激趣导入,引入新知

学生们都对刮奖非常感兴趣,通过刮奖环节的设计,学生很快的融入课堂环境中,学生们积极参入,踊跃发言,学习兴趣盎然,在寓教于乐额学习氛围中学习新知识,掌握新技能。

二、积极探索,形象直观

学生们利用之前所学程序可以计算出简单的价格,但是当问题逐渐增多,利用之前的方法就非常麻烦了,这时候引导学生提出问题,教给学生新的知识点-变量。

三、小组合作,积极探究

本节课学生参入度高,动手实践能力强,设计的问题层层递进,环环相扣,过渡环节都处理的非常到位,更多的是让学生自己去探索,把课堂交给学生,不断创新,发挥了学生的主体学习地位,让其自主探索,合作学习,做到真正的掌握一门技能。这也是培养学生不断创新的手段之一。

希望以后能有更多这样的学习机会,以便于在信息技术的教学上有更大的进步和提高。

人工智能心得体会篇2

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1、人工智能学科的诞生

12世纪末13世纪初,西班牙罗门・卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机),创立了自动机理论。这些都为1945年匈牙利冯・诺依曼提出存储程序的思想和建立通用电子数字计算机的冯・诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2、逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。从17世纪德国数学家、哲学家莱布尼兹(G.LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3、逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型,1978年查德提出的可能性模型,1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4、人工智能――当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5、结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能心得体会篇3

通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的:人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称ai。

人工智能的发展历史大致可以分为这几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、lisp表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。dendral化学质谱分析系统、mycin疾病诊断和治疗系统、prospectior探矿系统、hearsay―ii语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统kips”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

人工智能心得体会篇4

一、在中小学开展的机器人教育具有重要的意义。主要体现在以下几个方面:

1、促进教育方式的变革,培养学生的综合能力

在机器人教育中,课堂以学生为中心,教师作为指导者提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出自己的解决方案,从而有效培养了动手能力、学生创新思维能力。

2、有效激发学习兴趣、动机“寓教于乐”是我们教育追求的目标。这也是当前教育游戏成为当前研究热点一个原因。学习兴趣是学生的学习成功重要因素。机器人教育可以通过比赛形式,得到周围环境的认可和赞赏,能够激发学生学习的兴趣,激发学生的斗志和拼博精神。

3、培养学生的团队协作能力

机器人教育中大多以小组形式开始,机器人的学习、竞赛实际上是一个团体学习的过程。它需要学习者团结协作,包容小组其他成员的缺点和不足,能够与他人进行有效沟通与交流。在实践锻炼中提高自己的团队协作能力,其效果比普通的教育方式、方法更加有效。

4、扩大知识面,转换思维方式

在机器人的学习过程中,通过制作机器人过程中的实际问题解决,可以学到模拟电路、力学等方面知识,不但对物理学科、计算机学科的教学起到促进作用,同时也扩大、加深了学生科学知识;通过完成任务和模拟项目使学生在为机器人扩充接口的过程中学习有关数字电路方面的知识;通过为机器人编写程序,不但学到计算机编程语言、算法等显性知识,更有意义的是通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识

二、中小学机器人教学活动的几点做法:

考虑到中小学生和机器人课程的特点,为培养学生的综合设计能力和创新能力,本人认为机器人教学应该在教学内容、教学方法、教学组织方面一改其它课程的教学模式,走出一条新的路子来。

1、教学内容:机器人教学应注意学生知识广度的学习。虽然仅通过一门课程来扩充学生的知识面效果有限,但是由于机器人的设计涉及到光机电一体化、自动控制、人工智能等多方面问题,既有硬件设计也有软件设计,所以是让学生了解和掌握大量知识的绝好机会。知识不追求深度,只要求广度。例如在确定教学内容时,注意力不要仅放在竞赛用轮式成品机器人上,还应该关注单片机、嵌入式CPU、各种传感器、电机、机械部件等软硬件技术在机器人和自动化技术上的应用。

2、教学方法:应根据学段和学科情况选择不同的综合设计教学方法。如:小学阶段可让学生完成轮式竞赛用机器人的功能模块组装的设计;初中阶段可进行生活与学习中实用机器人的创意设计;高中信息技术课中可重点对机器人智能软件算法进行设计;而高中通用技术课中可重点对机器人的电气部分、传感器部分、动力部分和机械部分进行相关设计。总之,教学方法应该侧重综合设计,而不是放在问题的分析上。

3、教学组织机器人教学应事先营造好供学生动手动脑进行设计活动的环境。提供必要的设备和工具(包括工具软件),组织学生进行探究式学习,特别应注意探究式学习三个要素(任务驱动、协作学习、教师引导)的构成,让学生能够充分化动手。同时,还应提倡设计过程的规范化,用于提高学生的综合设计能力。教学活动不仅在课堂上进行,还应组织学生在课余时间做适当的工作,以保证教学的完整性和有效性。

教育机器人活动受到越来越多的师生欢迎,教育机器人必将为我国的素质教育做出应有的贡献,教育机器人的前途是光明的。

人工智能心得体会篇5

李开复号称最会说话的计算机男神,曾经是微软谷歌的副掌门,现在是创新工厂的大bo,在微博有超过半个亿粉丝。第一此认识到他和人工智能这个概念是在奇葩大会这个节目中,他的观点及幽默风趣的话语引起了我的兴趣,所以在这个寒假中我读了他的《人工智能》一书。

近几年,移动互联网、网上购物、物流快递、高铁、地铁、城市建设等让我们生活发生了天翻地覆的变化。让我对未来产生了无限的畅想,我的科目二一直没过,为什么人要买车?为什么不能有一辆无所不在的滴滴,当我们要出门的时候它就来了,它是共享经济,它会降低空气污染,甚至有一天车与车之间能对话:“我要爆胎了,快散开”等等。

