博舍

人工智能的常用十种算法 人工智能最适合的语言有哪些

人工智能的常用十种算法

导读:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

小编有以下的学习视频资料,有需要的可以扫码加我哦~人工智能题库,大厂面试题学习大纲自学课程大纲还有200GAI资料大礼包免费送哦~

这是小编发布的人工智能必备数学基础人工智能必备数学基础(二)/微积分、泰勒公式与拉格朗日乘子法_Java_rich的博客-CSDN博客

人工智能必备数学基础(一)_Java_rich的博客-CSDN博客

1、决策树

根据一些feature(特征)进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

 2、随机森林

随机森林是集成学习的一个子类,它依靠于决策树的投票选择来决定最后的分类结果。集成学习通过建立几个模型组合的来解决单一预测问题。集成学习的简单原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林的构建过程:

假设N表示训练用例(样本)个数,M表示特征数目,随机森林的构建过程如下:

 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集,并用未抽到的用例(样本)作预测,评估其误差。  对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据m个特征,计算其最佳的分裂方式。每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用。 重复上述步骤,构建另外一棵棵决策树,直到达到预定数目的一群决策树为止,即构建好了随机森林。其中,预选变量个数(m)和随机森林中树的个数是重要参数,对系统的调优非常关键。这些参数在调节随机森林模型的准确性方面也起着至关重要的作用。科学地使用这些指标,将能显著的提高随机森林模型工作效率。

 3、 逻辑回归

基本上,逻辑回归模型是监督分类算法族的成员之一。Logistic回归通过使用逻辑函数估计概率来测量因变量和自变量之间的关系。

逻辑回归与线性回归类似,但逻辑回归的结果只能有两个的值。如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。

逻辑函数中Y值的范围从0到1,是一个概率值。逻辑函数通常呈S型,曲线把图表分成两块区域,因此适合用于分类任务。

 比如上面的逻辑回归曲线图,显示了通过考试的概率与学习时间的关系,可以用来预测是否可以通过考试。

4、线性回归

所谓线性回归,就是利用数理统计中的回归分析,来确定两种或两种以上变量间,相互依赖的定量关系的一种统计分析方法。

线性回归(LinearRegression)可能是最流行的机器学习算法。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Leastofsquares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

5、朴素贝叶斯

朴素贝叶斯(NaiveBayes)是基于贝叶斯定理,即两个条件关系之间。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果。

朴素贝叶斯分类器是一种流行的统计技术,经典应用是过滤垃圾邮件。

6、神经网络

NeuralNetworks适合一个input可能落入至少两个类别里:NN由若干层神经元,和它们之间的联系组成。第一层是input层,最后一层是output层。在hidden层和output层都有自己的classifier。

input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class1;同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights和bias,这也就是forwardpropagation。

7、K-均值

K-均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到K个聚类。K-均值用于无监督学习,因此,我们只需使用训练数据X,以及我们想要识别的聚类数量K。

先要将一组数据,分为三类,粉色数值大,黄色数值小。最开始先初始化,这里面选了最简单的3,2,1作为各类的初始值。剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别。欺诈检测中应用广泛,例如医疗保险和保险欺诈检测领域

8、支持向量机

要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离。

是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。

 应用于面部识别、文本分类等

9、K-最近邻算法

给一个新的数据时,离它最近的k个点中,哪个类别多,这个数据就属于哪一类。例子∶要区分“猫”和“狗”,通过“claws”和“sound”两个feature来判断的话,圆形和三角形是已知分类的了,那么这个“star”代表的是哪一类呢? 

 10、降维

降维(Dimensionalityreduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(PrincipalComponentAnalysis,PCA)是最流行的降维技术。

主成分分析通过将数据集压缩到低维线或超平面/子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。

整理了一份关深度学习和机器视觉的资料,有python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,+vx领取的内部资源,人工智能题库,大厂面试题学习大纲自学课程大纲还有200GAI资料大礼包免费送哦~有什么问题都可以来问我

欢迎大家扫码 获取AI免费视频资料

适合人工智能的编程语言有哪些 人工智能学习路线(20231016)

人工智能ai用什么编程语言_用于AI开发的6种最佳编程语言

人工智能ai用什么编程语言_用于AI开发的6种最佳编程语言_cxq8989的博客-CSDN博客

最适合人工智能开发的六种编程语言

最适合人工智能开发的六种编程语言

AI人工智能开发的5种最佳人工智能编程语言

AI人工智能开发的5种最佳人工智能编程语言_南北极之间的博客-CSDN博客_人工智能编程

AI人工智能的5种绝佳编程语言

AI人工智能的5种绝佳编程语言_创帆云的博客-CSDN博客_人工智能编程

适合人工智能的编程语言有哪些

适合人工智能的编程语言有哪些_simplilearn圣普伦的博客-CSDN博客_人工智能用的编程语言

适合人工智能的编程语言有哪些-知乎

最适合开发AI应用的5大编程语言

最适合开发AI应用的5大编程语言

人工智能用什么语言开发最好?

