博舍

人工智能赋能实体经济存在的问题与应对 人工智能仍存在的问题和对策论文

人工智能赋能实体经济存在的问题与应对

【摘要】面对人工智能的巨大发展潜力及其对未来社会的颠覆性影响,主要国家纷纷出台人工智能发展战略和政策,以期抢占未来产业制高点。但我们应客观看到,当前人工智能发展过程中,存在重复建设严重、核心技术缺乏、人工智能与实体经济融合困难等关键问题,其深层次的原因在于新兴产业的“潮涌现象”、企业投资行为的短期化以及产业知识薄弱的制约。推动人工智能产业更好更快发展,需要产业共性技术、信息基础设施、企业数字化水平和人才供给等多方面的有力支撑。

【关键词】人工智能;赋能;实体经济;产业化

【基金项目】本文系国家社科基金重点课题“‘互联网+’背景下的中国制造业转型升级研究”(项目编号:16AJY011)的阶段性成果。

 

2006年加拿大计算机科学家杰弗里·辛顿关于“深度信念网络”论文的发表清除了人工智能产业化道路上最后一道路障,互联网产业发展积累的海量数据、云计算提供的低成本算力,再加上以深度学习为代表的算法的革命,推动了人工智能产业驶入快速发展的轨道。面对人工智能的巨大发展潜力及其在产业、社会、国防等方面的颠覆性影响,主要国家纷纷出台人工智能发展战略和政策,以期抢占未来产业制高点。人工智能的巨大经济价值吸引了大量投资涌入,不但互联网公司纷纷向人工智能公司转型,而且初创公司不断涌现。但是也要看到,人工智能发展和赋能实体经济过程中也出现了一些问题,需要积极加以应对。

人工智能产业发展存在重复建设严重、硬技术创新少、实体经济智能化转型“叫好不叫座”等突出问题

作为产业的人工智能包括人工智能技术的产业化与人工智能技术在其他产业的应用即人工智能赋能两个方面。在高速发展和赋能实体经济的过程中,人工智能产业无论在国内还是在国外都出现了一些亟待解决的问题。

产业一哄而上,产品雷同,重复建设严重,真正有高技术开发能力的产业园较少。近年来我国人工智能产业呈现蓬勃发展态势,初创企业数量、融资数量和融资规模快速增长,产业整体规模居于世界前列,与美国一起形成两强鼎立的世界产业格局。随着技术的不断成熟,互联网大科技公司、人工智能新兴企业也在积极进入传统产业领域,推动人工智能技术对传统产业的赋能。但是另一方面也要看到,高端产业领域往往存在着一种发展困境,即当一项产业被国家确定为未来重点发展方向后,各地就会纷纷加大招商引资力度、上马新项目趋之若鹜,造成较短时间内该高端产业在全国“一哄而上”,同质化问题严重,甚至出现“挂羊头卖狗肉”的情况。人工智能产业同样也存在这类“一哄而上”的问题。许多地方政府将人工智能列入重点打造的产业,大力建设人工智能特色小镇、产业园、孵化器、双创基地。以机器人为例,截至2018年2月,全国共有65个机器人产业园在建或已建成,一些省份更是在多个城市建有机器人产业园,甚至一些县也着手布局机器人产业园建设。但从目前的情况看,真正有技术开发能力的机器人产业园很少,大部分机器人企业集中于技术水平不高的娱乐、服务机器人,工业机器人的核心部件仍然主要依赖进口。在新兴的以深度学习为特征的人工智能领域,由于行业整体性人才供应短缺、本地缺乏发展基础,不少园区处于空置状态。严重的重复建设还可能造成未来“高端产业的低端化”,使我国企业难以完成利润积累,进而严重制约研发投入和技术的升级,在与发达国家在技术前沿的竞争中缺乏后劲。

人工智能产业模式创新多、硬技术创新少。众多的人工智能发明专利中基础硬件和基础算法等硬科技占比少。虽然我国人工智能领域的投资多、企业数量多,但是多集中在模式创新领域。人工智能当前比较成熟的领域包括数据分析、计算机视觉和自然语言处理。我国人工智能企业也主要集中在计算机视觉、语音、自然语言处理领域,2017年市场份额分别为34.9%、24.8%和21.0%,而硬件、算法所占份额分别只有11.3%和8.0%。目前我国人工智能企业多是采取“拿来主义”,将国外经过验证的理论产业化,甚至不少企业直接使用国外的开源代码,利用“拿来”的技术进行商业模式创新,缺乏真正原创的技术、开发工具和开源平台。麦肯锡咨询公司对全球初创企业所处行业特点的分析发现,以中国为主要代表的亚洲国家的初创企业多集中在R&D强度较低的产业(R&D资源指的是从事科研与试验发展活动所必需的投入。R&D强度是衡量一国科技活动规模和科技投入水平的重要指标,也是反映一国自主创新能力和创新型国家建设进程的重要内容),如电子商务、教育和培训服务等领域,而B2B以及分析和执行软件、云计算、健康IT等R&D密集型产业则多由美国、英国和德国的企业所领导。具体到人工智能行业,中国人工智能专利申请量超过美国,居世界第一,1998—2018年,我国的人工智能论文达14.2万篇,略少于美国,但专利、论文质量与美国存在较大差距。2017年,中国人工智能论文质量(以FWCI指数衡量)约为1.3,而美国为2.5;中国人工智能发明专利中,基础硬件和基础算法等硬科技占比少。2017年,我国人工智能发明专利授权量中,基础算法、基础硬件、垂直应用的占比分别为21.0%、4.9%和74.1%。

智能化转型“叫好不叫座”。人工智能作为一个产业本身快速发展的同时,在其他领域的渗透、融合也在不断推进。从全球范围来看,早在2012年,美国通用电气就提出“工业互联网”的概念,并联合美国商业资讯(AT&T)、思科(Cisco)、IBM和英特尔(Intel)5家企业联合宣布成立工业互联网联盟(IndustrialInternetConsortium,IIC),2015年向所有企业开放其工业互联网操作系统Predix。作为德国工业4.0的主要推动者,西门子在2016年的汉诺威工业博览会上正式发布工业互联网操作系统MindSphere。2011年以来,蓝色巨人IBM加速向“认知商业”和智能服务转型,其代表性人工智能服务是人工智能系统——沃森在医疗诊断领域的应用。但是智能化转型“叫好不叫座”,人工智能系统的企业用户不积极,人工智能服务的开发者业绩因此受到很大影响。例如,2018年6月以来,通用电气(GE)先后经历从道琼斯工业平均指数中被剔除(GE在该指数中已有110年历史)、信用降级、股价暴跌、GEDigital(GE数字创新坊)寻求出售等重大事件,反映出GE所提出的工业互联网的现实发展远非白皮书设想的那样美好;西门子发布的2019财年三季度财报显示,数字化工业(DI)订单和收入双双下跌,利润大跌12%,拖累西门子整体利润下滑5.8%;IBM沃森因达不到预期效果,被德克萨斯大学MD安德森癌症中心终止合作。