下一个十年,社会还会发生怎样的变化呢?李开复认为,人工智能、机器人作为大热的方向,也会引领时代变革风,很多逻辑简单、重复式、机械式的劳作被机器人取代;制造、金融、家政等等行业,很多传统的管理经营模式也会随之发生改变。未来人类50%的工作都会被人工智能取代。但是人与机器最大区别是有感情,在未来创新思维、审美能力、艺术哲学这些更显的珍贵。

人是最复杂情感动物,怎样才能教育好学生,使教育发挥最大限度的作用呢,那就是老师的爱,是人工智能永远无法做到的,我认为幼师这个职业是不会被取代的,人工智能的发展能够给我们许多帮助,现在也有许多幼儿园在教育教学中运用了VR、AR等技术,以后科技越来越发达我们的教学工作也会越来越便利。但是现在微博上有一件事也引起了大家的热议,一位小学教师在教古诗“飞流直下三千尺,疑似银河落九天”时,播放了现实瀑布视频来展现瀑布的气势磅礴,可是瀑布落下真的有三千尺吗?这样会不会局限的孩子的想象力呢,莎士比亚说:“一千个读者眼中就有一千个哈姆雷特”因而每个人对古诗的理解也就不同。在科技高速发展之时要保持与时俱进、不惧改变、不断学习成长就不会被时代淘汰。人工智能会让自己从事的工作带来什么样的改变?如何运用?这些问题更值得我们大家深思。

人工智能心得体会篇6

人,没有熊一样的力量,却能把熊关进笼子,这笼子的钥匙,叫智慧。

人类一直在思考如何让自然界的其它事物为自己所用,而不是只想着如何获取食物来填饱肚子,人类之所以会凌驾于食物链顶端,就在于对于资源的使用。为了减轻胃的消化负担,人类开始学会使用火,让蛋白质在进入胃之前就变质而变得更好消化易于吸收。经历了漫长的手工制造业历程,为了提高生产效率,也为了减轻工人手工劳作的负担,人们开始了工业革命,无数的机器流水线取代了效率低下的廉价劳动力,也正是从此刻起,人类使用资源的能力有了质的发展,由使用已有资源,到创造新的资源。第一台计算机应运而生,人类开启了无限创造的时代。时至今日,计算机技术几乎延伸到了生活的每个领域,甚至成了人们的生活必需品。计算机能帮助人们完成人类不可能完成的计算,但一直致力于创造的人们当然不会停止对计算机的要求。人们不光需要计算机做人类做不了的计算,还渐渐开始要求计算机做人类能做的事,这便催生了人工智能。人类就是这样一步步用自己的智慧让自己过上傻瓜一样的生活。

人工智能目前还没有在人们生活中普及,但是已经出现萌芽。最典型是的一些语音识别系统,如苹果公司的Siri可能是目前人们接触最多的基于人工智能和云计算技术的产品,相信这种人机交互系统的雏形经过时间的磨练会在未来形成一套完善的从界面到内核的智能体系。在社会生活方面,与数字图像处理技术紧密结合的人工智能已经开始应用于摄像头的图像捕捉和识别,而模式识别技术的发展则使得人工智能在更广阔的领域得以实现成为了可能。一些大公司在人工智能领域的投入和研究对于推动人工智能的发展起到了很大的作用,最值得一提的就是谷歌。谷歌的免费搜索表面上是为了方便人们的查询,但这款搜索引擎推出的初衷,就是为了帮助人工智能的深度学习,通过上亿的用户一次又一次地查询,来锻炼人工智能的学习能力,由于我的水平还很低,对于深度学习还不敢妄自拽测。但是,近年来谷歌公司在人工智能方面的突破一项接着一项,为人们熟知的便是智能汽车。不得不说,人工智能想要进一步发展,必须依靠这些大公司的研究和不断推广,由经济促创新。

纵览时间长河,很多新生的技术在一开始都是举步维艰的,人工智能也不例外,但幸运的是,人们接受和学会使用新技术所需要的时间越来越短,对于人工智能产品的投入市场是有益的。因此,在我看来,将已开发出来但还需完善的`人工智能产品投放市场,使其进入人们的生活只是时间的问题,但要想真正掌握人工智能,开发出完全符合研发人想法的智能产品还需各方面的努力。至于现在讨论热烈的“人工智能统治人类”的问题,我的看法是,人工智能的开发和应用是需要监管的,但并不能阻止人工智能即将影响世界的趋势。

由于我对于人工智能的理解还只是皮毛,对于文中出现的纰漏和错误还希望老师指正!

人工智能心得体会篇7

今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。

人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。

通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。

人工智能心得体会篇8

人工智能改变了我们的生活方式,理解什么是人工智能,才能知道人工智能教育要培养学生什么知识,什么素养,才能为社会发展提供源源不断的动力源泉。

人工智能简称AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,在此次人工智能教育论坛中,黄锦辉教授对人工智能用更加利于理解的解释是人工智能等于云计算、大数据、机器学习和5G技术综合的产物,做好人工智能教育能实现不断提升人们生活的质量,在论坛中,刘三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的着力点集中在算力、数据处理、算法以及场景化的学习,使学生对教材可以理解,教育情景可以感知,学习服务可以定制,使人工智能教育从智能增强,转变为智能补偿,最终达到智能替代。

在实际过程中,很多学校没有开展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步开展起来呢?人工智能开展过程中,主要面临的问题主要有:第一教材的缺乏,第二师资的缺乏,第三课程实施的场地缺乏,第四怎么教的问题。在18日下午分论坛中,很多同行教师提供不同学校具有特色的人工智能教育开展模式,为我们提供了开展人工智能教育参照案例,针对教材缺乏问题,对人工智能比较重视的学校有的建立区域教研和课程资源建设,有的开发人工智能课程、有的建立研学基地,还有的建立网络学习平台;针对师资问题,教师主要通过自学,网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如科技创新、创客、跨学科活动等助力课程落地,逐步建立课程――空间――活动的人工智能教育活动实践,在论坛中也介绍了人工智能教育需要遵循学生各年龄层的学情特点,分为三个阶段,第一阶段大班STEM基础教学,第二轮实践教学建立社团校队,第三开展项目式专训,培育科技特长生,或者各年级年级培养学生人工智能教育的不同目标,小学低年级可以主要培养综合素养,小学高年级跨学科应用,初中形成目标方向,高中向目标方向进行研究。

这次的粤港澳台人工智能教育论坛学习,拓宽了我对人工智能教育的认识,对我的教学如何开展人工智能教育具有指导和借鉴意义。

人工智能心得体会篇9

最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生在当前社会中的呢?