人工智能用什么语言开发最好?-知乎

AI快速入门学习的经验积累-最佳学习路线图谱梳理

AI快速入门学习的经验积累-最佳学习路线图谱梳理_周雄伟的博客-CSDN博客_ai学习路线

人工智能新手入门学习路线(机器学习,深度学习,神经网络)第一阶段

人工智能新手入门学习路线(机器学习,深度学习,神经网络)第一阶段_AlexMYH的博客-CSDN博客

人工智能新手入门学习路线(机器学习,深度学习,神经网络)第二阶段

人工智能新手入门学习路线(机器学习,深度学习,神经网络)第二阶段_AlexMYH的博客-CSDN博客

【干货】人工智能工程师的三个层次(附技术学习路线图)

【干货】人工智能工程师的三个层次(附技术学习路线图)_AI科技大本营的博客-CSDN博客

人工智能学习路线

人工智能学习路线_懒散的鱼与消失的猫的博客-CSDN博客_人工智能学习路线

AI快速入门学习的经验积累-最佳学习路线图谱梳理

AI快速入门学习的经验积累-最佳学习路线图谱梳理_周雄伟的博客-CSDN博客_ai学习路线

人工智能学习线路图

人工智能学习线路图_hixiaoyang的博客-CSDN博客

如何自学人工智能路径规划(附资源,百分百亲身经验)

如何自学人工智能路径规划(附资源,百分百亲身经验)_q7695650的博客-CSDN博客

如何学习人工智能,学习AI的一般路线

如何学习人工智能,学习AI的一般路线_weixin_42256255的博客-CSDN博客_人工智能学习步骤

人工智能/机器学习/深度学习:学习路线图

人工智能/机器学习/深度学习:学习路线图_攻城无数的博客-CSDN博客

AI学习路线图【目录】

AI学习路线图【目录】_鸣宇淳的博客-CSDN博客

2018年,该转行AI工程师吗?

2018年,该转行AI工程师吗?_CSDN程序人生的博客-CSDN博客

人工智能/机器学习/深度学习:学习路线图

人工智能/机器学习/深度学习:学习路线图_攻城无数的博客-CSDN博客

学习人工智能算法,你必须掌握的32个算法!

学习人工智能算法,你必须掌握的32个算法!_OhYeah~李若愚的博客-CSDN博客

可汗学院公开课:统计学

可汗学院公开课:统计学-网易公开课

斯坦福CS231n李飞飞计算机视觉关于人工智能发展,李飞飞:是真的可以被人用了

关于人工智能发展,李飞飞:是真的可以被人用了_腾讯视频

谷歌云首席科学家李飞飞的公开课

谷歌云首席科学家李飞飞的一堂人工智能公开课_腾讯视频

世界百大思想者,AI女神李飞飞:让AI智能真正大众化

世界百大思想者,AI女神李飞飞:让AI智能真正大众化,科技,人工智能,好看视频

李飞飞:人工智能如何赋能医疗健康的个性化

李飞飞:人工智能如何赋能医疗健康的个性化,科技,人工智能,好看视频

斯坦福CS231n李飞飞计算机视觉

CS231n计算机视觉课程-网易云课堂

无需数学就能写AI,MIT提出AI专用编程语言Gen

无需数学就能写AI,MIT提出AI专用编程语言Gen

 2018全国高院“AI人工智能”本科专业教育教学综合实力排行榜

AI高校排行榜:2018年度全国普通高校人工智能方向本科教育教学综合实力排行榜..._IT派的博客-CSDN博客

2018全球大学AI排名发布,中国高校表现强势!

2018全球大学AI排名发布,中国高校表现强势!_大数据v的博客-CSDN博客

目前人工智能技术都有哪些主要研究方向

目前人工智能技术都有哪些主要研究方向

人工智能的几个热门领域简介及作用

百度

人工智能应用的细分领域有哪些

人工智能应用的细分领域有哪些

科学动画片等

科学动画片等_dllglvzhenfeng的博客-CSDN博客

普通高中课程方案和语文等学科课程标准(2017年版2020年修订)

教育部关于印发普通高中课程方案和语文等学科课程标准(2017年版2020年修订)的通知-中华人民共和国教育部政府门户网站

【强基计划】数学与物理竞赛中的微积分部分视频

【强基计划】数学与物理竞赛中的微积分部分视频_dllglvzhenfeng的博客-CSDN博客

强基计划数学相关书籍推荐

强基计划数学相关书籍推荐_dllglvzhenfeng的博客-CSDN博客

计算机18个专业方向

计算机18个专业方向_dllglvzhenfeng的博客-CSDN博客

2023计算机考研专业课参考书目(408)

