从近期到远期:人工智能在实际生活中的应用场景和未来整合趋势
人工智能(ArtificialIntelligence,AI)在实际生活中的应用场景非常广泛,涵盖了从近期到远期的多个领域。以下是一些典型的应用场景,以及未来可能整合的技术和应用。
近期应用场景:
虚拟助手:智能助手(如Siri、Alexa、小冰)帮助用户管理日程安排、提供实时天气信息、回答问题等。图像识别:AI技术可以通过分析和识别图像内容,应用于人脸识别、物体识别、图像搜索等领域。语音识别:语音助手(如Siri、GoogleAssistant)能够识别和理解人类语音指令,并执行相应操作,如播放音乐、发送短信等。自动驾驶:将AI技术应用于汽车领域,实现自动驾驶功能,提高行车安全性和交通效率。远期应用场景:
机器人助手:智能机器人能够协助人类进行家务、照顾老人、甚至扮演陪伴角色。医疗诊断:AI技术能够辅助医生进行疾病诊断,提供个性化的医疗方案、药物推荐等。智能城市:AI技术可以在城市中应用于交通管理、环境监测、能源优化等方面,提高城市的智能化程度。个性化教育:AI可以根据学生的个体差异,提供定制化的教育内容和学习辅助工具,提高教育质量和效果。将来整合的技术和应用:
跨领域整合:不同领域的AI技术和应用将会整合,形成更加全面和智能的解决方案。例如,将语音识别、图像识别和自然语言处理技术整合,实现更加人性化和智能的交互方式。强化学习:强化学习是一种让机器通过试错和反馈来学习的方法,未来将应用于更复杂的决策和控制任务,如自动驾驶、智能机器人等。大数据和云计算:AI需要海量的数据进行训练和学习,未来将进一步整合大数据和云计算技术,提供更强大的计算和存储能力,以支持更复杂的AI应用。总之,人工智能在实际生活中的应用场景将越来越广泛,从简单的语音助手和图像识别,到复杂的自动驾驶和智能机器人,AI技术将为我们的生活带来更多便利和智能化。未来,不同领域的AI技术将会整合,搭建更加智能和全面的解决方案,推动人工智能进一步发展和应用。
人工智能的十大应用
导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
作者:王健宗何安珣李泽远
来源:大数据DT(ID:hzdashuju)
01 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
02 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。
关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。
何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。
李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。
本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。
延伸阅读《金融智能》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。
划重点????
干货直达????
有了中台,那后台还剩下什么?(图解中台架构)
关于读书,我发现每一个技术大牛都有这个怪癖
2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?
34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
人工智能有哪些运用场景有什么实际用途
人工智能有哪些应用场景?就目前为止,人工智能已经在教育、医疗、无人驾驶、零售和家居等领域,有了及其广泛和深入的应用。不得不说,近些年来人工智能的发展,带给我们大家生活和工作上的各种便利。下面我们就来说一说,人工智能在各行业的应用,到底有什么实际好处。
应用场景一:教育