在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?

人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。

智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。

虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。

个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。

人工智能心得体会篇10

一个叫阿尔法狗的智能机器人战胜了人类的围棋高手李世石,这件事情让很多人感到恐慌。我的一位朋友说,阿尔法狗彻底改变了她的世界观。未来人类该怎么办?教育该怎么办?今天我们就来说说这方面的话题。

首先我们先了解一下什么是人工智能?最开始计算机科学家们想让发机器人能像人那样思考,他们想让计算机网络像人的大脑神经网络一样工作。但其实人类对自己到底是如何思考的至今也没有弄清楚,所以按照这种思路开发的人工智能进展不大。

后来一些科学家转变思路,开始让计算机按照自己的方式思考。他们让计算机学习大量的数据,然后分析各种数据之间的相关性,从相关性中发现规律。

比如阿尔法狗就是学习了人类围棋高手的大量的对弈棋谱,找出每一种下法与最终获胜的概率之间的关系,然后选择获胜概率最高的那一种下法,并且自己与自己反复练习,人类在这样的智能机器人面前完全没有获胜的希望。

因为人类不是这样思考的,人类不可能记住那么庞大的数据,也不可能进行那么复杂的计算。人类思考是基于分析推理的,是从小样本研究中发现因果关系,有时还要依赖直觉。既然是小样本,就有可能出现抽样误差;直觉有很多时候也是错的。而且人类还要受体力精力和情绪的影响,很难不出差错。所以我们现在已经不好意思说,计算机是人工智能了,更准确的说法是机器智能。

事实上,机器智能在很多方面已经超越了人类智能,它甚至能替代人类完成很多以前只有人才能完成的工作。专家预言,未来有很多职业会消失,其中包括教师!

举个例子,现在学校里老师教小学生认字,要告诉他们这个字的读音、书写的方法、字的意思是什么,可以组成哪些词组等等。未来会有一款智能机器人一对一地教孩子们做这些事情,它可以发出中央电视台播音员的声音,也可以发出孩子们喜欢的明星或爸爸妈妈的声音,它的笔顺永远不会写错,而且从来不会不耐烦。事实上现在有些电脑学习软件已经可以部分完成这样的工作了。

又比如说,数学的公式、物理的定律、化学的反应式、历史事件与人物,这些中小学教科书上的知识,智能机器人能不能教呢?我相信大家也说能!不仅能教,而且会比人类的教师教得更好,它可以把各学科教学名师的知识和经验都深度学习一遍,然后根据学生学习的表现,选择最合适的指导方法。这跟阿尔法狗学习下围棋没有多少本质上的不同。

到了这个时候,还有多少人认为教师的职业不会消失呢?即使教师的职业不会消失,今天教师的大部分工作将被智能机器人取代,这一点应该没有多少人怀疑了吧?

如果教师的大部分工作都被智能机器人取代,那么学校会不会消亡呢?这是一个更让人揪心的问题。

我们现在的教育体系,是工业时代的产物。工业时代需要培养大量的流水线上的工人,和各行各业的专业人士。这些职业都有一定的标准和规范,需要从业者牢记这些标准和规范,以便在做这类重复度很高的工作时,效率高,不容易出错。

人工智能心得体会篇11

科技在现代社会发展中愈发重要,人工智能作为其具象体现,在各大领域大放异彩。在美剧《机器少女法兰姬》中,西格博士所创造的最新一代机器人frankie,在人与人的交往中收获了友谊,渐渐拥有了情感,学会了像人类一样思考。让人不禁沉思:“人工智能朝人类发展的同时,人类是否会向人工智能(ai)靠拢?”当人类失去了所谓价值观与同情心,与机器又有什么两般?

人与机器人/人工智能最大的差异在于思考方式:ai是通过数据的理性分析,得出结论;而人类则复杂得多,他综合了个人的主观判断与数据分析,理性与感性的权衡之下,方作出决定,故总是于情于理。然而两种方式皆无优劣之较,唯有其二者相互权衡综合,方能创造更美好的未来。

价值观,是人生态度的抽象概念。它代表了个人面对大千世界的自我思考与思考。倘若人失去了所谓“价值观”,便将成为一具毫无精神可言的躯体,仿佛行尸走肉般游走。“人是一株会思考的芦苇”。或许有人会反驳,ai也会思考,但它的所谓思考,不过是自己数据库中所载入的数据所分析出的结果,是由二进制所推动的程序运行,丝毫没有“个人”的情感,是冷冰冰的数据代码,更别提是否拥有价值观的体现了。

同情心,即为“恻隐之心”,可谓人皆有之。试问ai:当你面对奄奄一息的花木,你是否会亲手相植?面对瑟瑟发抖的小雀,你是否会以温柔相助?面对踉跄倒地的孩童,你是否会以怀抱相拥,面对病危的至亲,你是否会不顾一切地陪伴左右……即便你亲手一件件完成了诸事,亦不过是在执行人类所编写的代码罢了,你的心不会为之动跳,不会为之动容。试想,若人类失去了同情之心,世界又怎会温情脉脉?想至此,不禁毛骨悚然充斥着冷漠的世界,谈何“但愿人长久,千里共婵娟”,谈何“日日思君不见君,共饮长江水”,谈何“谁演寸草心,报得三春晖”,谈何“曾经沧海难为水,除却巫山不是云”?