2023计算机考研专业课参考书目(408)_dllglvzhenfeng的博客-CSDN博客_408参考书目

计算机考研机试书籍及相关的资料

计算机考研机试书籍及相关的资料_dllglvzhenfeng的博客-CSDN博客

2023年计算机考研资料集(2022.02.03)

2023年计算机考研资料集(2022.02.03)_dllglvzhenfeng的博客-CSDN博客

计算机考研创新简史专利量子力学等

计算机考研创新简史专利量子力学等_dllglvzhenfeng的博客-CSDN博客

如何读博士-2021.06.12

如何读博士-2021.06.12_dllglvzhenfeng的博客-CSDN博客

一些考研考博的资料(2022.10.16)

一些考研考博的资料(2022.10.16)_dllglvzhenfeng的博客-CSDN博客

10000个科学难题书籍介绍

10000个科学难题书籍介绍_dllglvzhenfeng的博客-CSDN博客

文献检索与论文写作书籍(一)

文献检索与论文写作书籍(一)_dllglvzhenfeng的博客-CSDN博客

文献信息检索与论文写作书籍(二)

文献信息检索与论文写作书籍(二)_dllglvzhenfeng的博客-CSDN博客

期刊目录核心期刊计算机学术期刊等

期刊目录核心期刊计算机学术期刊等_dllglvzhenfeng的博客-CSDN博客

科技前沿与工程前沿

科技前沿与工程前沿_dllglvzhenfeng的博客-CSDN博客

10000个科学难题书籍介绍

10000个科学难题书籍介绍_dllglvzhenfeng的博客-CSDN博客

量子力学如何入门

量子力学如何入门_dllglvzhenfeng的博客-CSDN博客

相对论学习入门资料集

相对论学习入门资料集_dllglvzhenfeng的博客-CSDN博客

教育部办公厅工业和信息化部办公厅关于公布首批特色化示范性软件学院名单的通知

教育部办公厅工业和信息化部办公厅关于公布首批特色化示范性软件学院名单的通知-中华人民共和国教育部政府门户网站

教育部办公厅关于2022-2025学年面向中小学生的全国性竞赛活动名单的公示

教育部办公厅关于2022-2025学年面向中小学生的全国性竞赛活动名单的公示-中华人民共和国教育部政府门户网站

2022-2025学年面向中小学生的全国性竞赛活动官网

2022-2025学年面向中小学生的全国性竞赛活动官网_dllglvzhenfeng的博客-CSDN博客

中学数学建模书籍及相关的视频等(2022.08.09)

中学数学建模书籍及相关的视频等(2022.08.09)_dllglvzhenfeng的博客-CSDN博客

数学建模学习视频及资料集(2022.08.10)

数学建模学习视频及资料集(2022.08.10)_dllglvzhenfeng的博客-CSDN博客

最适合人工智能开发的5种编程语言

                                                

自从去年,AlphaGo打遍天下棋手无对手,人工智能的风头就一直无人能及。在刚刚过去的IT领袖峰会上,BAT三位大佬都看好人工智能的未来发展。今年年初,百度就做了一个大动作,在医疗方面押宝人工智能,所以在这次峰会上李彦宏也发声称互联网是道开胃菜,人工智能才是主菜。

人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,所以很难说人工智能必须用哪一种语言来开发。选择多也意味着会有优劣之分,并不是每种编程语言都能够为开发人员节省时间及精力。所以我们整理了5种比较适用于人工智能开发的编程语言,希望能够对你有所帮助。

如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

Python

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

Java

Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

Lisp

Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

Lisp语言因其可用性和符号结构而主要用于机器学习/ILP子领域。著名的AI专家彼得·诺维奇(PeterNorvig)在其《ArtificialIntelligence:Amodernapproach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。

Prolog

Prolog与Lisp在可用性方面旗鼓相当,据《PrologProgrammingforArtificialIntelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。

Prolog广泛应用于AI的expert系统,也可用于医疗项目的工作。

C++

C++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。C++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C++。

在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C++被广泛地快速执行,游戏中的AI主要用C++编码,以便更快的执行和响应时间。

写在最后:

其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AIsub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

                    

人工智能的十大应用

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。

作者:王健宗何安珣李泽远

来源:大数据DT(ID:hzdashuju)

01 无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02 人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10 图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。

何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。

李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。

本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。

延伸阅读《金融智能》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。

划重点????

干货直达????

有了中台,那后台还剩下什么?(图解中台架构)

关于读书,我发现每一个技术大牛都有这个怪癖

2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?

34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生

据统计,99%的大咖都完成了这个神操作

????