从2015年开始,人工智能教育的相关概念一直受到资本市场的关注,技术上,通过语音交互和自然语言处理技术,实现智能机器人阅卷改卷、背诵机器人、在线口语评测等功能。人工智能已经上升到国家战略的高度,教育逐渐向智能化方向发展。现阶段,在教育改革下,为满足教育的信息化需求,将人工智能应用到教育中,提高了教育的高效性和便捷性。基于此,以人工智能技术在教育领域的应用与发展为主题,进行了全方位、多角度的论述。随着众多企业的涌入布局,人工智能教育或将成为投资的下一个赛道风口。
在人工智能时代背景下,学校课程体系更趋向于多元化、丰富化、融合化。通过构建智能学习、交互式学习的新型教育环境,建立以学习者为导向、以教师为辅助的智慧教育模式,借助人工智能提供精准推送的学习支持服务,实现教学最优化和终身教育定制化。人工智能与基础学科的交叉融合,以丰富的课程体系培养学习者独立思维、批判性思维等重要品质,从而让每一个孩子接受更加全面、更加个性化的教学,使学习过程变得更高效、更快乐。
应用场景二:医疗
人工智能技术运用在医学领域,将图像识别、大数据处理、深度学习等AI领先技术与医学跨界融合研发而成,辅助医生进行疾病筛查和诊断。比如:智能诊疗、医疗机器人、智能健康管理等等。智能诊疗:智能诊疗就是将人工智能技术应用于疾病诊疗中,计算机可以帮助医生进行病理,体检报告等的统计,通过大数据和深度挖掘等技术,对病人的医疗数据进行分析和挖掘,自动识别病人的临床变量和指标;医学影像智能识别:AI通过大量学习医学影像,可以帮助医生进行病灶区域定位,减少漏诊误诊问题;医疗机器人:关于机器人在医疗界中的应用的研究主要集中在外科手术机器人、康复机器人、护理机器人和服务机器人方面;智能健康管理:对身体素质进行简单的评估,提供个性的健康管理方案,及时识别疾病发生的风险,提醒用户注意自己的身体健康安全。
应用场景三:无人驾驶
即使无人驾驶的噱头足够吸引人,但是为了弥补人工智能的不足,企业常常采取幕后的人为干预措施。这种做法的理念是,人类监督者确信人工智能运转良好,并担任教师角色。当人工智能失败时,人的干预是软件调整的指南。这一启发式过程的明确目标是,最终人工智能将能够在没有监督的情况下运行。在无人驾驶汽车的研究中,对人工智能技术的研究已经非常深入,一致认为人工智能技术为无人驾驶汽车的实现提供了推动力。
应用场景四:零售
据媒体报道,国内零售业现约有40余家人工智能创业公司,针对电商领域实现的功能主要有客服、实时定价促销、搜索、销售预测、补货预测,还可以智能推荐你喜爱的商品信息以及机械手臂机器人完成自动工作。高盛曾预测,到2025年,人工智能在零售业每年将节省540亿美元成本,创造410亿美元新收入。
而通过AI、机器视觉技术对顾客购买行为、仓储物流行为、供应商供给行为等多个方面进行监测和分析,确保合适的库存水平,避免出现滞销、脱销状况,实现供给侧改革。零售前端的实体业态背后,是一套复杂的智能零售系统,调配着商品以最快的速度向消费者流动。整个系统连接用户和商品的时效性越高,体验就越好,流转的效率越高,成本就越低。
应用场景五:家居
家庭是人类最重要的社交生活场所之一,也是人工智能应用较为广泛和影响度较高的领域。通过语音控制设备,从而轻松调节家里的风扇、空调、空气净化器等家电,这样的场景如今已经实现。智能家居已经从生态之争,到产品互联拓展的全平台之争了,所以,智能家居算是目前进展得比较顺利的人工智能应用吧。
解决安全隐患:安装智能设备后,业主可以直观的了解到家里的情况,如遇突发情况,可及时处理;生活舒适便捷:屋内的照明、家电等现代化电器数量繁多,如果每个都单独操作将会很繁琐,令人心烦。如果房间面积大了,这种烦恼将成倍增长。但智能设备就能整合家里的电器,这些问题就可以迎刃而解;远程集中操控:智能家居的控制方式除了传统的面板控制之外,还增加了语音控制、移动端控制。比如将手机、iPad、平板电脑变为智能控制器。这样做不仅可以远程操作,还能集中控制家里的电器,使生活更加便捷。
目前,人工智能在教育、医疗、无人驾驶、零售和家居等领域,都发挥了巨大作用,的的确确给我们的生活带来了许多实际的好处。让我们一起期待,在未来人工智能会带给我们怎样的惊喜吧!
