博舍

人工智能何以促进未来教育发展 人工智能需求有哪些方面

人工智能何以促进未来教育发展

原标题:人工智能何以促进未来教育发展

自工业革命以来,人类社会的发展总是在技术与教育的角逐互动中前行。技术作为推动人类历史发展的核心推进力,与教育这一“人力资本发动机”竞相成为推动经济社会发展的主力。人工智能作为第四次工业革命的显著标签,其飞速发展正在逐步塑造社会、经济、生活等领域的业务新形态,也不断带来颠覆性、丰富性、创新性的新业态。面对人工智能技术对整个社会发展的刺激,教育如何发展,成为值得思考的重要问题。

人工智能凸显创新人才发展挑战

作为引发第四次科技革命的核心技术,人工智能促进社会经济和科技的指数级发展,对人力资本的质量与供给产生了新的需求,人工智能与人力资源之间的相互依存关系产生了前所未有的张力,教育的超前性更是受到前所未有的挑战。第一,知识增长的指数发展使得未来人才需要哪些方面的准备具有极大的不确定性。第二,智力劳动者比重增加,创新人才成为时代发展的刚需。人工智能技术与生产过程的深度融合,会极大压缩生产领域的从业者需求,特别是那些人工智能胜出的领域。第三,人工智能技术的兴起引发高技术产业、新兴产业、新型服务行业更广阔的发展空间,从而使得创新型人才、复合型人才、高技术人才等在劳动力结构中需求激增。人工智能技术无法取代的创造性、灵活性、人文性等能力将成为智能化时代人才竞争的关键。教育肩负培养创新人才、为未来人才提前布局的使命。回溯历史,我们可以得到的经验是,只有教育领先于技术的发展步伐,为技术推进的社会提前做好人力资源的布局,社会的发展才有后劲。因此,在人工智能推进社会更飞速发展的今天,必须回答好什么样的教育才能承载提前布局人力资源的使命,以应对未知社会的人才挑战这一问题。

人工智能催生新的知识生产方式

在人工智能的影响下,人类知识生产加剧变化,知识增量呈现指数级态势。教育的传承性发展将不再局限于知识的传授与继承,而强调知识创造与创新,人工智能的介入更是催生了新的知识生产方式。其一,人工智能强大的知识发现能力缩短了知识生产周期。随着深度学习、强化学习等新的机器学习算法的发展,人工智能除了可以加快知识的生产、访问和利用,还可以从数据中提取隐含的、未知的、潜在的、有用的信息(知识),从而扩展知识创造的能力。其二,人机协同的智能模式扩大了知识创造的机会与可能性。人工智能技术不仅促进人的群智协同创新,而且可以实现人类与人工智能代理协同,后者所具有的超强计算能力,可以极大加速知识生产,催生知识的众创,以及人机协同知识创新。人工智能催生的新的知识生产方式对教育的挑战是,教育不再局限于知识传承,而更是知识的创新。未来学校教育必须教会学生如何与人工智能技术协同合作,呵护学习者“能学”,以及高度重视学生辨析知识能力的培养,召唤学习者“会学”,促进学习者在人机交互中实现知识更新与创造。

人工智能变革学习方式带来创造力与活力释放可能

人工智能已经引发了诸多领域与行业的深刻变革,对教育的系统性变革更是呼之欲出,为学习方式的变革带来了可能。首先,人工智能技术带来规模化教育的个性化可能。人工智能构建的智慧学习环境不仅创造灵活的学习空间,还能感知学习情境、识别学生特征,为学生提供个性学习支持。其次,人工智能技术带来标准化教育下的适应性可能。人工智能通过动态学习诊断、反馈与资源推荐的自适应学习机制,可以适应学生动态变化的学习需求,从而打破标准化的教育限制,释放出学生的创造力与活力。最后,人工智能改善结构化的授导方式,释放教师的创造力与教学活力而专注于人性化的学习设计。教师烦琐重复性的工作能够被智能机器所替代,智能分析技术能为教师精准定位学生的学习问题与需求,教师的角色将转向更加优秀的学习设计师,专注于“如何让学生学好”,注重培养学生的能力和思维,将更多时间用于学习活动设计以及与学生的个性化互动交流,为学生提供个性化学习支持服务。人工智能的发展以及与教育教学的深度融合,给教育的改革创新带来了更多选择,教育需要发挥技术的赋能、增能、使能优势满足教育的功用性追求,也要坚守教育的育人初心和使命传递人文性价值,以学生的成长发展为前提探索可以实践的学习方式、学习设计,通过人工智能释放出教育的更大活力。

人工智能引发领域与行业变革催生教育生态升级

人工智能对其他领域与行业的变革影响也会延伸到教育领域,因为教育是关乎社会发展全局的事业。一方面,人工智能所发挥的增强、替代、改善、变革等作用,突出体现在对社会生产和生活各个领域所产生的行业重塑作用,以及对人力的释放。另一方面,这些重塑作用和人力的释放,引发了社会领域与行业的变革,促使了社会人才需求的转向;而教育是社会人才资源输出的重要领地,需要为此作出有力回应,从而催生教育生态升级。人工智能加速了教育深化改革的进程,推动了系统内部的更新再造。数字技术已经对教师学生、课程、教学方式、学习体验、评价、管理等教育要素产生了深刻影响,并通过逐步的再造教育流程,变革着教育生态。而人工智能则在进一步加速这一过程,以一种颠覆性创新的态势,拓展系统内各要素的内涵,改善和延展系统内部关系,重塑教育系统功能与形态。人工智能拓展了教育边界,助推未来学校建设。未来学校将借助技术的力量,把校外学习场所(如科技馆、博物馆)和线上学习场所都纳入“学校”的范畴,整合社会各领域的教育资源,形成一种全新的育人环境。同时,数字孪生等新技术促进现实空间与虚拟空间的交互融合,通过创建人、物、环境数字孪生体,实现物理空间与数字空间的双向映射、动态交互和实时连接。对教育系统内部的升级改造以及空间资源的拓展,能够使其更好地与社会领域衔接,更好地提供适应未来生活和工作的创新人才成长场所。

人工智能关乎强国战略目标实现

教育应服务于国家战略布局,为抢占人工智能发展先机,构筑先发优势;为国际竞争、社会发展输出创新人才,支持科学技术的自主研发。当前,世界各国纷纷把发展人工智能上升到国家战略的高度,以抢占新一轮科技革命的机遇高点以及全球竞争中的主动权。《新一代人工智能发展规划》提出我国要“成为世界主要人工智能创新中心”的战略目标,全局部署了经济、教育、科技、社会发展和国家安全等重要方面。教育强国战略是科教兴国战略、人才强国战略和创新驱动发展战略等重要战略的逻辑起点,人工智能对教育的人才培养能力提出更高要求。近年来,世界各国在发展人工智能的同时也面临巨大挑战,如创新人才问题、高新技术自主可控问题等。人工智能的国际竞争本质是人才的较量,这需要教育从战略层面予以回应。因此,教育在战略上起引领作用,就要既充分发挥智能技术优势推动教育生态系统升级,又谋篇布局为国家发展提供人才支撑。立足技术与教育在角逐中互为塑造的视角,对人工智能促进未来教育发展的探索,更需要在战略上把握先机,通过教育为社会各领域输出创新人才,支撑社会各领域转型升级以及人工智能等高新科技的创新发展,为强国战略注入持续活力与能量。

教育在与技术的角逐中共同推动社会的发展。教育具有超前性、人文性、传承性、战略性及生态性等特点。在人工智能技术的指数式发展面前,教育的超前性变得难以维系;需要慢工出细活的人文性与满足社会用人需求的工具性之间呈现时空拉锯和矛盾;对人类知识的传承则变身为历史传承、人际共创以及人机共创的多重特征。随着人工智能技术推动的发展加速,教育的发展战略、前瞻性谋划,是一个时不我待、任重道远的重要课题。

(作者:顾小清,系国家社科基金重大项目“人工智能促进未来教育发展研究”首席专家、华东师范大学教育信息技术学系教授)

(责编:郝孟佳、孙竞)

分享让更多人看到

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

智慧农业大数据平台的“智慧”体现在哪些方面

看到农业两个字,我们先想起来的是什么?是耕种呢,还是灌溉?

其实,种植业只是狭义上的农业,从广义上讲,农业指包括种植业、林业、畜牧业、渔业、副业五种产业形式。所以,山东仁科智慧农业大数据平台不仅可以应用于种植业,也可以用于林业、畜牧业、渔业、副业。

智慧农业大数据平台“智慧”体现在哪些地方?

一、体现在环境监控中

智慧农业大数据平台能够为用户提供精准的个性化方案,通过在现场部署各类高精度传感器对环境进行不间断全方面监测,传感器不仅测量范围广、准确度高,性能优异还有高可靠性和互换性,包括但不限于气象类、土壤类、水质类的设备。各类设备可以将监测到的数据上传到【智慧农业大数据平台】,从而实现对环境数据的全方位监测,监测到的数据可以通过列表、折线、科技大屏等形式进行实时展示、分析。

二、体现在智能控制中

智慧农业大数据平台针对农业生产中常用的内/外遮阳、卷帘机、放风机、顶/侧开窗、喷/滴灌、风机、水帘、补光灯等,传统的人工操作会耗费时间精力不说,也无法做到精准管控。通过【智慧农业大数据平台】中的智能控制系统,用户通过手机/电脑即可实现24小时随时随地远程控制,也可以设定自动化规则,按照设定的时间、温度、湿度、二氧化碳等监测限值进行自动化控制。