探究人工智能赋能实体经济存在诸多问题的三个重要成因

人工智能自身发展和赋能实体经济中的问题有着多重原因,主要包括潮涌现象、企业行为短期化、产业知识薄弱等几个方面。

问题成因之一:“潮涌现象”造成重复建设严重。“潮涌现象”是指当一项新技术进入产业化阶段并呈现出巨大的增长潜力时,众多投资者同时看好这一相同的产业,投资就像浪潮般涌向这个产业。这里所说的投资者不仅包括企业,也包括政府,针对具有巨大发展潜力的战略性新兴产业,中央和地方政府会采取多方面的支持政策促进其发展。潮涌现象意味着在投资之前,政府和企业都看好该产业的前景,从而一哄而上。但是大量的投资可能会造成该产业出现过度投资,项目完成后出现严重的过剩,导致投资回报远远低于预期。与传统产业相比,新科技的发展存在巨大的不确定性,而且会出现曲折反复。美国咨询公司Garnter每年都会发布新兴技术成熟度曲线(HypeCycleforEmergingTechnologies),该曲线把新技术从发展到最终成熟划分为四个阶段:创新萌发期、期望膨胀期、幻灭低谷期、复苏期、成熟期。从该曲线可以看到,人们常常对技术的产业化存在盲目乐观的倾向,形成大量投资涌入实则过热的繁荣假象。数字经济是典型的网络效应产业,具有“赢家通吃”的市场结构。为了争夺用户成为最终的赢家,进一步强化了数字经济的“潮涌现象”,加剧了重复建设。

问题成因之二:行为短期化加剧行业泡沫。虽然新产业会存在大量企业涌入的“潮涌现象”,但是一些企业想的不是怎么把产业做好做实,而是渴望赶上“风口”,尽快扩大用户规模,以便能讲好故事、短期内在资本市场实现变现。为了快速变现,这些企业不是充分考虑应用场景、用户需求,扎实做好产品,而是通过大量烧钱,大量补贴、大打“价格战”等方式争夺用户。这种做法虽然在短期内营造了繁荣假象,但是一旦技术或商业模式进展不顺,就会刺破泡沫。新科技的成熟和新产业的发展往往需要经历一个逐步改进、完善和提高的过程,不可能一蹴而就。例如,在制造业智能化领域,制造过程或最终产品对安全性、稳定性、可靠性、精确度要求很高,不成熟的技术会给企业带来巨大损失,很难获得制造企业的接受和采用。作为追求利润最大化的经济主体,虽然不同企业的战略不同,对经济利润的考量会有短期或中长期的差异,但企业选择采用某项新技术的根本目的是实现经济利润的最大化。企业在决定是否采用人工智能技术时,会进行成本—收益分析。当他们评估发现人工智能技术并不能给他们带来实质性的利润提升时,就不会实施。市场开拓不利就可能使人工智能企业的大量投资形成行业性的泡沫。

问题成因之三:各方面的产业知识积累薄弱限制智能化发展。人工智能技术通过对传统行业数据的深度挖掘利用,可以发现以前未被发现的事物之间的相互联系,并利用数据分析的结果帮助传统产业加快产品创新、提高生产效率、加强产销互动、改善用户服务。但人工智能技术在传统行业领域发挥作用的基础是建立在这个传统行业现有技术条件之上的,它无法代替行业本身的基本原理、科学技术、工程经验。例如,人工智能技术的应用可以通过对生产线各种工艺参数和产出数据的分析,对工艺参数进行优化从而促进提高良品率,但良品率的根本性提升则要依赖行业本身科技水平的发展。但是,当前在我国存在对信息技术(InformationTechnologies)强调多,对产业技术(IndustrialTechnologies)强调少的倾向。

产业知识包括两个方面:一是产业自身科学技术规律的发明发现所形成的知识,即产业知识发展和提取;二是产业中企业生产经营活动中各种数据的积累。中国实体经济企业在这两个方面都存在差距。由于中国是在工业化尚未完成的时候就开始信息化、数字化的,虽然许多产业的规模已经世界领先,但是“知其然而不知其所以然”的问题普遍存在,在产业相关科学、工程技术知识的积累上与发达国家行业领先公司存在较大差距。同时由于中国企业发展水平参差不齐,既存在技术水平领先、数字化程度高的企业,也存在没有研发能力、尚处于机械化阶段的企业,因此人工智能与实体经济特别是制造业的深度融合存在巨大困难。

推动人工智能产业发展不仅需要人工智能技术本身的进步,还需要传统产业基础和新型基础设施的有力支撑

人工智能技术产业化,需要人工智能产业与传统产业的紧密互动,二者的发展都不可或缺。一方面,需要人工智能技术本身的不断进步,另一方面也需要传统产业的产业基础、科技水平、信息化程度的提高作为支撑。

第一,支持两个“IT”共性技术研究。人工智能与实体经济的深度融合既受制于人工智能技术本身,又受制于实体产业本身的知识积累,因此要兼顾信息技术(InformationTechnology)和产业技术(IndustrialTechnology)两个“IT”共性技术的研究。由于人工智能基于大数据的技术路线特点,除加强对大学、科研机构创新活动的支持外,还要鼓励大科技公司加大对人工智能基础理论、算法、芯片以及未来前沿技术等方面研究开发的投入,鼓励大学、科研机构与大科技公司人才的双向、可逆流动。加强对化工、冶金、机械、电子、运输设备、医药等基础产业和高科技行业的基础科学和产业共性技术研发,实现“知其然也知其所以然”,打好产业基础高级化、产业链现代化的攻坚战。

第二,加快信息网络等新型基础设施建设。在信息化时代,新一代信息技术相关基础设施的重要性已经成为传统产业转型升级和新兴产业加快发展的关键。特别是5G高速率、低时延、广连接的特点,使实体产业特别是制造业生产过程和产品的智能化成为可能。例如,制造业的智能化需要实现工厂中生产设备、零部件、供应链、产品之间的实时通信,只有5G低时延、广连接的特点才能够实现。因此,要将包括物联网、5G、数据中心等新一代信息基础设施作为“新基建”的重点,在关系国计民生的农业、交通、公共服务、金融以及重点制造业领域加快覆盖和普及。