免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。
为了更好的系统学习AI,推荐大家收藏一份。
下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)一、人工智能课程及项目
二、国内外知名精华资源
三、人工智能论文合集
四、人工智能行业报告
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。
点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料人工智能的8个有用的日常例子
如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。
人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。
[[330378]]
术语
人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。
在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。
机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。
深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。
自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。
现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。
8个人工智能的例子
以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。
1.谷歌地图和打车应用
地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。
通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。
该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。
因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。
2.人脸检测与识别
当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。
这是如何运作的?
智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。
人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。
3.文本编辑器或自动更正
当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。
在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。
语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。
下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。
4.搜索和推荐算法
当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。
这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。
同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?
向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。
由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。
诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。
5.聊天机器人
作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。
聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。
如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。
6.数字助理
当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。
Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。
7.社交媒体
社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。
AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。
表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。
社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。
社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。
8.电子支付
银行现在正在利用人工智能通过简化支付流程来便利客户。
通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。
总结
人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。
我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。
人工智能在日常生活中的12个例子
在下面的文章中,您可以查看我们日常生活中出现的12个人工智能示例。
人工智能(AI)越来越受欢迎,不难看出原因。人工智能有可能以多种不同的方式应用,从烹饪到医疗保健。
虽然人工智能在今天可能是一个流行词,但在明天,它可能会成为我们日常生活的标准一部分。事实上,它已经在这里了。
1.自动驾驶汽车