“面对窗口调皮的小猫咪,你是否会莞尔?”我试问。人工智能表示,将来会有的而我,亦希望人类别丢了那份最本质的,欣赏美,体悟生活的态度。正如萧寒所言:

正是现实将我们推得快速甚至踉跄,让我们突然意识到,认真慢下来是多么的难能可贵。愿我们都能在自我的思考与体悟中享受人生百态,不向机器的方向靠拢,成为一个饱含激情与热血,拼搏进取的,人类。

愿人们不要丢弃了心中最纯粹的情感,那份价值观,那份同情心,正如库克所言,“我更担心人类像计算机一样思考,失去了价值观和同情心,罔顾后果。”

【人工智能心得体会】相关文章:

人工智能心得体会06-10

《人工智能》心得体会08-19

人工智能心得体会11-03

【推荐】人工智能心得体会11-21

【热】人工智能心得体会11-20

人工智能心得体会3篇06-10

人工智能心得体会(精选15篇)11-17

人工智能心得体会(精选8篇)11-19

人工智能心得体会3篇11-13

人工智能心得体会(8篇)11-16

人工智能赋能教师教育:基本逻辑与实践路向

近年来,自然语言处理、机器学习、人脸识别等智能技术快速发展,促使教育信息化逐渐呈现智慧特性,人工智能赋能教育创新发展已成我国教育改革的关键抓手。传统信息技术逐步实现智能升级,技术赋能教师教育的形态也实现重大变革。2018年,《教师教育振兴行动计划(2018—2022年)》推出“互联网+教师教育”创新行动,并强调应充分利用大数据、人工智能等新技术,助力教师教育理念与模式变革,推进教师教育信息化建设与应用。2022年,《教育部教师工作司2022年工作要点》指出,“推进第二批人工智能助推教师队伍建设试点工作,开发和应用教师智能助手,探索开展教师智能研修,推广完善‘双师课堂’。”基于此,本研究尝试聚焦人工智能赋能教师教育这一议题,理顺人工智能赋能教师教育的基本逻辑,并面向中小学教师群体开展问卷调研,从而进一步挖掘人工智能支持下教师教育变革所面临的现实困境,归纳提炼人工智能赋能教师教育的实践路向,以期为新技术时代教师教育变革提供有益参照。

一、信息技术赋能教师教育的历史变革

随着信息技术的不断升级与发展,一些具有“类人功能”的智能产品逐渐应用于教育教学领域,促使教育信息化样态逐渐具有智能属性。就教师教育而言,信息技术赋能教师教育的历史进程主要经历了三个发展阶段。

(一)电化教育时代:信息技术赋能教师教育的初步探索期

1978年4月,全国教育工作会议指出,应充分利用广播、电视等工具,大力培训师资。此次会议不仅有力地推动了我国电化教育的发展,也促进了广播、电视等现代化技术手段在教师教育中的应用,开启了信息技术赋能教师教育的初步探索。1981年10月,教育部颁文要求“发挥电化教育在提高师资水平中的作用”。20世纪80年代中后期,随着计算机技术和网络通信技术的不断进步,信息技术赋能教师教育的工具与方式逐步得以拓展。1996年,《中小学计算机教育五年发展纲要(1996—2000年)》指出,应面向师范生开展相关培训,提升计算机辅助教学的知识与技能,并强调教师需对计算机等电化教育教学手段予以掌握。归纳来看,在电化教育阶段,教师教育的实践理念与行动方式逐渐融入技术元素,但这一时期教师教育存在着信息共享滞后、技术应用水平低下等诸多问题,教师教育过程与投影、录音、录像、电视、计算机等传统教育技术媒体之间的融合尚处于浅层阶段。

(二)教育信息化时代:信息技术赋能教师教育的快速发展期

21世纪初,我国的教育信息化发展较为关注项目及工程建设,以远程教育、开放教育等方式为依托,致力于提供多样化的教育信息化服务。在教育信息化背景下,我国教师教育理念与方式发生重大变革,信息技术赋能教师教育也逐步从电化教育时代迈向教育信息化时代。2002年,教育部发布《关于推进教师教育信息化建设的意见》,对教师教育信息化原则、目标以及具体举措等诸多方面作了基本要求,为我国教师教育信息化快速发展奠定了行动方向。随后,我国教师教育信息化建设开始逐渐关注宏观指导与项目实践相结合的推进方式。《2009—2012年中小学教师国家级培训计划》等文件以具体的实践项目来推动教师教育信息化。随着互联网、云计算等技术的快速发展,教师教育体系也积极顺应信息技术发展趋势,致力于培养具有信息化教学技能的新型师资。但由于这一时期信息资源良莠不齐,教师教育过程的数据挖掘和分析还相对滞后,对于硬件设施投入与建设的关注高于软件设施,教师教育课程资源尚未实现有效的区域联通。

(三)“智能教育”时代:信息技术赋能教师教育的战略转型期

2017年,《新一代人工智能发展规划》中明确提出,应利用人工智能技术满足社会大众对于教育、医疗等方面的民生需求。随着机器学习、智能感知等智能技术与教育教学的整合成效逐渐凸显,2018年,《关于开展人工智能助推教师队伍建设行动试点工作的通知》中更是强调应提升教师对于人工智能的胜任力与适应力。2021年4月,教育部发布《关于开展第二批人工智能助推教师队伍建设试点推荐遴选工作的通知》,强调应通过建立师范生大数据评价管理机制、创新“人工智能+教师研修”模式等手段,促进人工智能、大数据等技术与教师队伍建设的有效整合,助推教师教育理念与模式的智能转型。此外,人工智能与教师培训的整合也逐渐得到广泛关注,2021年5月,教育部、财政部发布《关于实施中小学幼儿园教师国家级培训计划(2021—2025年)的通知》,强调应推进人工智能与教师培训融合发展,形成人工智能支持教师终身学习的新机制;《教育部教师工作司2022年工作要点》亦强调应推进人工智能助推教师队伍建设,发掘推广一批人工智能助推教师队伍建设的先进典型,推进教师资源数字化建设和教师队伍数字化治理。

二、人工智能赋能教师教育的基本逻辑

在“人工智能+教师教育”生态系统中,信息技术能够对教师教育的课程设置、教育模式、评价方式、应用实践、培训和终身学习等方面产生影响,解决教师培训方式变革以及教师教育的管理问题也是推进人工智能与教师教育体系深度融合的关键。

(一)课程层面:智能资源共享赋能教师教育课程体系完善

教师教育课程是构成教师教育体系的重要内容,这也是人工智能赋能教师教育的基本着力点。人工智能在资源推荐、资源整合等方面具有智能特性,人工智能赋能教师教育的一大优势在于可通过智能资源共享推进教师教育课程体系趋向完善。首先,人工智能可为教师教育课程资源的开发与获取提供技术保障。可通过智能化资源开发平台,设计与整合海量教案、课件、课堂实录、习题等教学资源数据,且利用大数据的智能匹配与分析功能为教师筛选出最优质的课程资源并为其推荐最适切的学习资料,有助于为教师专业发展提供精准化的培训课程资源。例如,华中师范大学“现代教育技术应用”课程通过引入虚拟仿真实验和桌面VR交互一体机,促进师范生自身学科内容与新兴形式资源的融合,设计、开发和生成多种沉浸式、交互式的教学资源。其次,人工智能可助力教师教育课程管理建设。基于智慧课程管理系统为教师及教师教育者提供留言、点评、交流、反思等信息共享功能,可实现海量的教师学习行为数据的精准采集与分类,并利用数据分析与共享技术为教师教育者改进课堂教学方式与内容设计提供证据支持。归纳来看,智能资源共享本身是一种信息共享,有助于拓展教师教育课程学习的资源内容与空间场域,此为人工智能赋能教师教育的课程逻辑。

(二)评价层面:机器学习赋能教师教育质量精准改进

机器学习赋能教师教育质量精准改进可被视为人工智能赋能教师教育评价的重要环节。首先,机器学习有助于实现教师教育过程性数据的精准挖掘。长期以来,教师教育质量缺乏相对全面的评价标准,教师教育质量评估往往侧重于结业考评、期末考评等总结性评价方式,较为忽视教师教育过程的数据记录与信息采集,教师教育者可能对于自身教学过程中的潜在问题也难以发觉。其次,机器学习立足于对海量数据全生命周期的伴随式采集、深度挖掘与分析,其能够通过挖掘数据背后的潜在关系,不仅能够实现基于理性证据的科学决策,也能够为教师教育质量的精准监测与改进提供实践路径。机器学习可通过智能传感、人脸识别、图像识别等技术实现在线教师教育数据、线下教师教育数据的有效采集与智能分析,有助于以大数据分析方式来可视化呈现教师教育质量分析结果。基于质量分析结果,教师教育者能够迅速识别其教育教学的缺点,并能够有针对性地予以改进,进一步掌握当前教师教育课程、管理、实践等方面存在的实质性不足,这为教师教育质量的精准改进提供了诸多便利。例如,黄慕雄等人以广东省教师教育大数据智慧系统为例,构建了一种多源多层的教师专业发展分析模型,采用较为成熟稳定的协同过滤推荐算法综合分析并精准制订培训发展方案,是满足教师培训机构为教师智能化制订培养方案需求的部分体现,为精准评估与改进教师教育质量提供了有效支持。

(三)管理层面:智能决策助力教师教育治理机制重塑

人工智能拥有规模化数据、深度学习算法以及高度计算力,其通过科学规范的数据聚类、数据认知、决策优化等过程,挖掘数据的复杂性关联和潜在价值,使智能决策得以实现。首先,智能决策为以单向性、强制性及刚性为核心特征的传统教师教育管理模式走向科学民主式的教师教育治理模式提供了重要支撑。基于智能决策理念的教师教育治理将由经验走向循证,经由“提出问题—获取证据—评价证据—应用实践—效果评估”科学流程,自始至终指向准确和明智的最佳教育证据筛选与应用,保障教师教育决策有据可循。其次,智能决策本身体现了一种数据治理的理念,其以规模化数据和智能算法为中介,促进教师教育决策过程由单一主体决策走向基于数据智能的多主体协作,有利于教育行政部门、教师培训机构、学校等决策主体构建基于证据的教师职前职后一体化协同机制,教师教育的决策者、参与者可通过协同完成数据收集、表征、组织、分析、交流等环节,精准定位并预测教师培训的需求与供给状况,尤其是应真正关照乡村学校在职教师专业发展的个性化需求,最终生成兼具技术理性与人文关怀的教师培训与研修方案。

(四)培训层面:智能互联助力教师培训空间极速拓展

自20世纪末《中小学教师继续教育规定》颁布以来,我国教师培训的规模、经费投入、相关制度和体系建设等飞速发展。然而,不少地区的教师培训工作也暴露出一些现实难题,如对教师培训的需求分析不够细致与准确、培训内容重复与泛化、培训空间满意度不高等。随着深度学习等智能技术的发展,教师教育空间将逐步实现虚拟空间与物理空间的无缝衔接,智能互联助力教师培训空间极速拓展成为现实。首先,基于智能互联理念的教师研修平台进一步提升了教师培训的针对性与有效性,有助于创设沉浸性更强的线上虚拟研修空间与“双师课堂”教学空间,可实现对教师认知结构、教学行为、教学风格与专业能力的智能监测与精准诊断,并实现精准化的课程推送、个性化的助学支持。其次,基于智能互联的教师培训助手系统为教师培训目标的实现释放了工作空间。AI教师能够将教师培训者从琐碎的机械性行为中解放出来,教师培训者将拥有更多的“自由时间”,这使其可以在更充分的自我认知基础上,更多反思教师教育课程设计、实践应用、沟通协作等方面的教师培训问题。再者,基于智能互联的跨区域培训云平台有助于拓展教师专业学习空间。“智能+教育”模式打破了教师培训的时空局限,进一步增强了教师培训的灵活性,有助于实现跨区域的教师培训新机制,有助于打造线上线下一体化的教师培训新机制,这对于实现偏远、贫困、落后地区教师教育与发达地区协同发展具有重大意义。例如,依托统一的宁夏教育云在线互动课堂平台,宁夏尝试推进名校名师与普通教师开展线上师徒结对,组建专业成长共同体,利用在线互动课堂、名师网络工作室等,实现城乡教师“智能手拉手”。

三、人工智能赋能教师教育的现实困境

遵循前文所述的人工智能赋能教师教育的基本逻辑,本研究基于教师教育体系构建的实际现状,从课程层面、评价层面、管理层面、培训层面出发,结合对10位区域教师进修学校管理人员、教师教育领域学者、中小学校长的访谈结果,编制了“人工智能支持下的教师教育改革调查问卷”。除基本信息题项、多选题“您认为人工智能支持下的教师教育可能存在哪些问题?”之外,问卷中各题项均采用李克特五点量表形式(从非常不符合到非常符合)予以呈现。首先,选择江苏省W市90位中小学教师进行预调研施测,基于预调研样本数据,对问卷进行信效度检验。数据分析结果显示,整体量表的KMO统计值为0.95,Bartlett球形检验结果的p值<0.001,表明问卷适合进行因子分析。对整体问卷进行探索性因子分析,抽取出4个公因子,累计方差解释率达到86.26%,表明因子结构较为可靠。依据因子载荷图可知,题项A1到A4构成课程维度,题项B1到B3构成评价维度,题项C1到C4构成管理维度,题项D1到D3构成培训维度,与本研究对人工智能赋能教师教育的基本逻辑的分析框架相一致,表明问卷具有较好的结构效度,可作为正式调研问卷。

之后,基于正式调查问卷,本研究选取浙江、江苏、上海等教育与经济发达地区的中小学作为调研学校,面向中小学教师投递电子问卷,调研结束后,回收有效问卷527份。本研究利用Cronbachsalpha、CR、AVE值检验问卷信效度。整体量表的Cronbachsalpha值为0.966,各分量表的Cronbachsalpha值在0.89与0.97之间,证明问卷具有较好的内在一致性信度;验证性因子分析结果显示,各分量表的CR(组合信度)取值范围在0.79与0.86之间,表明量表的组合信度较好。各分量表的AVE值均大于0.5,表明量表的收敛效度较好。此外,验证性因子分析结果显示,模型拟合较好,RMSEA、CFI、SRMR指标均达到测量学标准(RMSEA<0.08;CFI≥0.90;SRMR<0.06)。综合上述分析结果,可知问卷通过了信效度检验。

人工智能支持下的教师教育现状的描述性分析结果如下。总体而言,人工智能支持下的教师教育现状的均值水平为3.85,除评价层面以外,各子维度(课程层面、管理层面、培训层面)的均值水平均在4以下,由此可见,当前教师对于融入人工智能的教师教育、职后培训的感知情况并未达到理想程度,人工智能在推进教师教育改进方面尚存较大空间,因此,仍需进一步探索如何利用人工智能优化区域教师教育体系,提升教师教育的有效性、针对性、科学性、智慧性。在此诉求背景下,精准分析人工智能赋能教师教育变革所面临的现实困境,则成为归纳和提炼人工智能赋能教师教育实践路向的关键之举。具体而言,本研究将进一步结合调查分析结果,围绕课程、评价、管理、培训四个方面剖析人工智能赋能教师教育的现实困境(见图1)。

图1人工智能赋能教师教育的现实困境

(一)教师教育课程体系难以适应智能时代教师专业发展

在智能时代,教师教育的内容正发生重大变革,人工智能已成为教师教育工作的得力助手,开设一系列面向教师的人工智能课程具有一定的必要性。但就我国教师教育课程体系而言,其目前尚难以适应智能时代教师专业发展。首先,在课程层面,区域教师教育课程建设缺乏较为统一且清晰的课程标准,区域教师教育的课程科目、结构和类型较为单一的现象时常出现。而且,本研究调查结果显示,55.79%的教师认为,教师教育课程内容与教师所需的智能教育素养脱节;题项“教师教育的课程内容能够满足您的实际需求”均值为3.91。由于受人、财、物等多方面资源的影响,教师教育课程理念的变革难度相对较大,即使是面对人工智能等新技术的冲击,教师教育课程建设也具有滞后性与保守性,融入人工智能教育内容的教师教育课程特色难以有效凸显。其次,在教学内容方面,目前不少地区的教师教育教材体系陈旧,教学内容未能结合智能时代所需做到有效更新。数据分析结果显示,题项“当前的教师教育课程关注如何让教师有效应用人工智能产品”及“学习教师教育课程能够提升您的智能教育胜任力”的均值水平分别为3.95与3.94,这表明教师教育课程体系与人工智能等技术知识的融合力度与成效不足。再者,在教学方面,受困于不少教师教育者、受训在职教师及师范生的技术接受与整合能力存在欠缺,教师教育课程教学缺乏具有足够信息化胜任力的教师教育师资,导致智能技术赋能教师教育课程教学的过程受到教师能力的严重制约。

(二)基于证据的教师教育质量评价有待优化

在5G、人工智能、大数据等技术的支撑下,如何构建基于证据的教师教育质量评价体系是推动人工智能时代教师教育发展的一大难题。为尽可能地减少评价过程中的标准不一与价值冲突等问题,在从事教师教育评价活动之前,需要确立相应的指导标准和价值准则。对于我国教师教育评价实践而言,基于证据的教师教育质量评价亟待进行优化,教师教育质量评价体系尚待建立健全。综合来看,我国不少地区至今仍未形成循证式的教师教育质量评价标准体系,导致我国教师教育评价活动在实践中缺乏必要的规范性与科学性,48.39%的教师认为,对于教师教育效果的多维评价有待加强。此外,我国教师教育评价普遍存在着重视运用分数、成绩等量化指标评价的倾向,仍然留有“头痛医头、脚痛医脚”碎片化的评价方式,且数据分析结果显示,题项“培训专家能够利用人工智能对您的学习效果进行分析与评价”均值为3.96,这表明人工智能尚未全方位融入循证式教师教育质量评价体系,未能充分借助人工智能等新技术立体化地搜集教师教育活动的信息从而科学全面地评价教师教育效果,进而导致教师教育评价新格局尚未完全形成。

(三)大数据赋能教师教育管理存在决策偏差

人工智能浪潮风起云涌,其与大数据之间的关系相伴而行,人工智能功能的发挥离不开数据处理与运算的支持。决策者依托人工智能的分析及预测功能,可从“基于经验的分析”转向“数据驱动决策”,这在一定程度上有助于教育管理者系统把握教师的个体诉求与行为轨迹,并据此进行信息反馈和教学激励。但需要注意的是,智能技术是一把双刃剑,在帮助实现教师教育决策科学化的同时,其也会因人技关系异化而产生一系列问题。数据分析结果显示,人工智能赋能教师教育的管理层面均值水平为3.73,表明当前人工智能在优化教师教育管理方面尚存在一定的问题及弊病。首先,人工智能算法、决策使用的数据及数据处理方式均是由“人”来创建的,不可避免带有个体主观隐含的偏见。当主观的算法设计偏见或数据处理偏见渗透到教师教育管理过程中,将会给教师教育决策带来一定的偏差与错误。其次,人工智能算法具有自主决策、学习的能力,它的设计者难以预测最终的结果,也无法完全解读它是如何得出现有结论的。因此,教师教育决策的相关主体一定程度上将会陷入算法分析结果难以解读的困境,这将削弱决策者的公信力与可信度。再者,根据数据分析结果可知,45.92%的教师认为人工智能可能无法十分准确地量化教师教育成效。处于不断完善与发展阶段的人工智能算法及其所依赖的数据很有可能具有一定的局限性,这将导致一些非数据化或难以数据化的教师教育问题被排除在决策过程之外,进而给以数据作为决策基础的教师教育决策者带来一定的决策盲区,产生大数据赋能教师教育的信息偏差现象。

(四)教师培训与智能技术的整合存在效度困境

数据质量、算法功能对人工智能应用成效影响较大,无论是数据挖掘,还是智能算法设计,均无法做到尽善尽美,数据分析结果显示,人工智能赋能教师教育的培训层面均值水平为3.64,表明人工智能在教师培训实践中的应用依然存在效度困境。首先,使用算法和预测模型对教育现象进行度量将会造成一定风险,这主要取决于计算模型和算法是否符合教育逻辑、教育过程和教育中的人是否可以被量化和计算、对教育过程的量化是否能够反映教育本真,这需要进一步反思智能技术应用于教师培训的合理性与规范性,将其应用范围限定在可控风险领域之内。其次,智能技术在教师培训中的使用效能相对较低,其在培训资源建设、助学辅导、培训成效评价等方面的应用程度受人力、物力、财力等多方面制约。调查结果显示,59.20%的教师认为,人工智能技术与教师教育的融合性不强;41.18%的教师认为,学区或学校难以投入大量资源以支持智能化教师教育体系构建;另外,42.88%的教师认为,目前人工智能支持下的教师教育指导性政策与规章尚需完善。这表明不少地区不仅缺乏具有较高智能教育素养的教师教育专家以及足够的经费支持、资源保障,而且,也缺乏人工智能赋能教师培训的指导性政策与规章,进而导致区域教师教育部门在利用智能工具开展教师培训活动时易陷入“仅加大软硬件投入”的战略误区,忽视对教师教育者技术接受与整合能力的有效训练,进而削弱了智能技术在教师培训需求满足与资源建设方面的应用空间。

四、人工智能赋能教师教育的实践路向

随着人工智能与教师教育领域的不断融合,人工智能赋能教师教育也面临着如教师教育课程体系难以适应智能时代教师专业发展、基于证据的教师教育质量评价有待优化、大数据赋能教师教育管理存在决策偏差、教师培训与智能技术的整合存在效度困境等问题。综上,为推动人工智能在教师教育领域的合理应用,人工智能赋能教师教育体系构建应关注以下实践路向。

(一)加强数字化课程建设,推进教师教育资源智能化开放共享

以往教师教育资源虽然也包括微课、短视频、精品课等信息化形式,但随着新课标的颁布与新教材的逐步使用,教师教育数字化资源动态性缺位、资源建设质量不高、资源建设区域协同性差、资源建设针对性不强等问题逐渐凸显。在人工智能时代,教师培训课程、教师研修资料等均可被表征为较易传播与计算的数字形态,教师教育资源建设应加强数字化课程建设,推进教师教育资源智能化开放共享。首先,区域教育行政管理部门、各级各类教师培训机构及中小学校应携手打造智能化区域教师教育课程资源库,立足教师群体的数字画像以及教师培训专业标准,积极利用虚拟现实、增强现实、智能云等智能技术,关注教师教学技能网络模拟实训与教育理论在线学习,充分整合微课、慕课、直播课、公开课等数字化课程资源,推动数字化教师教育课程资源系统化建设。例如,首都师范大学聚焦于人工智能时代下的教师发展,由高校导师团队设计面向教师专业发展的在线课程,师范生制作开发课程,并且在课程开设期间与在职教师开展全程陪伴式的互助共学,师范生为在职教师解答与技术应用有关的困惑,而在职教师可以为师范生在教学方面提供经验分享。其次,构建数字化教师教育课程资源监管体系。地方教育行政管理部门、学科教研员、教育督学及督导专家等多方人员应组建数字化教师教育课程资源审查小组,确保数字化教师教育课程资源开发经过开发测试、内部评价、外部评价等严格流程,应利用机器学习、数据挖掘等智能技术,及时对参训在职教师或师范生的课程资源使用记录、共享渠道与心得体会予以电子存档。再者,应创设数字化教师教育课程资源的智能推送与共享机制。地方教育行政管理部门可依托“国培计划”“区域教师发展计划”等各级各类教师教育项目,着手建立优质数字化课程资源开发与遴选机制,遴选优质数字化资源,明确数字化教师教育资源流通标准与准入门槛,利用大数据分析与智能画像技术,通过智能筛选、提取和整合教师专业学习需求信息,基于在职教师专业学习的数字画像,有针对性地为教师推送定制化课程资源。

(二)立足评价改进,构建基于证据的教师教育质量监测体系

如前文所述,在评价层面,基于证据的教师教育质量评价机制还有待完善。评价对于教师教育质量的提升来说具有导向与指引作用,随着数据智能理念的不断深化,教师教育评价愈发关注数据式证据,如何利用数据信息呈现教师教育评价证据成为热点议题。因此,有必要立足于当前教师教育评价存在的现实问题,构建基于证据的教师教育质量监测体系。一方面,应基于智能数据挖掘,构建教师教育质量监测方案。从教师教育评价主体来看,教师教育质量评价受其主观判断影响,若教师教育评价所依赖的数据信息不够客观,将导致教师教育的评价结果有失公允。因此,应基于教师教育评价的实际诉求,智能挖掘与提取师范生、职后教师、教师教育者等评价利益相关者的数据信息,建立教师管理信息化系统,构建教师学分管理机制,建立教师数据的“驾驶舱”,对教师教育过程进行精准预警与监测。另一方面,创设基于证据可视化的教师教育质量分析机制。基于大数据分析、生物信息识别、图像识别、视频分析等技术,可从教师教育投入、过程、产出、背景等方面进行教育质量观测,动态采集教师教育行为和环境信息,严格落实数据筛选、数据比较、数据整合、数据呈现等一系列证据可视化流程,及时向主管部门、教育工作者、师范生、教师公开教师教育质量观测结果,注重教师教育质量评价结果与改进方案的可视化呈现,以便进一步明确教师教育质量的改进方向与提升路径。例如,宁夏充分利用大数据支撑教师智能研修行动并建设教师教育质量监测体系,为提升教师在教学设计、课堂组织、班级管理、教育研究等方面的综合能力,将教师管理信息系统、教师继续教育网络研修等平台整合融入宁夏教育云,基于教育云平台实现对教师专业发展状态的监管、测评与干预。

(三)聚焦数智融合,优化教师教育决策偏差调节机制

如前文所述,在管理层面,大数据赋能教师教育管理存在决策偏差。以往的教师教育决策存在主观判断、决策流程过于僵直与落后、决策技术过于单一等问题,人工智能时代教师教育决策虽可实现基于证据的教师教育决策,但其并不意味着教师教育决策绝对的合理化与准确化,教师教育决策仍有可能存在偏差问题(如决策偏见、决策失误等)。因此,应聚焦数智融合,优化教师教育决策偏差调节机制。首先,应构建基于数智融合的教师教育决策咨询服务体系。以师范教育、在职培训等多种形态为主体的教师教育体系涉及多个决策主体,且以往区域层面教师教育决策可能在师范教育与在职培训对接层面存在信息鸿沟,而且区域层面可能在城乡教师发展规划方面存在决策偏差。为此,可通过创设区域教师管理与发展服务平台,动态汇聚不同决策主体的建议与反馈意见,为地方教师教育管理者改进教师发展计划、教师研修项目管理服务、教师专业发展学分银行服务等提供信息支持与路向导引。其次,应关注教师教育决策偏差诊断与调节机制的创设。人工智能时代教师教育决策不仅应体现智慧化特性,而且应秉承基于证据的科学主义取向。应提升教师教育决策者的智能教育素养与数据素养,打通教师教育利益相关者间的决策信息共享通道,及时诊断区域教师培训与研修实践的主要问题与产生根源,智能分享与整合来自地方教师发展学院或中心、教育行政管理部门及高校教师教育基地的反馈信息,构建协同化地方教师教育决策咨询服务体系,有效提升区域教师教育决策的科学化和民主化。

(四)关注智能研修,创设基于分层分类的精准化教师培训体系

如前文所述,在培训层面,教师培训与智能技术的整合存在效度困境。以往师资培训一般采用讲座、讨论、观摩、进修、线上刷课等多种方式,但大多数培训方式属于短期行为,难以长期针对特定教师群体(如位处偏远的农村地区教师)开展教师专业培训。人工智能赋能教师网络研修平台与模式创建为教师终身学习与持续发展提供了重要支持。由此,为进一步推进人工智能赋能教师教育,满足不同类型教师群体的学习诉求,加快教师队伍数字化建设进程,推动教师数字化发展,有必要关注智能研修,创设基于分层分类的精准化教师培训体系。首先,教师培训部门或机构应着手建立研修专区,组建区域智能研修共同体,对参与在线研修的教师群体进行合理分类,以研修问题与实践案例为抓手,满足不同类别、层次、岗位的教师需求。教师教育者应基于教师研修数据进行智能追踪,尝试捕捉不同类型(如农村教师、城镇教师)、不同层次(如教学新秀、教学骨干、教学专家)教师参与智能研修的学习需求,以便构建线上与线下、必修与选修相融通的精准化教师研修模式。其次,应注重探索建立基于分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。最后,应基于大数据融合,探索建立分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。具体而言,应关注教师在学科、年龄、教龄等方面的实质性发展差异,评价方案的设计与实施应关注教师发展的过程性与阶段性数据的提取与筛选。也应着重提升教师教育者的信息化评价素养与智能技术胜任力,尝试通过教师个体发展画像的智能分析与评价,为受训教师后续的专业学习以及教师教育者的教学实践提供改进方向。

五、结语与展望

关于华南师范大学|统一认证|移动平台

Copyright©2023SouthChinaNormalUniversity.AllRightsReserved|华南师范大学版权所有

华南师范大学

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