第三,支持实体企业加快数字化改造。当前人工智能的主流技术路线是“算法+算力+数据”,因此实体企业的数字化水平决定了人工智能技术的应用范围和深度。加大对主要产业领域数字化转型产业共性技术研究的支持力度,鼓励大学与科研院所、互联网公司、实体企业密切合作,加快破解主要产业数字化转型的技术瓶颈。支持实体企业根据业务发展状况进行数字化改造,实施“机器人换人”、企业上云等,行业龙头企业积极进行物联网、5G的应用和智能制造转型。依托行业协会、科研院所等机构,加强对人工智能应用成功经验的总结、推广、示范。

第四,加强数据保护,推动数据连接。大力推进对数据安全的保护,一方面,支持数据安全相关技术的发展,为数据安全提供可靠的技术保障,另一方面,制定完善保护我国公共、企业和个人数据安全的法律法规和行业规范,加强数据安全的制度保障。设备、软件、系统、产品之间缺乏统一的标准是制约建立数字化连接、发展产业互联网的主要制约。由行业协会、学会牵头,组织各行业骨干企业、装备制造龙头企业以及大型通信、软件、互联网和自动控制企业一起,加快制定促进产业内部与产业之间建立数字化连接的设备标准、通信标准、软件标准和数据标准。推动产业之间、企业之间的数据开放,特别是推动政府掌握的不涉及公共安全、个人隐私的公共数据对企业开放,通过开放、共享让数据发挥更大的价值。

第五,加强人才培养,增加人才供给。互联网企业长于算法但是不具备实体产业的知识,实体企业熟悉本产业的know-how但是缺乏信息技术的人才和能力。因此,产业互联网的发展靠互联网企业与实体企业单打独斗都很难成功,必须通过合作发挥二者各自的优势。但是由于人工智能的突然爆发造成人才严重短缺,薪酬水平大幅度提高,拉高了人工智能应用的成本。而实体经济企业利润率低,养不起高薪的人工智能工程师,在与人工智能企业对接方面缺少合适的人才作为中介。国家需要支持研究型大学和科研机构、职业大学和学院设立人工智能学院和专业,加快人工智能人才的供给,早日解决人工智能人才供需失衡状况。

 

【参考文献】

①林毅夫:《潮涌现象与发展中国家宏观经济理论的重新构建》,《经济研究》,2007第1期。

②张鑫、王明辉:《中国人工智能发展态势及其促进策略》,《改革》,2019年第9期。.

 

李晓华.人工智能赋能实体经济存在的问题与应对[J].人民论坛,2020(28):94-97.

人工智能伦理问题的现状分析与对策

中国网/中国发展门户网讯  人工智能(AI)是第四次产业革命中的核心技术,得到了世界的高度重视。我国也围绕人工智能技术制定了一系列的发展规划和战略,大力推动了我国人工智能领域的发展。然而,人工智能技术在为经济发展与社会进步带来重大发展机遇的同时,也为伦理规范和社会法治带来了深刻挑战。2017年,国务院印发的《新一代人工智能发展规划》提出“分三步走”的战略目标,掀起了人工智能新热潮,并明确提出要“加强人工智能相关法律、伦理和社会问题研究,建立保障人工智能健康发展的法律法规和伦理道德框架”。2018年,习近平总书记在主持中共中央政治局就人工智能发展现状和趋势举行的集体学习时强调,要加强人工智能发展的潜在风险研判和防范,维护人民利益和国家安全,确保人工智能安全、可靠、可控。要整合多学科力量,加强人工智能相关法律、伦理、社会问题研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。2019年,我国新一代人工智能发展规划推进办公室专门成立了新一代人工智能治理专业委员会,全面负责开展人工智能治理方面政策体系、法律法规和伦理规范研究和工作推进。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中专门强调要“探索建立无人驾驶、在线医疗、金融科技、智能配送等监管框架,完善相关法律法规和伦理审查规则”。这些均体现了我国对人工智能伦理及其治理的密切关注程度和积极推进决心,同时也突出了这一问题的重要性。

当前人工智能伦理问题

伦理是处理人与人之间关系、人与社会之间关系的道理和秩序规范。人类历史上,重大的科技发展往往带来生产力、生产关系及上层建筑的显著变化,成为划分时代的一项重要标准,也带来对社会伦理的深刻反思。人类社会于20世纪中后期进入信息时代后,信息技术伦理逐渐引起了广泛关注和研究,包括个人信息泄露、信息鸿沟、信息茧房、新型权力结构规制不足等。信息技术的高速变革发展,使得人类社会迅速迈向智能时代,其突出表现在带有认知、预测和决策功能的人工智能算法被日益广泛地应用在社会各个场景之中;前沿信息技术的综合运用,正逐渐发展形成一个万物可互联、万物可计算的新型硬件和数据资源网络,能够提供海量多源异构数据供人工智能算法分析处理;人工智能算法可直接控制物理设备,亦可为个人决策、群体决策乃至国家决策提供辅助支撑;人工智能可以运用于智慧家居、智慧交通、智慧医疗、智慧工厂、智慧农业、智慧金融等众多场景,还可能被用于武器和军事之中。然而,迈向智能时代的过程如此迅速,使得我们在传统的信息技术伦理秩序尚未建立完成的情况下,又迫切需要应对更加富有挑战性的人工智能伦理问题,积极构建智能社会的秩序。

计算机伦理学创始人 Moore将伦理智能体分为4类:伦理影响智能体(对社会和环境产生伦理影响);隐式伦理智能体(通过特定软硬件内置安全等隐含的伦理设计);显示伦理智能体(能根据情势的变化及其对伦理规范的理解采取合理行动);完全伦理智能体(像人一样具有自由意志并能对各种情况做出伦理决策)。当前人工智能发展尚处在弱人工智能阶段,但也对社会和环境产生了一定的伦理影响。人们正在探索为人工智能内置伦理规则,以及通过伦理推理等使人工智能技术的实现中也包含有对伦理规则的理解。近年来,越来越多的人呼吁要赋予人工智能机器一定的道德主体地位,但机器能否成为完全伦理智能体存在巨大的争议。尽管当前人工智能在一些场景下的功能或行为与人类接近,但实则并不具有“自由意志”。从经典社会规范理论来看,是否能够成为规范意义上的“主体”来承担责任,并不取决于其功能,而是以“自由意志”为核心来构建的。黑格尔的《法哲学原理》即以自由意志为起点展开。因此,当前阶段对人工智能伦理问题的分析和解决路径构建应主要围绕着前3类伦理智能体开展,即将人工智能定性为工具而非主体。