他们通过使用大量传感器数据、学习如何处理交通和做出实时决策来工作并继续前进。这些汽车也被称为自动驾驶汽车,使用人工智能技术和机器学习来移动,而乘客无需随时控制。
2.智能助手
让我们从真正无处不在的东西开始——智能数字助理。在这里,我们谈论的是Siri、GoogleAssistant、Alexa和Cortana。
我们将它们包含在我们的列表中是因为它们基本上可以倾听然后响应您的命令,将它们转化为行动。
所以,你打开Siri,给她一个命令,比如“给朋友打电话”,她会分析你所说的话,筛选出围绕你讲话的所有背景噪音,解释你的命令,然后实际执行,这一切只需要几个秒。
这里最好的部分是这些助手变得越来越聪明,改进了我们上面提到的命令过程的每个阶段。您不必像几年前那样对命令进行具体化。
此外,虚拟助手在从你的实际命令中过滤无用的背景噪音方面变得越来越好。3.微软项目InnerEye
最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。
微软项目InnerEye是最先进的研究,有可能改变世界。
这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。
最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。
微软项目InnerEye是最先进的研究,有可能改变世界。
这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。
4.抄袭
大学生的(或者是教授的)?)噩梦。无论你是内容经理还是给论文评分的老师,你都有同样的问题——互联网让抄袭变得更容易。
那里有几乎无限量的信息和数据,不太谨慎的学生和员工很容易利用这一点。
事实上,没有人能够将某人的文章与所有的数据进行比较和对比。人工智能是一种完全不同的东西。
它们可以筛选数量惊人的信息,与相关文本进行比较,看是否有匹配。
此外,由于这一领域的进步和发展,一些工具实际上可以检查外语来源,以及图像和音频。
5.推荐
你可能已经注意到,某些平台上的媒体推荐越来越好,Netflix、YouTube和Spotify只是三个例子。这要感谢人工智能和机器学习。
我们提到的三个平台都考虑了你已经看到和喜欢的内容。这是容易的部分。然后,他们将其与成千上万的媒体进行比较和对比。他们主要从您提供的数据中学习,然后使用自己的数据库为您提供最适合您需要的内容。
让我们为YouTube简化这个过程,只是作为一个例子。
该平台使用标签等数据,年龄或性别等人口统计数据,以及消费者使用其他媒体的相同数据。然后,它混合和匹配,给你建议。
6.银行业务
如今,许多较大的银行都给你提供了通过智能手机存入支票的选项。你不用真的走到银行,只需轻点几下就可以了。
除了通过手机访问银行账户的明显安全措施外,支票还需要你的签名。
现在银行使用AIs和机器学习软件来读取你的笔迹,与你之前给银行的签名进行比较,并安全地使用它来批准一张支票。
总的来说,机器学习和人工智能技术加快了银行软件完成的大多数操作。这一切都有助于更高效地执行任务,减少等待时间和成本。
7.信用和欺诈
既然我们谈到了银行业,那就让我们稍微谈一下欺诈。银行每天处理大量的交易。追踪所有这些,分析,对一个普通人来说是不可能的。
此外,欺诈交易的形式每天都在变化。有了人工智能和机器学习算法,你可以在一秒钟内分析成千上万的交易。此外,您还可以让他们学习,弄清楚有问题的事务可能是什么样子,并为未来的问题做好准备。
接下来,无论何时你申请贷款或者申请信用卡,银行都需要检查你的申请。
考虑到多种因素,比如你的信用评分,你的金融历史,所有这些现在都可以通过软件来处理。这缩短了审批等待时间,降低了出错率。
8.聊天机器人
许多企业正在使用人工智能,特别是聊天机器人,作为他们的客户与他们互动的方式。
聊天机器人通常被用作公司的客户服务选项,这些公司在任何给定时间都没有足够的员工来回答问题或回应询问。
通过使用聊天机器人,这些公司可以在从客户那里获得重要信息的同时,将员工的时间腾出来做其他事情。
在交通拥挤的时候,像黑色星期五或网络星期一,这些是天赐之物。它们可以让你的公司免于被问题淹没,让你更好地为客户服务。
9.让您远离垃圾邮件
现在,我们都应该感谢垃圾邮件过滤器。
典型的垃圾邮件过滤器有许多规则和算法,可以最大限度地减少垃圾邮件的数量。这不仅能让你免受烦人的广告和尼日利亚王子的骚扰,还能帮助你抵御信用卡欺诈、身份盗窃和恶意软件。
现在,让一个好的垃圾邮件过滤器有效的是运行它的人工智能。过滤器背后的AI使用电子邮件元数据;它关注特定的单词或短语,它关注一些信号,所有这些都是为了过滤掉垃圾邮件。
10.视频摘要
这种日常人工智能在网飞变得非常流行。
也就是说,你可能已经注意到,网站和某些流媒体应用程序上的许多缩略图已经被短视频取代。这变得如此流行的一个主要原因是人工智能和机器学习。
人工智能会为你做这些,而不是让编辑们花费数百个小时来缩短、过滤和切割较长的视频,变成三秒钟的视频。它分析数百小时的内容,然后成功地将其总结成一小段媒体。
11.食谱和烹饪
人工智能在更多意想不到的领域也有潜力,比如烹饪。
一家名为Rasa的公司开发了一种人工智能系统,该系统可以分析食物,然后根据您冰箱和储藏室中的食物推荐食谱。对于喜欢烹饪但又不想花太多时间提前计划膳食的人来说,这种类型的人工智能是一种很好的方式。
12.人脸识别
关于人工智能和机器学习,如果我们可以说一件事,那就是它们使他们接触到的每一项技术都更加有效和强大。面部识别也不例外。现在有许多应用程序使用人工智能来满足他们的面部识别需求。例如,Snapchat使用AI技术通过实际识别呈现为人脸的视觉信息来应用面部过滤器。
Facebook现在可以识别特定照片中的面孔,并邀请人们标记自己或他们的朋友。
而且,当然,考虑用你的脸解锁你的手机。好吧,它需要人工智能和机器学习才能发挥作用。
让我们以AppleFaceID为例。当你设置它的时候,它会扫描你的脸,然后在上面放大约3万个DoS。它使用这些圆点作为标记,帮助它从多个不同的角度识别你的脸。
这使您可以在许多不同的情况和照明环境中用脸部解锁手机,同时防止其他人做同样的事情。
结论
未来就是现在。人工智能技术只会继续发展、壮大,并对每个行业和我们日常生活的几乎每个方面变得越来越重要。如果以上例子是可信的,这只是个时间问题。
未来,人工智能将继续发展,并出现在我们生活的新领域。随着更多创新应用的问世,我们将看到更多人工智能让我们的生活变得更轻松、更有效率的方式!