三、体现病虫害监测中

虫情监测:虫情监测系统可以整体/单独查看园区下虫情设备各个部位的当前状态;远程对虫情的各个部位进行控制,例如控制烘干、拍照等;还可以查看操作记录和历史数据,帮助管理者进行管理,针对不同时间段内的害虫种类和数量进行统计对比、趋势分析等,支持导出报告,方便分析虫害情况,协助做好虫害防治,查看设备拍摄并实时上传的照片,支持自动AI分析(平台涵盖99.99%的害虫种类)和手动分析两种模式,满足虫情预测及标本采集的需求,可以有效帮助用户进行可视化科学管理。

孢子监测:全自动孢子捕捉分析仪内置高倍光学显微成像系统、控温系统,可定时清晰拍摄孢子图片,远程自动上传至【智慧农业大数据平台】,实现农作物病菌孢子浓度数字化。用户通过手机和电脑就可以随时了解病害的发生、发展情况以及分布区域,为预测和预防病害流行、传染提供可靠数据,对于现代农业中植物真菌病害的防治具有重要的指导作用。

四、体现在气象监测中

气象监测系统可以实现24小时随时随地监管,在平台设定相关报警阈值后,即可实现远程/自动控制调节和报警,精准把控环境指标。

五、体现在墒情监测中

墒情监测系统可以实时监测土壤温湿度、电导率、氮、磷、钾等参数,在平台设定报警阈值后,当土壤数据异常时,平台会远程以短信/邮件的形式提醒工作人员。除了土壤墒情精准监测、异常情况及时预警、历史数据查询导出这样的基本功能之外,还增加了按照埋地深度的显示方式,相同深度的数据会在一起展示,更加方便查看,在图中点击某一深度时还可以快速定位到该深度的数据进行查看。

六、体现在智慧灌溉中

通过可控管道系统调配水肥比例进行精准的自动化灌溉,专为灌溉场景打造,让农业灌溉更方便。无线组网安装免布线远程自动控制:节省人力成本50%以上;比例施肥节水节肥:提高水肥管理效率;恒压供水控制,水肥联动输出;因地制宜,因物制宜,合理严谨的管道布局;视频监控大屏展示。

七、体现在视频监控中

1-查看园区内全部的摄像头画面

PC端或手机端均可实现查看,24小时随时随地看你想看,方便管理人员及时了解园区状况,不用亲临现场也能实现人员、物资的调度。

2-对摄像头进行远端云台控制

支持摄像头上下左右各方向转动、拉近、推远、聚焦、缩放等功能,功能更全面,视野更宽广。

也可以让摄像头按照设定时间间隔拍摄的苗情图片,及时准确掌握作物生长发育动态、生产特点,方便农户总结作物高产规律,提高作物产量,还可以把摄像头用于灾情,一旦灾情出现能及时发现从而采取应急措施,有效避免园区灾情的发生和蔓延。

八、体现在远程报警中

四种报警类型+两种报警方式

离线报警:当设备由于现场信号干扰等原因无法和平台正常通讯时可以进行报警。

超限报警:当环境监测数据超过设定上下限值时可以进行报警。

差值报警:当选择的两个传感器的数据差值超过设定值时,就会进行报警。

低电量报警:针对带电池的设备,一旦电池电量超过设定的最低值,就会进行报警提醒,避免因忘记及时充电而出现关机耽误测量的情况发生。

以上四种报警类型再搭配短信/邮件两种远程报警方式,足以应对现场各种报警情况,一旦有报警产生会给相关管理人员进行通知,方便及时发现从而迅速采取应急措施。

九、体现在生产管理中

园区管理、人员管理、种植管理、作物生长标准、农事作业、采摘入库、农机管理、物料管理、供应商管理、溯源视频都属于生产管理系统,它可以对园区的方方面面、生产的各个流程进行全方位一体化把控,节省成本、提高效率,帮助用户全面掌握园内所有生产信息。

每个产品都有自己“溯源”,用在产品合格证上,合格证用手机直连蓝牙打印机即可完成打印,并且还带有防伪功能,后续消费者可以通过此码准确了解农产品从种植到销售等全过程的信息。

十、体现在农产品市场价格动态查询

农产品价格是种植者和消费者在市场中进行交易的重要信息,但是农产品价格通常波动较大,因为信息的滞后而使得农户收益受到损失的情况时有发生,平台新增【农产品市场价格动态查询】板块,价格数据一站式自动获取,可随时查看行情,掌握市场动态,按需定价和种植,补齐用户消息闭塞的短板,助力农业增收!

十一、LED大屏显示

大屏显示数据远程调试,无需再带着电脑跑现场设置;多种数据显示格式,现场屏幕内容字体大小颜色格式等可根据需要自行修改;电脑端所见即远端屏幕数据显示,简单明了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