当前阶段,人工智能既承继了之前信息技术的伦理问题,又因为深度学习等一些人工智能算法的不透明性、难解释性、自适应性、运用广泛等特征而具有新的特点,可能在基本人权、社会秩序、国家安全等诸多方面带来一系列伦理风险。例如:人工智能系统的缺陷和价值设定问题可能带来公民生命权、健康权的威胁。2018年,Uber自动驾驶汽车在美国亚利桑那州发生的致命事故并非传感器出现故障,而是由于 Uber在设计系统时出于对乘客舒适度的考虑,对人工智能算法识别为树叶、塑料袋之类的障碍物做出予以忽略的决定。人工智能算法在目标示范、算法歧视、训练数据中的偏失可能带来或扩大社会中的歧视,侵害公民的平等权。人工智能的滥用可能威胁公民隐私权、个人信息权。深度学习等复杂的人工智能算法会导致算法黑箱问题,使决策不透明或难以解释,从而影响公民知情权、程序正当及公民监督权。信息精准推送、自动化假新闻撰写和智能化定向传播、深度伪造等人工智能技术的滥用和误用可能导致信息茧房、虚假信息泛滥等问题,以及可能影响人们对重要新闻的获取和对公共议题的民主参与度;虚假新闻的精准推送还可能加大影响人们对事实的认识和观点,进而可能煽动民意、操纵商业市场和影响政治及国家政策。剑桥分析公司利用 Facebook上的数据对用户进行政治偏好分析,并据此进行定向信息推送来影响美国大选,这就是典型实例。人工智能算法可能在更不易于被察觉和证明的情况下,利用算法歧视,或通过算法合谋形成横向垄断协议或轴辐协议等方式,破坏市场竞争环境。算法决策在社会各领域的运用可能引起权力结构的变化,算法凭借其可以处理海量数据的技术优势和无所不在的信息系统中的嵌入优势,对人们的权益和自由产生显著影响。例如,银行信贷中通过算法进行信用评价将影响公民是否能获得贷款,刑事司法中通过算法进行社会危害性评估将影响是否进行审前羁押等,都是突出的体现。人工智能在工作场景中的滥用可能影响劳动者权益,并且人工智能对劳动者的替代可能引发大规模结构性失业的危机,带来劳动权或就业机会方面的风险。由于人工智能在社会生产生活的各个环节日益广泛应用,人工智能系统的漏洞、设计缺陷等安全风险,可能引发个人信息等数据泄露、工业生产线停止、交通瘫痪等社会问题,威胁金融安全、社会安全和国家安全等。人工智能武器的滥用可能在世界范围内加剧不平等,威胁人类生命与世界和平……

人工智能伦理风险治理具有复杂性,尚未形成完善的理论架构和治理体系。人工智能伦理风险的成因具有多元性,包括人工智能算法的目标失范、算法及系统缺陷、受影响主体对人工智能的信任危机、监管机制和工具欠缺、责任机制不完善、受影响主体的防御措施薄弱等。人工智能技术和产业应用的飞速发展,难以充分刻画和分析其伦理风险及提供解决方案。这要求我们必须克服传统规范体系的滞后性,而采用“面向未来”的眼光和方法论,对人工智能的设计、研发、应用和使用中的规范框架进行积极思考和构建,并从确立伦理准则等软法开始,引领和规范人工智能研发应用。

关于人工智能的发展,我们既不能盲目乐观,也不能因噎废食,要深刻认识到它可以增加社会福祉的能力。因此,在人类社会步入智能时代之际,必须趁早从宏观上引导人工智能沿着科学的道路前行,对它进行伦理反思,识别其中的伦理风险及其成因,逐步构建科学有效的治理体系,使其更好地发挥积极价值。 

人工智能伦理准则、治理原则及进路

当前全球人工智能治理还处于初期探索阶段,正从形成人工智能伦理准则的基本共识出发,向可信评估、操作指南、行业标准、政策法规等落地实践逐步深入,并在加快构建人工智能国际治理框架体系。

伦理准则

近几年来,众多国家、地区、国际和国内组织、企业均纷纷发布了人工智能伦理准则或研究报告。据不完全统计,相关人工智能伦理准则已经超过40项。除文化、地区、领域等因素引起的差异之外,可以看到目前的人工智能伦理准则已形成了一定的社会共识。

近年来,中国相关机构和行业组织也非常积极活跃参与其中。例如:2018年1月,中国电子技术标准化研究院发布了《人工智能标准化白皮书(2018版)》,提出人类利益原则和责任原则作为人工智能伦理的两个基本原则;2019年5月,《人工智能北京共识》发布,针对人工智能的研发、使用、治理 3 个方面,提出了各个参与方应该遵循的有益于人类命运共同体构建和社会发展的15条原则;2019年6月,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出了人工智能发展的8项原则,勾勒出了人工智能治理的框架和行动指南;2019年7月,上海市人工智能产业安全专家咨询委员会发布了《人工智能安全发展上海倡议》;2021年9月,中关村论坛上发布由国家新一代人工智能治理专业委员会制定的《新一代人工智能伦理规范》等。从发布内容上看,所有准则在以人为本、促进创新、保障安全、保护隐私、明晰责任等价值观上取得了高度共识,但仍有待继续加深理论研究和论证,进一步建立共识。

治理原则

美国、欧洲、日本等国家和地区在大力推动人工智能技术和产业发展的同时,高度重视人工智能的安全、健康发展,并将伦理治理纳入其人工智能战略,体现了发展与伦理安全并重的基本原则。

习近平总书记高度重视科技创新领域的法治建设问题,强调“要积极推进国家安全、科技创新、公共卫生、生物安全、生态文明、防范风险、涉外法治等重要领域立法以良法善治保障新业态新模式健康发展”。近年来,我国在应对新技术新业态的规制和监管方面,形成了“包容审慎”的总体政策。这项基本政策在2017年就已正式提出。在2020年1月1日起实施的《优化营商环境条例》第55条中更是专门规定了“包容审慎”监管原则:“政府及其有关部门应当按照鼓励创新的原则,对新技术、新产业、新业态、新模式等实行包容审慎监管,针对其性质、特点分类制定和实行相应的监管规则和标准,留足发展空间,同时确保质量和安全,不得简单化予以禁止或者不予监管。”这为当前人工智能伦理治理提供了基本原则和方法论。一方面,要注重观察,认识到新技术新事物往往有其积极的社会意义,亦有其发展完善的客观规律,应予以一定空间使其能够发展完善,并在其发展中的必要之处形成规制方法和措施。另一方面,要坚守底线,包括公民权利保护的底线、安全的底线等。对于已经形成高度社会共识、凝结在法律之中的重要权益、价值,在执法、司法过程中都要依法进行保护。这既是法律对相关技术研发者和使用者的明确要求,也是法律对于在智能时代保护公民权益、促进科技向善的郑重承诺。

治理进路

在人工智能治理整体路径选择方面,主要有两种理论:“对立论”和“系统论”。

“对立论”主要着眼于人工智能技术与人类权利和福祉之间的对立冲突,进而建立相应的审查和规制制度。在这一视角下,一些国家和机构重点关注了针对人工智能系统本身及开发应用中的一些伦理原则。例如,2020年《人工智能伦理罗马倡议》中提出7项主要原则——透明、包容、责任、公正、可靠、安全和隐私,欧盟委员会于2019年《可信赖人工智能的伦理指南》中提出人工智能系统全生命周期应遵守合法性、合伦理性和稳健性3项要求,都体现了这一进路。

“系统论”则强调人工智能技术与人类、其他人工代理、法律、非智能基础设施和社会规范之间的协调互动关系。人工智能伦理涉及一种社会技术系统,该系统在设计时必须注意其不是一项孤立的技术对象,而是需要考虑它将要在怎样的社会组织中运作。我们可以调整的不仅仅是人工智能系统,还有在系统中与之相互作用的其他要素;在了解人工智能运作特点的基础上,可以在整个系统内考虑各个要素如何进行最佳调配治理。当前在一些政策和法规中已有一定“系统论”进路的体现。例如,IEEE(电气与电子工程师协会)发布的《合伦理设计》11中提出的8项原则之一即为“资质”(competence),该原则提出系统创建者应明确对操作者的要求,并且操作者应遵守安全有效操作所需的知识和技能的原则,这体现了从对使用者要求的角度来弥补人工智能不足的系统论视角,对智能时代的教育和培训提出了新需求。我国国家新一代人工智能治理专业委员会2019年发布的《新一代人工智能治理原则——发展负责任的人工智能》中,不仅强调了人工智能系统本身应该符合怎样的伦理原则,而且从更系统的角度提出了“治理原则”,即人工智能发展相关各方应遵循的8项原则;除了和谐友好、尊重隐私、安全可控等侧重于人工智能开放和应用的原则外,还专门强调了要“改善管理方式”,“加强人工智能教育及科普,提升弱势群体适应性,努力消除数字鸿沟”,“推动国际组织、政府部门、科研机构、教育机构、企业、社会组织、公众在人工智能发展与治理中的协调互动”等重要原则,体现出包含教育改革、伦理规范、技术支撑、法律规制、国际合作等多维度治理的“系统论”思维和多元共治的思想,提供了更加综合的人工智能治理框架和行动指南。基于人工智能治理的特殊性和复杂性,我国应在习近平总书记提出的“打造共建共治共享的社会治理格局”的指导下,系统性地思考人工智能的治理维度,建设多元共治的人工智能综合治理体系。

我国人工智能伦理治理对策

人工智能伦理治理是社会治理的重要组成部分。我国应在“共建共治共享”治理理论的指导下,以“包容审慎”为监管原则,以“系统论”为治理进路,逐渐建设形成多元主体参与、多维度、综合性的治理体系。

教育改革

教育是人类知识代际传递和能力培养的重要途径。通过国务院、教育部出台的多项措施,以及联合国教科文组织发布的《教育中的人工智能:可持续发展的机遇与挑战》、《人工智能与教育的北京共识》13等报告可以看到,国内外均开始重视教育的发展改革在人工智能技术发展和应用中有着不可或缺的作用。为更好地支撑人工智能发展和治理,应从4个方面进行完善:普及人工智能等前沿技术知识,提高公众认知,使公众理性对待人工智能;在科技工作者中加强人工智能伦理教育和职业伦理培训;为劳动者提供持续的终身教育体系,应对人工智能可能引发的失业问题;研究青少年教育变革,打破工业化时代传承下来的知识化教育的局限性,回应人工智能时代对人才的需求。

伦理规范

我国《新一代人工智能发展规划》中提到,“开展人工智能行为科学和伦理等问题研究,建立伦理道德多层次判断结构及人机协作的伦理框架”。同时,还需制定人工智能产品研发设计人员及日后使用人员的道德规范和行为守则,从源头到下游进行约束和引导。当前有5项重点工作可以开展:针对人工智能的重点领域,研究细化的伦理准则,形成具有可操作性的规范和建议。在宣传教育层面进行适当引导,进一步推动人工智能伦理共识的形成。推动科研机构和企业对人工智能伦理风险的认知和实践。充分发挥国家层面伦理委员会的作用,通过制定国家层面的人工智能伦理准则和推进计划,定期针对新业态、新应用评估伦理风险,以及定期评选人工智能行业最佳实践等多种方式,促进先进伦理风险评估控制经验的推广。推动人工智能科研院所和企业建立伦理委员会,领导人工智能伦理风险评估、监控和实时应对,使人工智能伦理考量贯穿在人工智能设计、研发和应用的全流程之中。

技术支撑

通过改进技术而降低伦理风险,是人工智能伦理治理的重要维度。当前,在科研、市场、法律等驱动下,许多科研机构和企业均开展了联邦学习、隐私计算等活动,以更好地保护个人隐私的技术研发;同时,对加强安全性、可解释性、公平性的人工智能算法,以及数据集异常检测、训练样本评估等技术研究,也提出了很多不同领域的伦理智能体的模型结构。当然,还应完善专利制度,明确算法相关发明的可专利性,进一步激励技术创新,以支撑符合伦理要求的人工智能系统设计。

此外,一些重点领域的推荐性标准制定工作也不容忽视。在人工智能标准制定中,应强化对人工智能伦理准则的贯彻和支撑,注重对隐私保护、安全性、可用性、可解释性、可追溯性、可问责性、评估和监管支撑技术等方面的标准制定,鼓励企业提出和公布自己的企业标准,并积极参与相关国际标准的建立,促进我国相关专利技术纳入国际标准,帮助我国在国际人工智能伦理准则及相关标准制定中提升话语权,并为我国企业在国际竞争中奠定更好的竞争优势。

法律规制

法律规制层面需要逐步发展数字人权、明晰责任分配、建立监管体系、实现法治与技术治理有机结合。在当前阶段,应积极推动《个人信息保护法》《数据安全法》的有效实施,开展自动驾驶领域的立法工作;并对重点领域的算法监管制度加强研究,区分不同的场景,探讨人工智能伦理风险评估、算法审计、数据集缺陷检测、算法认证等措施适用的必要性和前提条件,为下一步的立法做好理论和制度建议准备。

国际合作

当前,人类社会正步入智能时代,世界范围内人工智能领域的规则秩序正处于形成期。欧盟聚焦于人工智能价值观进行了许多研究,期望通过立法等方式,将欧洲的人权传统转化为其在人工智能发展中的新优势。美国对人工智能标准也尤为重视,特朗普于2019年2月发布“美国人工智能计划”行政令,要求白宫科技政策办公室(OSTP)和美国国家标准与技术研究院(NIST)等政府机构制定标准,指导开发可靠、稳健、可信、安全、简洁和可协作的人工智能系统,并呼吁主导国际人工智能标准的制定。

我国在人工智能科技领域处于世界前列,需要更加积极主动地应对人工智能伦理问题带来的挑战,在人工智能发展中承担相应的伦理责任;积极开展国际交流,参与相关国际管理政策及标准的制定,把握科技发展话语权;在最具代表性和突破性的科技力量中占据发展的制高点,为实现人工智能的全球治理作出积极贡献。

(作者:张兆翔、谭铁牛,中国科学院自动化研究所;张吉豫中国人民大学法学院;《中国科学院院刊》供稿)

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

中国人工智能发展主要存在哪些制约因素,有哪些好的建议

发展存在诸多制约因素

1.中国缺乏对人工智能发展的长远规划和布局。美国已将人工智能作为国家战略,先后颁布了《为人工智能的未来做好准备》、《国家人工智能研究与发展战略规划》、《人工智能、自动化与经济报告》等文件,明确了人工智能发展规划。中国政府也在积极营造良好的政策环境。虽然中国在制造业、互联网+、科技创新等战略规划中都提及了人工智能,但还没有专门针对人工智能的国家战略规划,人工智能的发展路径、时间表、路线图等还不清晰。目前在人工智能发展中,中国仍主要依靠科研机构和企业的自身力量,国家层面对人工智能长期投入、基础技术攻关及相关标准规范研究等还没有明确的规划和布局,不利于人工智能的全面推进。

2.中国人工智能技术和人才储备与美国存在巨大差距。美国企业在人工智能方面的研究和布局远早于中国,如微软1991年成立研究院开展人工智能研究,对重要领域的研究已超过25年;谷歌已成功推出开源机器学习平台,无人驾驶汽车测试里程已超过200万公里。反观国内,百度的人工智能研究始于2013年成立的深度学习研究院,阿里的人工智能布局尚局限在对大数据和云计算业务的支撑,腾讯也主要服务于内部互联网业务。美国科技巨头在前瞻性、源头性技术方面的布局和积累,极大地吸引了全世界专注前沿科技的精英。领英平台的数据显示,美国人工智能人才中拥有10年以上经验的比例接近50%,而中国不到25%。

3.中国人工智能市场集中在应用层面,深度学习能力不足。由于中国人工智能起步较晚、人才储备不足,研究和应用方向多集中在应用层面,对机器学习等基础技术重视不够。据统计,中国人工智能主要集中在语音和视觉识别技术方面,分别占比60%和12.5%;专注开发应用的公司较多,兼顾机器学习算法的公司只占29%;研究算法的公司业务也集中在计算机视觉和自然语言处理,致力于机器学习算法的只占9%,专注深度学习的公司更是凤毛麟角。这种市场和业务的集中,尤其是忽略基础技术或依靠少数企业发展基础技术,会引发后劲不足及依赖国外技术、平台、开发工具等问题,不利于人工智能的全面发展。

加速中国人工智能发展的建议

1.制定国家战略和路线图,加强顶层规划设计。将发展人工智能作为国家重大战略,把握机遇,明确人工智能科技投入的国家目标,协调各相关机构根据其职责、能力等确定发展重点,规划发展路线。促进不同研究领域企业的协调合作,在传统企业发展中引入人工智能技术,同时鼓励传统企业以多种形式对人工智能的研究提供资金支持,促进人工智能在各个行业的广泛应用。有效挖掘人工智能技术潜力,支撑行业长期稳健的发展,推动人工智能发展国家经济的同时服务社会发展。

2.提倡数据和研究成果共享,加速科技成果孵化。提倡高校与企业、高科技公司与传统企业、跨行业企业和机构之间的数据共享,使中国大数据的天然优势能够为人工智能行业所利用。加强人工智能科研与产业的结合,克服“企业数据和院校算法脱节”的产业发展瓶颈,引导科研人员兼顾应用场景和研究成果可行性,并采取措施保证科研成果孵化成产品的通道畅通,开通绿色通道,加快孵化速度,弥补中美之间从科研到产品的发展差距。

3.重视基础技术和创新研究,加快核心人才培养。重视和加强前瞻性基础研究,鼓励多学科交叉创新研究,对感知技术、深度学习等基础技术研发给予政策和资金引导,大力扶持致力于机器学习算法和深度学习应用的企业,开发自主平台和工具。规范人工智能的学科设置和职业培训,针对人工智能基础技术和应用的需求,加大对从事基础技术和创新研发核心人才的培养力度,确保人才储备充足。鼓励采用产学研联动模式,从高校和科研机构向企业输送优秀人才和基础技术成果。

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:中国AI人工智能发展史,大致分为三个发展阶段http://www.duozhishidai.com/article-8524-1.html人工智能的四大发展趋势,未来十年改变世界http://www.duozhishidai.com/article-7007-1.html人工智能的发展历程,是这样的http://www.duozhishidai.com/article-3571-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

人工智能时代企业财务会计面临的问题及对策

刘心昱青岛大学

摘要:伴随信息科技的飞速发展,人工智能时代已全面来临,科学先进的人工智能技术被广泛应用于行业各个领域。与会计行业而言,人工智能技术的应用使得传统会计发生了巨大变革,借助人工智能大大节省了人力、提升了会计核算的精准效率,在感受到受益优势的同时也让我们看到了人工智能对传统会计行业造成的巨大冲击。本文从当前会计行业现状分析出发,提出人工智能对财务会计的影响利弊,并提出应对解决之策,以期促进会计行业积极顺应时代发展转型,借助人工智能实现会计领域的变革创新。

关键词:人工智能时代;企业财务会计;问题;对策

一、前言

当前人工智能的理论和技术日趋成熟化,其应用领域也在不断扩大,从教育到医疗、从科技到金融各个行业都受益匪浅。人工智能就本质而言,是对人的智力活动进行计算分析,通过计算机技术对人的思维信息过程进行模拟的一种智能行为,形成拟人、智能化的计算机系统,以此为人们提供更加人性化的智能服务,帮助人们完成智力工作。

从1987年到2017年,从美国首开会计智能化先河到财务机器人的出现,让人工智能在会计行业实现了质的飞跃。借助财务机器人实现会计自动化操作,替代财务人员完成一些重复性、规则性、结构化的工作,有效提升了会计核算工作,成为人工智能技术在会计行业发展的重要成果。财务机器人的出现无疑给会计行业带来巨大欣喜和变革,与此同时也对传统会计形成挑战和威胁。因此,致力于研究人工智能时代企业财务会计的问题,这是当前会计领域所聚焦的热点话题,值得我们进一步深思探讨。