人工智能AI在现实生活中的应用,带你深度走进AI世界
原标题:人工智能AI在现实生活中的应用,带你深度走进AI世界前景:未来的一到三年将是AI升级传统行业格局初步的历史窗口。如果3年之后,你还没有进入这个行业,这个行业一定是被别人占领了。一旦一个足够强大的AI公司进入一个行业,它将基于数据和行业经验的反馈。,而开始快速的技术迭代,壁垒会快速垒起,“别人再进来就相当困难了,所以未来三年在细分领域的竞争会很激烈。踏踏实实地自己围绕客户做好的产品和方案,或以投资、合资、开放合作等方式为深入行业“加时间杠杆”。目前中国正处于工业制造升级的历史时间窗口,这是天时。中国的工业制造还比较原始,发达国家已经开始了工业4.0进程,中国还处于1.0时期。基于此,中国正在推出工业制造升级改造,智能制造2025,这是人工智能技术的良好时间窗口,如计算机视觉进入工业领域。任何技术行业都是从早期的G端开始的。政府刚刚需要并且愿意为技术付出高昂的代价。随着技术越来越成熟,成本越来越低,慢慢便会融入民间。这是一个普遍规律。
典型计算机视觉应用场景:安防、新零售(智慧门店、智能买手、智能仓储及物流、智能营销和体验)、工业制造业(质检、包装等工业领域有着很大的智能化需求)保险业、医疗、互联网娱乐、手机、自动驾驶、智慧城市、教育、交通出行、物流、线下旅游、银行、能源(具体而言以加油站、4S店为主)、工业安全。
重点场景案例:
1、工业制造:质量检验和包装等工业检查具有很强的智能需求。
2、中国医疗的大痛点是资源分布存在严重的不平衡。“大医院人满为患,而县级以下基层医疗机构诊疗资源和能力严重匮乏。现在整个行业发展状况最多只能算是满足了医疗领域1%的需求。”依图方面分析,人工智能技术能将顶级医疗机构的诊疗能力赋能于基层,以解决“资源不平衡”的痛点。其次,医疗影像师培养时间相当的漫长造成医疗人才上的缺乏,也给予AI医疗影像大的发展空间。“未来的医院将是一家智能医院,也就是说,人工智能将成为医院的基础设施,就像互联网已成为当今医院的基础设施一样。”
行业特点:单点技术被结合多种技术的整体解决方案所取代,而AI技术使传统行业能够帮助他们升级。在技??术方向上,重点是计算机视觉,语音,自然语言处理和大数据等各种技术的集成。客户需要的是一整套行业解决方案,而不是一组算法或相机,这就需要各种各样的技术,而不是某一种技术。“从技术到场景”、“从单点技术到整体技术方案”的行业逻辑一致——战投和收购,在开发新的业务增长点的同时,有助于补充计算机视觉以外的技术能力。
发展方向:技术优势被转变为平台的优势,通过与不同行业、场景需求的结合,促进各行业的智能发展,成为业界的推动者。在平台化的同时,十多种行业的好处之一是“相互成熟的效果”。在所有行业中都能获得大量数据。这些数据可以颠倒算法。另一方面,在一个业界进行的算法的积累,促进了其他业界的算法的成熟度、多个业界的共同力,最终推进了研究开发,算法可以发展到极限。这种行业间的相互促进,就是“交叉成熟效应”。“行业解决方案”和“帮助行业升级的解决方案完全不同,升级能力是关键。这种整体升级解决方案需要一种集成了许多技术的架构,而且不能是单点技术。“升级虽然需要深入了解行业,但需要技术公司和传统公司之间的深入沟通,以便为许多客户提供解决方案。这些好处非常接近客户和大量数据。