最适合人工智能开发的5种编程语言

                                                

自从去年,AlphaGo打遍天下棋手无对手,人工智能的风头就一直无人能及。在刚刚过去的IT领袖峰会上,BAT三位大佬都看好人工智能的未来发展。今年年初,百度就做了一个大动作,在医疗方面押宝人工智能,所以在这次峰会上李彦宏也发声称互联网是道开胃菜,人工智能才是主菜。

人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,所以很难说人工智能必须用哪一种语言来开发。选择多也意味着会有优劣之分,并不是每种编程语言都能够为开发人员节省时间及精力。所以我们整理了5种比较适用于人工智能开发的编程语言,希望能够对你有所帮助。

如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

Python

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

Java

Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

Lisp

Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

Lisp语言因其可用性和符号结构而主要用于机器学习/ILP子领域。著名的AI专家彼得·诺维奇(PeterNorvig)在其《ArtificialIntelligence:Amodernapproach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。

Prolog

Prolog与Lisp在可用性方面旗鼓相当,据《PrologProgrammingforArtificialIntelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。

Prolog广泛应用于AI的expert系统,也可用于医疗项目的工作。

C++

C++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。C++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C++。

在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C++被广泛地快速执行,游戏中的AI主要用C++编码,以便更快的执行和响应时间。

写在最后:

其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AIsub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

                    

人工智能技术应用的领域主要有哪些

随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?

什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。

##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

1、深度学习

深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;

2、计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

3、语音识别

语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。

语音识别技术原理:

1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;

4、虚拟个人助理

说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。

虚拟个人助理技术原理:(以Siri为例)

1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。

5、语言处理

自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。

语言处理技术原理:

1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;

6、智能机器人

智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

智能机器人技术原理:

人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。

智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐

不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。

Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。

关于人工智能的展望

除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。

当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。

转自:http://www.arduino.cn/thread-45848-1-1.html

最适合人工智能开发的5种编程语言

               

自从去年,AlphaGo打遍天下棋手无对手,人工智能的风头就一直无人能及。在刚刚过去的IT领袖峰会上,BAT三位大佬都看好人工智能的未来发展。今年年初,百度就做了一个大动作,在医疗方面押宝人工智能,所以在这次峰会上李彦宏也发声称互联网是道开胃菜,人工智能才是主菜。

人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,所以很难说人工智能必须用哪一种语言来开发。选择多也意味着会有优劣之分,并不是每种编程语言都能够为开发人员节省时间及精力。所以我们整理了5种比较适用于人工智能开发的编程语言,希望能够对你有所帮助。

如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。

Python

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

Java

Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

Lisp

Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

Lisp语言因其可用性和符号结构而主要用于机器学习/ILP子领域。著名的AI专家彼得·诺维奇(PeterNorvig)在其《ArtificialIntelligence:Amodernapproach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。

Prolog

Prolog与Lisp在可用性方面旗鼓相当,据《PrologProgrammingforArtificialIntelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。

Prolog广泛应用于AI的expert系统,也可用于医疗项目的工作。

C++

C++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。C++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C++。

在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C++被广泛地快速执行,游戏中的AI主要用C++编码,以便更快的执行和响应时间。

写在最后:

其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AIsub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

           

最适合人工智能开发的5种编程语言

                                                

自从去年,AlphaGo打遍天下棋手无对手,人工智能的风头就一直无人能及。在刚刚过去的IT领袖峰会上,BAT三位大佬都看好人工智能的未来发展。今年年初,百度就做了一个大动作,在医疗方面押宝人工智能,所以在这次峰会上李彦宏也发声称互联网是道开胃菜,人工智能才是主菜。

人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发,所以很难说人工智能必须用哪一种语言来开发。选择多也意味着会有优劣之分,并不是每种编程语言都能够为开发人员节省时间及精力。所以我们整理了5种比较适用于人工智能开发的编程语言,希望能够对你有所帮助。

如果你想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

Python

Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如

Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

Java

Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

Lisp

Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

Lisp语言因其可用性和符号结构而主要用于机器学习/ILP子领域。著名的AI专家彼得·诺维奇(PeterNorvig)在其《ArtificialIntelligence:Amodernapproach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一,感兴趣的朋友可以自行查看。

Prolog

Prolog与Lisp在可用性方面旗鼓相当,据《PrologProgrammingforArtificialIntelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。

Prolog广泛应用于AI的expert系统,也可用于医疗项目的工作。

C++

C++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。C++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C++。

在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C++被广泛地快速执行,游戏中的AI主要用C++编码,以便更快的执行和响应时间。

写在最后:

其实为AI项目选择编程语言,其实很大程度上都取决于sub-field,对于编程语言的选择要从大局入手,不能只考虑部分功能。在这些编程语言中,Python因为适用于大多数AIsub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

                    

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