二、当前财务会计行业现状分析

财务会计工作涉及到社会各个行业,近年来伴随经济的持续向好,国家对财务人员的需求量也在不断攀升,高校财会专业不断扩招,会计从业人员越来越多。2017年国家会计法规定会计从业人员必须持证上岗,会计从业资格证书成为了从事财务会计工作的第一道门槛。经统计了解,2019年我国各级会计人员比例差距很大,其中初级会计、中级会计人员占据了整个会计行业的90%以上,尤其是初级会计人员高达70%以上,而高级会计人员却极度缺失,特别是国家注册会计师更为短缺。从这些数据我们不难发现,会计行业人才两极分化严重,基层会计人员已趋于饱和状态。而在人工智能时代背景之下,会计从最先传统的人工记账向电算化靠拢,再到现阶段的财务软件系统的开发应用,经过科技的不断革新,会计信息化技术日趋稳定和成熟,现代智能化财务管理已然成为当前会计行业的发展新趋势[1]。

三、人工智能对企业财务会计的积极作用

(一)会计工作效率大幅提升

目前人工智能技术主要应用于会计核算方面,传统会计模式下会计人员需要做大量基础性工作,比如整理单据、审核单据、报销费用等,这些工作尽管简单但是重复性大、机械性强,会消耗大量人力和时间。而人工智能就可以很好地解决这一问题,实现会计业务数据的高速处理输入,账单、凭证的全自动生成,促进会计相关数据信息的加快生成、会计核算的效率提高;同时给会计人员减轻大量的工作负担,让他们具备更多的工作时间和精力去处理其它财务工作。

(二)会计信息准确率有效提高

  人工作业是传统会计工作的基础,会计工作人员每天要处理大量原始凭证票据、登记录入等工作,由于纯人工操作很难保证百分之百的准确率,一旦出现人为差错,不但造成返工、加剧工作量,还会影响正常工作进度。同时,由于每个人的财务水平、业务能力不同也会影响财务工作的效率和质量。那么,在日常会计工作中应用人工智能,则可以有效规避这类问题,通过人工智能减少人工操作,简化业务流程,会计数据的录入输出更为规范化,有效提高会计信息的准确率,还能规避人为操作情况下可能发生的信息造假问题。比如,使用财务机器人扫描增值税发票,系统自动设置后能够快速查验发票并将结果登记录入表格中,会计工作人员则可以直接将其转移税务部,通过财务机器人自动访问发票选择确认平台,下载增值税发票批量勾选文件,对比发票清单予以匹配并判断可否认证抵扣,再将所勾选发票批量整理上传导入到发票选择确认平台中进行抵扣进税。再如,通过人工智能操作费用报销业务,在所设定程序中填写步骤提交表单,经财务机器人严格审核,确认发票是否真伪、有无签章等,这样不仅规范了报销业务流程同时提高了会计信息的准确性。

(三)助推会计行业升级转型发展

在会计行业实现电算化的发展模式下,现在所有企业基本都有引用财务软件系统开展工作,有效改革了传统会计工作模式下的各项会计工作,如审核单据、编写凭证、登记账目、编制报表等。尽管所有的工作效率都有所提升,然而其财务信息却仍然缺少一定的时效性,无法满足企业对财务信息的及时需求。在人工智能背景下,企业的会计核算不再是单一化模式,完全可按照信息使用者的需求将业务和账务相结合,形成对应指标的财务报表,及时反馈出动态化的财务信息数据;还能按照信息使用者的偏好习惯提供个性化财务报告;尤其是能够更为全面深入的分析并处理会计数据,提高数据信息的高质高效,使其转化成企业重要的财务信息,帮助企业实现科学决策[2]。这些都助力推动了会计行业的升级转型发展,让会计工作更好地适应社会发展需求。

四、人工智能时代企业财务会计面临的问题

(一)会计信息安全风险提高

将人工智能应用于现代企业的日常财务会计管理工作中,提高了财务信息数据的分析处理能力,但同时也提高了数据的安全风险性。在人工智能背景下,财务数据达到数字化存储条件,与传统保存形式相比,数字化存储所容纳信息量更大,也更方便财务人员进行查询和使用。然而,它也存在一定的弊端,数据系统如防护措施不强,很容易遭受黑客系统的侵袭,数据在输出输入的过程中受到恶意拦截,极易造成信息的外泄,严重情况下致使重要的商业机密丢失,给企业造成无可挽回的经济损失。所以,企业在使用人工智能开展财务会计工作时一定要增强数据的安全防护,加大防护级别和力度,防范于未然。

(二)会计人员职业需求提高

 在传统固定式会计工作环境中,大部分会计从业人员日复一日进行着重复性、机械性、低难度性的基础工作,而人工智能时代的来临彻底改变了这一现状,在大跨步提高常规性会计工作效率的同时,也预示着未来将有大量的一线财务工作者面临着失业再就业的风险。作为一名财务人员,要想在残酷激烈的时代竞争中站稳脚跟,则必须要满足当前社会对其提出的新标准高要求。人工智能技术的产生和应用,改变了传统会计行业的运作模式、核算方式,促进了行业升级转型,将财务工作者从重复机械化的工作中挣脱出来,使他们能够具备更多时间和精力去处理一些有分析战略性、高附加值的工作,实现传统会计向管理会计的有效变革,在企业财务预测、分析调控以及投资决策等方面发挥出专业优势和价值[3]。因此,在会计领域只有不断加强自我职业技能和水平,掌握现代化办公能力,才能适应会计行业的用人需求,不至于被竞争淘汰掉。

(三)会计人员结构需求改变

鉴于人工智能对企业财务会计工作的积极影响,也预示着未来企业所需的传统会计人员将逐步减少,大批从事基础会计工作的人员要寻求新的生存能力;同时在会计领域,将对掌握财务相关知识同时具备技术研发维护能力的高端复合型人才求贤若渴,综合应用型人才的缺口随之将不断扩大。因此,未来会计行业对人才需求的变化,必定会影响整个行业的会计人员结构产生变化。

(四)人工智能系统管理问题复杂

 应用人工智能开展企业财务会计管理工作尽管益处多多,但同时在实际运作中也会产生一些较为棘手的问题,例如财务机器人在处理实际会计工作时,可能因系统错误影响财务工作、致使财务数据出错,给企业及客户造成经济损失,同时法律责任的主体无法明确追究,究竟是技术研发人员还是财务机器人本身的问题无法确定,人工智能系统管理方面没有一套行之有效的范式依据。所以,要如何管理人工智能系统也是会计行业亟待解决的问题。

五、人工智能时代企业财务会计的应对策略

(一)积极转变传统会计理念

在人工智能时代,人工智能技术的应用给企业和财务人员同时带来了机遇和挑战,总的来说利更大于弊,我们也因此看到了会计工作的高质高效运行,还有一些会计从业人员顺应需求作出的积极转变。在此形势下,作为会计人员首当其冲要尽快转变个人思想,改变传统的会计工作理念,充分认识到行业和形势的需求,明白现代会计工作的内涵,加强财务相关工作业务的学习,尽可能多的掌握一些经济管理、计算机应用等领域相关知识,打牢自身的会计业务处理能力,提升财务分析、预判、管理能力,以更扎实的财务理论和技能基础应对人工智能时代的挑战[4]。

(二)由传统会计向管理会计转型

1.提升企业财务队伍业务能力

企业首先要对财务部门组织架构进行优化调整,重新定位财务工作范围和职责,调整财务人员的岗位职责体系,对原有的财务人员进行岗位分类分工。需要注意的一点是职能定位必须要以创造管理价值为核心,才能从传统核算会计向管理决策会计转变,将财务工作的重心调整到企业财务预测分析、控制决策层面。因此企业必须要实现三个方面的转型,这其中包括财务工作内容、财务业务手段、财务工作人员的全面转型,切实提高企业财务部门的决策支持、风险管理、统筹规划能力。同时,财务工作者应深入业务部门参与过程管控,跟进执行情况,保证目标的达成;提高财务工作的前置性,构建事前分析、事中预警、事后核算反馈的全闭环财务管理模式。此外,要进一步增加财务信息化的建设,按照企业业务部门的管理需求,及时、有效、精确的为其提供财务数据的决策支持。有必要的前提下企业可另设管理会计岗位,提高企业财务管理能力。

2.重新梳理企业流程制度

在传统会计模式下,会计工作处于一种局部性、被动化状态,这种事后核算的会计形式不利于企业实现财务预测。为改变这种局面,企业必须重新梳理业务、财务的工作流程,构建财务事前预测、事中预警、事后反馈的流程,将其融入进业务流程的每个阶段,将财务管理覆盖到整个业务链,建立企业内部管理会计体系,其中涵盖有财务核算、成本控制、资金管理、预算分析、资产管理、合同管理、绩效管理等各个方面,促进企业财务管理体系和企业相关业务相互结合,让财务和业务两大部门形成合作关系,为企业各项业务的经营提供精确有效及时的财务信息和指导意见[5]。

3.积极推进业务和财务的融合

将传统会计向管理会计转型发展,企业将一部分财务人员从原来单一的工作中脱离出来,让他们参与到企业经营管理中。实施具体操作流程如下:首先将财务和业务部门相融合,让财务人员深入了解业务环节,充分了解企业的业务模式、流程以及产品相关知识;其次优化业务流程,财务人员通过业务单据收集并存储业务相关数据;最后再对业务数据进行分类加工、整理汇总,最终形成一份完整详尽的经营分析报告。经过以上的财务介入操作,对业务施行全程监控,为企业运营管理人员提供及时准确的预算监管、经营分析、决策数据,全方位参与到企业的日常经营管理之中,实现财务价值的提升【6】。

4.强化内部培训和专业人才引进

企业要想获得管理会计的全面转型,首先要对现有财务人员进行强化培训,提高他们对管理会计的认知和技能,积极鼓励他们报考管理会计师证,加强理论和实践的相互结合,并从现有财务人员中遴选一批重点培养对象进行特别培养;其次要在企业内部进行一定宣传引导,让公司的管理人员能够了解一定的管理会计知识,明白管理会计在整个企业的关键影响,引进有经验和资质的管理会计人才。通过内抓外聘双管齐下扩大企业财务管理能力,提高财务人员职业素质,为企业实现管理财务夯实人才基础。

5.充分利用信息化手段

财务工作要实现转型发展,信息化办公是必要途径,通过信息化技术实现信息数据的深度挖掘,让企业实现合理预算、集中管理、成本控制、风险管控、资产管理、财务报账等工作的有机融合,同时还可为企业运营决策提供价值参考、数据支撑,极大化的提升财务管理的效能。企业建立办公自动化系统(OA系统),对企业资源计划系统(ERP系统)进行升级,构建ERP云端系统,将OA系统与ERP系统连接,从而实现数据的自动传输,保证信息数据的同时同步和精确化,以此形成财务共享平台,促使财务和业务实现融合并进,进一步提升企业价值。例如OA费控系统的应用,可以直接进行网络报销、实现无纸化办公,解决纸质单据面对面报销问题,即便是跨区域也能完成网络审核报销流程,提高财务报销工作的效率。故此,做好信息系统功能建设将为企业向管理会计转型提供有利条件。

(三)增强企业会计信息安全防护

企业要增强会计信息安全防护意识,组织财务工作人员参与网络使用安全问题的有关培训,提高员工对信息的甄别能力、规范员工操作流程,尽量规避因个人工作失误导致的出错问题;其次,企业可成立网络维护部门或外聘网络维护专员,定期为企业的网络进行检查、维护并更新,增强网络的安全性,及时解决黑客入侵、信息拦截威胁等问题,保障财务信息数据的安全性。此外,企业应构建财务信息安全预警机制,做到防控在先、预警在前、管控有力。

(四)完善人工智能监管系统

在大数据时代,人工智能所能搜集的数据更为广泛,在目标信息之外还可能触及到一些非必要信息,可能侵犯到他人隐私或知识产权问题。为规避此类现象,则要在应用中构建相对透明公开的人工智能监管体系,将应用问责制与应用监管相统一,对人工智能的设计算法、产品研发、成果应用的全过程予以监管。同时,有必要监督应用人工智能产品的企业自觉自律,平时在管理上加以监管,构建良好的企业文化机制,重视企业长远规划发展,加强对恶意侵犯他人隐私、滥用信息数据、违背职业道德等行为的惩戒措施。

六、结束语

伴随科技不断创新发展,未来人工智能技术在财务会计领域的应用只会越来越广泛、越来越普及。作为企业和会计从业人员,应该积极转变理念,顺应新时期会计行业的变革创新,主动引入人工智能应用于企业财务管理工作中,财务人员更要积极学习新观念、新知识、新技能,提高自身职业素养和专业水平,加强管理会计意识和能力,以求适应企业对财务人员的用工需求,为企业发展获取长远经济效益贡献财务管理支持。

参考文献:

[1]曾靖.新时代人工智能对财会工作的影响及对策研究[J].福建质量管理,2020(06):76.

[2]王赟.人工智能对会计行业的影响[J].现代营销,2020(06):208-209.

[3]朱玉梅.人工智能时代企业财务会计面临的问题及对策[J].商场现代化,2019(10):127-128.

[4]王贺.人工智能时代企业财务会计向管理会计的转型研究[J].环球市场,2019(36):70,72.

[5]刘春红.浅析企业财务会计向管理会计的转型[J].经营者,2020,34(9):169-170.

[6]朱石玉.人工智能发展对会计行业的影响及应对措施[J].江苏商论,2020(08):37-40.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