展开全文推广方式:与有渠道优势的传统巨头合作也是资本运作的一种方式。
技术需求:无论是最初切入计算机视觉还是语音技术,想要真正成为行业解决方案的公司必须或多或少地补充AI语言中的一些其他技术功能,例如语音、自然语言处理、物联网、大数据等。这就是为什么许多最初使用计算机视觉和语音算法的公司已经开始切入电源层,投资芯片公司或制造自己的芯片。过去,以技术特征划分“赛道”的逻辑正在失效。为了提供“端到端”的方案,公司需要整合不同类型和级别的技术。
应用场景延伸:
目前有人值守的岗位均可以由人工智能代替。
1、教育考试阅卷,目前除选择题以外均需要人工阅卷,像高考、中考、国考这样的大型考试,阅卷工作劳动强度非常大、而且人为因素或多或少的影响考试的分数,分数对考生关系重大,一分之差可能会改变一个人的命运。为减少阅卷劳动强度、降低人为因素对考试分数的影响,提高考试公平性,可以引进AI参与阅卷工作。
2、评估教师讲座的水平是为了减少人为因素的干扰,可以引进AI,提高公平性。
3、教育考场监考,目前各类教育及培训考试,均采用人工监考,人工监考+摄像头,第一,监考过程可能会存在盲区;第二,摄像头是采用的实时录像模式,只能通过控制室人眼实时观看或者视频回放,存在人为因素;第三,人工监考,人为因素对考试过程影响很大。考场引入AI以后,可以根据考场考生的动作和表情,分析是否作弊,作弊时,提示考官,XX考生正在作弊。。。,增加了考试过程的公平性,减少了人为因素的参与。
4、职场面试,企业可以引进AI面试系统或者面试机器人,降低人为因素对人才引进的影响。目前的面试过程,均为人资人员进行初步的筛选,然后再进行下一步的遴选。有的企业,人力资源管理人员给应聘者面试以后,直接入职。为提高企业引进人才的公平性,降低人力为因素对职场面试过程的影响,企业可以引进AI面试系统,在前几轮的面试过程中,采用AI面试,最后一关,再通过企业决策者拍板通过,这样可以大大提高所引进人才的水平,增强企业的竞争力。
5、影院系统,目前大部分影院采用的是人工售票+人工检票方式,完全可以引进AI,自助购票时,人脸拍照,检票时人脸识别,采用无纸模式,既方便又节能。
6、机场、车站,目前机场及车站均采用纸质票据销售及验票,可以引进AI,自助购票或网络购票时,在相关的自助设备或者购票官网进行身份验证和人脸识别,登机或者上车前,闸机系统进行人脸识别,降低了工作人员的劳动强度,减少了纸质票据的使用,既方便又节能。
7、需要人工值守24小时以上的实验室或者工厂车间,目前很多实验室在做试验时,由于试验过程需要24小时以上,必须有人值守,为降低劳动强度,提高试验仪器或设备的自动化水平,可以引进AI,AI系统在试验过程中,实时监控和分析测试条件,异常情况,实时反馈或报警。
8、服饰匹配,商场或者服装生产企业,引进AI以后,可以根据客户的外表或者体型,自动匹配合适的服饰,减少了挑选时间。
9、高速收费站,高速收费引用AI以后,车主在官网对车辆进行识别验证,并注册账号,与第三方支付平台绑定,车主开车进高速时,收费站对车辆进行“人脸识别”,自动开闸放车,车站口自动识别车辆后,通过第3方支付平台自动扣除高速费用,大大提高通过率,解决车辆拥堵问题。返回搜狐,查看更多
责任编辑: