博舍

人工智能的历史、现状和未来 谈一谈对人工智能的认识500字怎么写

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

对人工智能的认识作文1200字

一键复制全文下载文档

【篇一:对人工智能的认识】

时代不断发展,越来越多的信息和工作量需要处理,也促使人工智能成为了大势所趋。人工智能的出现最根本的原因就是人类的需求,它不断地被应用在各大领域。

人们也是不断的思考与表达对人工智能的期望。这里不得不提一些大火的科技影片。《终结者》《星际迷航》《机械公敌》等影片中有人类对人工智能的设想。比如《机械公敌》中人工智能机器人被塑造成了一种会威胁人类的危险物。公元2035年的机器人具备了自我进化能力并有了自我感知,随之而来的必然是一场制造者和被制造者之间的战争。而在现实生活中,人工智能不仅仅是机器人形式存在,更多会被应用于人类生活质量的提高及工作环境的改善。

AI是人工智能的英文简称,越来越多产品推出A工特色”。手机在当今已经变得越来越“智能”,拍照可以AI识别”,讲话可以“AI识别“等;家中的电视,者箱都已可以“听懂”人类的指令;汽车变成无人驾驶”让人们心生好奇与疑惑;动画片的形象越来越生动。这一项项应用案例都体现了人工智能的目的:让机器有人的智能。人类自衣食任行等基本生活方式丰富化发展。

人工智能对生活的影响是显而易见的。逐渐代替行业工作者的工作,尤其是工厂流水线职位等,如物流行业的快递机器人。物流快递的工作量在信息化时代直线上升,无疑要增加选购人员,可机器人与云仓库的有机结合,大大减少了对工人的需求而且提高了工作效率,快递机器人可24小时工作。与网络购物相关联的便是网络支付安全。网络中账号都有自己的密码数字容码是最容易破解的,而人工智能领域图家识别和算加视觉等技术,提供了面识别、指纹识别,虹膜识别等保密方式,使人们生活中的密秘、隐私。以及人身财产安全能够得到更多的保障。还有一方面的变化是我们学生可以切身体验到的——提高了学习和工作生活效率。过去,学生需要用笔记本手写一个个重点,教师使用花名册点名,而大学生在课堂上使用云课堂APP,将能直接理解和保存教师传授的知识点,而且教师也能接在软件上签到,更有效拳的监督学生的出勤和听课效率等。

人工智能的到来,不可否认为人类的生产生活带来了巨大的便利,可说到底人工智能也不是人类,不能像人类一样,人类会有工作出错的时候,人工智能也不例坏外,一旦某些程序出现差错,可能造成的后果不堪设想。比如knightscope制途的一款商场保安机器人在购物中心懂到并打伤一个男孩;美国一名女子被自动驾驶的汽车撞伤后不治身亡……由此可见,人工智能的存在有一定的风险,某些方面有时候是不能完全替代人类准确执行。而且也正因机器人为人类工作,某些岗位完全被代替,导致了许多人失业,社会的不安定因素也被放大。

正确认识人工智能的好处有许多,可以推动科技的发展,更高效率的工作,更便利的生活。但错误的认识,也是有许多的不处如阻碍科技的发展,智能产物将受到打击,人类在关于这方面的发展可能停滞不前。人工智能决今不断进入与改变人们的生活,或许“日久见机心”,在人工智能彻底暴露出严重至不可挽回的问题时,我们要做的就只有不断完善功能,让其更好地为人类做贡献发挥出它相身的作用,让人工智能永远利大于弊。

【篇二:拒绝成为人工智能】

随着科技的不断进步,人工智能好似成为了与人类比肩而立的存在。更有胜者,让人工智能与九段棋手柯洁在智力上进行厮杀,结果是人工智能获胜了,那么人工智能就真的比人类高度发达的大脑更加完美吗?

答案当然是不。人工智能是人类智慧的结晶,经由数以万计的科学家耗费了几十年来日以继夜奋斗的产物,它虽被科学家们赋予了丰富的知识与技能,但它存在最大的劣势便是缺乏其本身进行独立思考的能力。法国著名哲学家笛卡尔也曾说过:“我思故我在”,这句话从哲学唯物主义角度来说,的的确确是荒谬的,与实际情况相悖。但若从文学的角度,其中也不乏一些发人深省的大道理,比如就思考不可或缺这一条来说就是货真价实的至理名言。也正是由于这个原因,人类某一程度上永远会比人工智能更加富有创造力,但人工智能却只会在原地踏步,一筹莫展。

借此,我们已经知道了人工智能无法像人类一样思考,更无法让计算机像人类一样思考,但换个角度若人类像计算机一样去思考,那结果又会如何呢?是使头脑变得更加理智清明又或是失去了原有的价值观与同情心,最终成为一个罔顾后果的人呢?

举个具体的例子吧,前几年网络上就“摔倒的老人究竟该不该扶”这一话题展开了。烈的讨论。有人说,这肯定是个骗局,若是扶了,落不了好不说,还有可能要承担谩骂;有人说,还是扶吧,这世上啊,一定还是好人多;更多的人是在这两种人中踟躇徘徊,不知究竟该怎么做才是最好的,在犹豫中最终选择了漠视。这些都是人们的真实举动,反映出了人们内心最确切的心理想法。不同的人面对同样的事情时有着不同的抉择,那么,如果换了是人工智能呢,它们又会怎么做呢?答案我想无疑是显而易见的,它们定会毫不犹豫离开,不泛起一点点情感的涟漪。这样的结果难道还不可怕吗?人类会像人工智能一样一味的选择最理智的道路去走,没有喜怒哀乐,更没有同情与怜悯,若人人皆是如此,一个家庭的温暖,一个社会的和谐,甚至一个国家的安定又由谁去守护?人工智能吗?那又怎么可能呢?

孟子一生都坚信“人性本善”,只是后天改变了他们的初心,扭曲了他们的行为,我也一直像这样告诉自己。人是拥有人性之美的,而人性之美,可以在困境中为我们照亮前方的路途,阔步前行;可以在荆棘丛中为我们荡平所有的艰难险阻,稳步上进;可以在无尽黑暗中为我们指明正确的方向,无愧于心。哪怕最后真的吃亏了,那又怎么样呢?在内心的深处,我们始终坚守了自己的初心,不是嘛?谁又敢说当代受人人歌颂的雷锋叔叔就没有吃过亏,上过当呢?而最珍贵的却是他在经受过人性最黑暗的一面之后,依然不改初心地去帮助别人。今时今日的我们,换位思考在面对那种情况下,是否也能做到如此。

坚守本心,让我们拒绝成为一个像计算机般的存在。人类正是拥有人性之美才能成为万物之主,在平淡安稳时代下的我们更应不改初心,无愧始终。温暖再小,世界再大,只要坚守初心,也定能照亮我们头顶的这一片天!

【篇三:人和人工智能的心】

随着当今科技的卓越发展,从‘iPhone’到‘iPhoneX’其中的发展也显而易见,我们无时无刻都运用着科技所为我们带来的方便,网络便成为了我们交流的重要工具。在网络上我们可以快速地了解到自己所不知道的知识,没见过的风景,这是极好的。但有时网络上总会出现一些不好的事情。

因为人工智能是机器,所以他一切的思想都是特别客观的,而我们作为‘人’,对待事情有时客观只含有一部分,另一部分便是自己的主观思想。但因为网络,有一部分人的思想发生了巨大改变。例如“一大学生在路边骑车时扶起一位老人却被说成是她撞得自己,被要求赔钱。”从这则消息出来后,人们在网络上疯狂打击老人,同情学生。也是从那以后,有一部分新闻变成了“一老人因地滑不小心摔倒,1小时内无人上前扶起,因而身亡。”人们又会在网络上掀起一场战争。因为网络,让我们对需要帮助的人视而不见,失去了同情心。

人是群居动物,在思想上也一样。喜欢跟随大众的思想,即便自己是对的,也会被“洗脑”。毕竟正确只掌握在少数人手中。我们像人工智能一样只看看得见的,而不去了解自己看不见的东西,这是危险的。

人工智能之所以被称之为“人工”,是因为在被创造出来的时候,对于很多问题已经有了答案,对于不同的情况给出不同的答案。人工智能也不会正确的分辨对错,只会选择系统里的,人们传递给他的答案。而我们现在就是和人工智能一样,不会分辨对错,只单纯地相信众人所追捧的,不会思考。但比人工智能更可怕的是,人类会用恶劣的语言去打击与自己相反结论的人,让人受到伤害。

原本我们内心深处都有一个无人知晓的世界,在这个世界里我们可以为所欲为,没有人发现,也伤害不了他人,但当我们的那个世界变成了手机、电脑、社交APP时,我们在其中诉说这自己的一切时,将我们自己的内心世界暴露在众人面前时,我们不仅会伤害到他人,甚至还会改变自己的价值观,变成“另外一个人”,自己的世界也住进了许多不认识的人。

我们可以运用人工智能去开阔视野、享受生活。但我们却不可以像人工智能一样失去价值观和同情心,要有客观的和主观的思想,不可以一味地相信网络上的各种消息和思想,也不可以跟风,失去自我。毕竟人和人工智能不一样,它们的“心”是芯片,而我们的心却是活着的,跳动着的。

【篇四:人与人工智能】

随着时代的进步,科技的发展,人工智能这一词脱颖而出,因此一个问题就产生了——-“人和人工智能的区别在哪?”人之所以被称为高级动物,不是因为能双腿站立、走路,而是因为有人情味,有感觉,有情感;而人工智能,它所具有的仅是运算速度和那永不感到疲劳的“大脑”。

还记得《开学第一课》中,朗朗和他的徒弟,还有一位特殊的钢琴家——电器人。主持人让朗朗分别听完两段声音后,让其区分,哪段是人弹奏?哪段是机器人的?郎朗区别出来了。他区别出来的原因,让我更加理解了人工智能——-第一段音余乐,谈的很好,没有弹错。第二段音乐,有弹错的地方,但是有感情、有色彩。难道不是如此吗?正是因为人有感情、有色彩,所以,人工智能永远无法取代我人的地位。

当然,我们生活中不能缺少人工智能。对于企业家而言,人工智能的出现,让他们的工作质量和效率大幅度提高。对人们而言,人工智能的出现,让生活更方便、更美好。比如,你在车上就可以控制所有的家电;所有的重要事件,都不用担心没人提醒。所以说,人工智能让生活更美好。但是,这并不代表人工智能就能完全取代或者胜任一切工作。就好比雕刻这个职业,机器人也能做到,把木头雕的惟妙惟肖。栩栩如生。还能在同样时间里连续雕刻,甚至能永不停歇的雕刻,然而与人雕刻的东西相比之下,人雕刻的东西,虽然有小的瑕疵,它具有感情色彩。在其栩栩如生的情况下,让其有了“艺术生命力”。

任何事物都有两面性。人工智能,有好有坏。而我们应该清楚并明白一点,是我们掌控它,而不是人工智能来改变我们。同时,我们人类还会将自己的优点更大化、更突出,让其毅力,坚持和决心更加强。人工智能——没有毅力,所以它只是一台机器,充其量是台具备运算能力的机器;人工智能—它没有坚持,所以他不懂得、不理解辛苦和痛苦的滋味;人工智能——没有决心,所以它没有目标和理想,因此它没有奋斗的精神;人工智能——没有价值观和感情色彩,所以它只能让我们的生活更美好,只会推进我们人类变得更优秀,遇到困难勇往直前,遇到挫折永不言败,不轻言放弃。知道孟子所说的,“故天将大任于斯人也必先苦其心志……”其中的人生道理、勇于奋斗、勇于拼搏、知难不退。还记得爱迪生的一句名言——唯有强者才能在风暴中生存。这就是人与人工智能的区别。这就是人工智能永远无法取代人类在地球上的地位之根本所在。

让我们更加坚强,决心更加强大,毅力更加坚强吧!让我们的生活充满色彩,充满奋斗的目标吧!让我们奋斗拼搏起来吧!这就是人类永远胜过人工智能的原因。

【篇五:人与人工智能】

当今社会,人工智能越来越普遍地出现在大众眼前,手机、平板以及各式各样的机器人,它们现在或替代或掌控着人类。

机器人被科研家们研制的愈发像人类,有形似人类的外表,他们能跳舞,能调酒,能对话,毫不夸张地说它们中的部分已经具备了一些人类的思想,他们中的一些甚至已经能想人类一样思考了,虽然并不是很全面,因为它们不具备人类的情感,从这点就能轻松分辨出人与人工智能。

科研家们还在努力,他们在尝试让更多的机器人像人类一样思考,全面的那种。有许多人担心再这样下去,迟早有一天,机器人将完完全全替代人类,甚至成为这个世界的主宰者,使人类像努力一般为其工作。

当人这般害怕时,苹果公司总裁库仑却十分淡定,他并不担心人工智能像人一样思考,因为他并不认为他们担心的事会发生,但他担心人类变成人工智能,没有情感,只是机械化地达成目标或度过一生,那这样的后果将不可想象。

很多人觉得他担心的事情很可笑,人生来就是由情感的,人是高等动物,怎么可能会变成人工智能。但现在的种种迹象表明,离这样的日子其实已经不远了。电视新闻荔一大半的都是拾金不昧、舍己救人、救人不留姓名,这些在以前而言,那是正常不过的事情,应该不算是什么新闻,但在这些好人好事愈来愈少的现代,那可是个大新闻。

路上的行人一个个健步如飞;四周发生车祸也只是冷漠地站在一旁看戏,任由车主们互相争吵甚至大打出手;在公交车上给老人让座的现象也是稀少。这不就是人工智能的种种表现吗?机械化的工作、吃饭、睡觉,冷漠得似冰块,怪不得冬天越来越冷了,人间温情都没了,气温能高到哪里去?

库仑所担心的事似乎正一点一点实现着,人类逐渐失去了价值观和同情心,在一大部分时间里人都活成了人工智能,而人类却丝毫不自知,这才是真正的可怕之处。

但人工智能是人创造出来的,应该是让人工智能活成人类,制造出来的目的也是为人类效劳,怎么最后反倒是人变成了人工智能。

可别让库仑的担心实现。人是人,人工智能是人工智能。人创造出人工智能,而不是“进化”成人工智能。

面试天天答|谈谈对未来人工智能的展望和看法

(考生思考完毕,现在开始作答)所谓“一机在手,天下我有”、“秀才不出门,能知天下事”这种种奇思妙想的梦想在人工智能的兴起中成为现实,做为新时代的年轻人,在享受人工智能发展带来的愉悦体验的同时,也赞叹科技发展带来的神奇魅力,这是时代发展的必然产物,让我们对未来充满无穷的期待和憧憬。

就我个人而言,对人工智能的前景展望是非常乐观的,因为在我们的生活当中,我们已经体验到的了人工智能科技,比如在上下班的时候,人还没有回家,可以提前让办公室或家里的空调处于开启状态,调好合适的温度;可以让电饭煲处于工作状态,回家就可以吃到热气腾腾的饭菜;现在的支付宝的支付功能,完全在城市实现了无现金交易状态,看了一个相关的报道,未来还可以实现“刷脸”的付款功能;另外,人工智能带来的驾驶出行、航天、智力竞技等方面的突破,也是叹为观止的,利好更是无可估量:

第一:节约了人力成本:人工智能科技的运用可以大大的节约人力成本,减少运算、对比、调查等程序,可以直接通过数据库的大数据处理来做出精确的核算;比如扫地机器人,搬运机器人,流水线作业机器人等等,大大的提升了工作效率,减少了成本开支。

第二:方便了民众生活;人工智能的运用,给民众的生活带来了极大的便利,提升了用户的体验,比如,现在很多政务大厅的一些智能机器,在为民众办理事务的时候,通过人脸识别,身份核对等操作,就能迅速的进行业务办理;在生活出行方面,如汽车的无人驾驶模式等,也为驾驶的安全系数提升了保障;

第三:缩短了空间和时间的距离,改变了思维模式,推动了社会的发展。尤其是在科技、生物制药、军事航天等领域的利用,为社会的发展创造了难以想像的可能性和未知性。

当然,不可否认,在某些方面,人工智能在生活当中运用是越来越普及,但是说要取代人类的担心和恐慌还是有点夸张的。随着人工智能的发展,机器确实可以通过深度学习来代替人类做越来越多的工作,可是人类依靠独有的创造性、互动性和谈判性,在一些职业中仍然占有绝对的优势。像职业中可自动化、计算机化的工作可以由人工智能来完成,而行政、销售、服务业等还是需要人类情感的沟通和交流。所以在人工智能逐渐代替人类工作的情况下,如何找到机器与人工的平衡点,是需要把握和规划的问题。既要保证科技的稳步发展,又要体现人类在生活中的情感表达、爱与善的交流、心与心的共鸣等美妙的体验,这样的生活才能体现出丰富多彩的立体颜色,才能让人类的本色和特质得到更好的体现和演绎。

(考生答题完毕。)

题目分析

接下来我们一起来分析一下,本题考查的是综合分析之社会现象分析和认知能力,对于人工智能时代的前景展望和期许,同时对于人工智能在发展过程当中的利弊进行客观的分析,并能够提出自己个人的合理建议和引导举措。

语音作答试题

2017年江西省考面试:

你新进单位不久,参加一个培训的拓展活动,在分组训练时,你小组队员人心不和,心不齐,训练成绩不好,受到了教练的批评,作为组长,你应该怎么办?返回搜狐,查看更多

人工智能议论文800字

人工智能议论文800字

当今世界,人工智能、虚拟现实等技术快速发展,各种各样的机器人正一步步走进我们的世界。是欣然接受,还是退避三舍?我认为,不论态度如何,机器人永远无法取代人类。

诚然,机器人的出现给我们带来了许多便利之处。在家做清洁,有扫地机器人;给小朋友讲故事,有对话机器人;餐厅点菜,有服务员机器人。“世界潮流浩浩汤汤,顺之则昌,逆之则亡。”如果利用机器人,我们能得到更高品质的社会环境、更高效率的生活状态,何乐而不为呢?

但与此同时,随着机器人不断“拟人化”,不少人开始深思:我们的生活将要被机器人主宰了吗?阿尔法狗击败李世石余温未散,又有高度仿真的机器人索菲亚横空出世,我们担心未来的某一天,电影中机器人统治世界的局面成为现实。于是有人用消极的态度负隅顽抗。我认为,我们应在这之间保持理智:不使物役我,而使我役物。

小时候我们常常为这个问题困扰——电脑强大还是人脑强大?答案是绝对的——人脑。不论是怎样的机器人,都是人的创造。正如法国科学家苏埃尔所说,“机器人高度拟人化,将重新定义人的价值”。我们要做的,就是明白人的价值。帕斯卡尔在《人是一棵会思想的芦苇》中这样定义人的价值——人的伟大,我们对于人的灵魂具有一种伟大的观念,以致我们不能忍受人的蔑视,或不受别的灵魂尊敬。所以,在柯洁对战阿尔法狗时,我们看到他的皱眉,或扯头发,或有汗珠沁出眉间,虽然柯洁没有赢得比赛,但这就是人的价值,正是这种价值让我们不被机器人役使。

不久之前,诺贝尔文学奖获得者莫言在被问到“如何看待机器人写的诗歌作品”时,他答道:“从技术上讲没有问题,但就是没有感情,没有个性,这样产生的东西,不是真正的文学。”针对机器人,他又说:“一个活人写的诗,哪怕平仄全错了,至少还有一种要表达的感觉。机器人是不会犯错的,作者写的不如机器快,但这是人写的东西,是有‘人气’的。”所以即使机器人可能思考,可能更好地完成任务,但他们始终缺乏了一种叫“人气”的东西,正是这种“人气”,才保证我们在机器人愈发人化的同时,不被机器人同化。诚如苹果公司CEO库克所说:“我并不担心机器人像人一样思考,我只担心人像机器人一样思考。”我们应保有这样的人气,机器是死的,可人是活的。“机智者会跳出思维定式去思考,想象所有可能的办法去达到目标。”哈维·麦凯如是说。这大概就是人之所以为人的意义吧。若完全沉浸于科技带给我们的方便中,我们就可能被它奴役。

尼采说:“人之所以为人,便在于人是一个桥梁,人应当被超越。”机器人使我们更加成为人,更有超越自我的勇气,从而不使物役我,而使我役物

对于云计算,大数据和人工智能与物联网的认识及理解

首先如何理解云计算、大数据和人工智能三者间的关系

  大数据产业正在用一个超乎我们想象的速度蓬勃发展,上个月贵阳的数博会,让全世界感受到了大数据的巨大魅力。借助大数据的风口,云计算和人工智能也同时走进我们的视野,他们三者之间有着不可分割、相互影响的关联。

大数据的概念

 大数据,或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。

大数据时代已经来临,它将在众多领域掀起变革的巨浪。但我们要冷静的看到,大数据的核心在于为客户挖掘数据中蕴藏的价值,而不是软硬件的堆砌。因此,针对不同领域的大数据应用模式、商业模式研究将是大数据产业健康发展的关键。我们相信,在国家的统筹规划与支持下,通过各地方政府因地制宜制定大数据产业发展策略,通过国内外IT龙头企业以及众多创新企业的积极参与,大数据产业未来发展前景十分广阔。进充分利用大数据的价值。

云计算的概念

  云计算是基于互联网的相关服务的增加、使用和交付模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。

人工智能的概念

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

大数据、云计算、人工智能三者间的关系

物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新是物联网发展的灵魂。

云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。

大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。

人工智能打个比喻为一个人吸收了人类大量的知识(数据),不断的深度学习、进化成为一方高人。人工智能离不开大数据,更是基于云计算平台完成深度学习进化。

简单总结:通过物联网产生、收集海量的数据存储于云平台,再通过大数据分析,甚至更高形式的人工智能为人类的生产活动,生活所需提供更好的服务。这必将是第四次工业革命进化的方向。

云计算与大数据

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

人工智能与大数据

如果我们把人工智能看成一个嗷嗷待哺拥有无限潜力的婴儿,某一领域专业的海量的深度的数据就是喂养这个天才的奶粉。奶粉的数量决定了婴儿是否能长大,而奶粉的质量则决定了婴儿后续的智力发育水平。

与以前的众多数据分析技术相比,人工智能技术立足于神经网络,同时发展出多层神经网络,从而可以进行深度机器学习。与以外传统的算法相比,这一算法并无多余的假设前提(比如线性建模需要假设数据之间的线性关系),而是完全利用输入的数据自行模拟和构建相应的模型结构。这一算法特点决定了它是更为灵活的、且可以根据不同的训练数据而拥有自优化的能力。

但这一显著的优点带来的便是显著增加的运算量。在计算机运算能力取得突破以前,这样的算法几乎没有实际应用的价值。大概十几年前,我们尝试用神经网络运算一组并不海量的数据,整整等待三天都不一定会有结果。但今天的情况却大大不同了。高速并行运算、海量数据、更优化的算法共同促成了人工智能发展的突破。这一突破,如果我们在三十年以后回头来看,将会是不弱于互联网对人类产生深远影响的另一项技术,它所释放的力量将再次彻底改变我们的生活。

人工智能与云计算

人工智能是程序算法和大数据结合的产物。而云计算是程序的算法部分,物联网是收集大数据的根系的一部分。可以简单的认为:人工智能=云计算+大数据(一部分来自物联网)。随着物联网在生活中的铺开,它将成为大数据最大,最精准的来源。

现在已进入大数据、云计算、人工智能时代,我们必须弄清楚他们的本质,抓住机遇,跟上趋势,创新发展,才能在高科技的发展大潮中立于不败之地

下面我们从另一个角度理解他们之间的关系

一、云计算最初是实现资源管理的灵活性

我们首先来说云计算,云计算最初的目标是对资源的管理,管理的主要是计算,存储,网络资源。

1.1管数据中心就像配电脑

什么叫计算,存储,网络资源呢?就说你要买台笔记本电脑吧,你是不是要关心这台电脑什么样的CPU啊?多大的内存啊?这两个我们称为计算资源。您可能还会问硬盘多大啊?这就是存储资源。网速有多快,带宽多大啊?这就是网络资源。

对于一台电脑是这个样子的,对于一个数据中心也是同样的。想象一个非常大的机房里面有很多的服务器,这些服务器也是有CPU,内存,硬盘的,也是和互联网连接的。这个时候的一个问题就是,数据中心的人是怎么把这些设备统一的管理起来的呢?

1.2灵活就是想要多大的配置都行,想什么时候用马上就能用

比如有个人需要一台配置很小的电脑,只有一个CPU,1G内存,10G的硬盘,1M的带宽,你能给他吗?像配置这么小的电脑,很难买到了,家里随便拉一个宽带都要10M。然而如果去云计算平台上,就可以很容易得到这个电脑。如果你需要一个配置很强大的电脑,也可以轻松得到。这就是在配置(计算能力)上的灵活性。

另外你想用的时候马上就可以开通使用。这就是在时间上的灵活性。

这就是我们常说的云计算的弹性。为了解决这个弹性的问题,经历了漫长的发展。

1.3物理设备阶段

首先第一个阶段就是物理机,或者说物理设备时期。这个时期相当于客户需要一台电脑,我们就买一台放在数据中心里。物理设备当然是越来越牛,例如服务器,内存动不动就是百G内存,例如网络设备,一个端口的带宽就能有几十G甚至上百G,例如存储,在数据中心至少是PB级别的(一个P是1024个T,一个T是1024个G)。

然而物理设备不能做到很好的灵活性。

首先时间不灵活,比如买台服务器,都有采购的时间,如果和供应商关系一般,可能采购一个月,和供应商关系好也要一个星期。用户等了一个星期后,这时候电脑才到位,用户还要花时间部署自己的应用。

其次是配置不灵活,如果用户要一个很小的电脑,现在哪有配置这么低的电脑啊。但是如果买一个正常配置的电脑,花费就会高些,不划算。

1.4虚拟化阶段

有人就想办法了。就是虚拟化。用户不是只要一个很小的电脑么?数据中心的物理设备都很强大,我可以从物理的CPU,内存,硬盘中虚拟出一小块来给客户,其实每个客户用的是整个设备上的一小块。虚拟化使不同客户使用的资源是隔离的、独立的,实际上你的10G和他的10G硬盘都在一块物理硬盘上。

另外虚拟出一个电脑是非常快的,基本上几分钟就能解决。所以在一个云上要创建一台电脑,一般几分钟就出来了。

这样灵活性的问题就解决了。

1.5 云计算阶段

虚拟化软件解决了灵活性问题,其实不完全对。因为虚拟化软件一般创建一台虚拟的电脑,是需要人工指定这台虚拟电脑放在哪台物理机上的,还需要比较复杂的人工配置。所以仅仅凭虚拟化软件能管理的物理机的集群规模都不是很大,一般在十几台,几十台,最多百台这么一个规模。随着集群规模越来越大,千台起步,动辄上万台,甚至百万台,如果了解一下BAT,谷歌,亚马逊,会发现服务器数目都大的惊人。这么多机器要靠人工去创建和配置,几乎是不可能的事情,还是需要程序去做这个事情。

人们发明了一些算法来做这个事情,算法的名字叫做调度(Scheduler)。通俗一点的说,就是有一个调度中心,几千台机器都在一个池子里面,用户需要什么配置的虚拟电脑,调度中心会自动从大池子里面找一个能够满足用户需求的地方,把虚拟电脑创建好并配置好,用户就马上能用了。这个阶段,我们称为池化,或者云化,到了这个阶段,才可以称为云计算,在这之前只能叫虚拟化。

1.6 云计算的私有与公有

云计算大致分两种,一个是私有云,一个是公有云。私有云就是把虚拟化和云化的这套软件部署在自己的数据中心里面,使用私有云的用户往往很有钱,自己买地建机房,自己买服务器。公有云就是把虚拟化和云化软件部署在云服务商的数据中心里面,用户不需要很大的投入,只要注册一个账号,就能在一个网页上创建一台虚拟电脑,例如亚马逊的公有云,阿里云,腾讯云,网易云等。

亚马逊呢为什么要做公有云呢?我们知道亚马逊原来是国外比较大的一个电商,它做电商的时候也肯定会遇到类似双11的场景,在某一个时刻大家都冲上来买东西。当大家都冲上买东西的时候,就特别需要云的灵活性。需要在双十一的时候,创建一大批虚拟电脑来支撑电商应用,过了双十一再把多余的资源释放掉去干别的。所以亚马逊就需要一个云平台。

然而商用的虚拟化软件太贵了,亚马逊总不能把自己在电商赚的钱全部给了虚拟化厂商吧。于是亚马逊基于开源的虚拟化技术,开发了一套自己的云化软件。没想到亚马逊后来电商越做越牛,云平台也越做越牛。由于亚马逊云平台需要支撑自己的电商应用,而传统的云计算厂商多为IT厂商出身,没有自己的应用,因而亚马逊的云平台对应用更加的友好,迅速发展成为云计算的第一品牌。在亚马逊公布其云计算平台财报之前,人们都猜测,亚马逊电商赚钱,云也赚钱吗?后来一公布财报,发现不是一般的赚钱,仅仅去年,亚马逊AWS年营收达122亿美元,运营利润31亿美元。

1.7 云计算的赚钱与情怀

公有云的第一名亚马逊过得很爽,第二名Rackspace过的就一般了。没办法,这就是互联网行业的残酷性,多是赢者通吃的模式。第二名就想,我干不过老大怎么办呢?开源吧。亚马逊虽然使用了开源的虚拟化技术,但是云化的代码是闭源的,很多想做又做不了云化平台的公司,只能眼巴巴的看着亚马逊挣大钱。Rackspace把源代码一公开,整个行业就可以一起把这个平台越做越好,兄弟们大家一起上,和老大拼了。

于是Rackspace和美国航空航天局合作创办了开源软件OpenStack,如图所示OpenStack的架构图,能够看到三个关键字,Compute计算,Networking网络,Storage存储。还是一个计算,网络,存储的云化管理平台。

当然第二名的技术也是非常棒的,有了OpenStack之后,果真像Rackspace想象的一样,所有想做云的大企业都疯了,你能想象到的所有如雷贯耳的大型IT企业,IBM,惠普,戴尔,华为,联想等等。有了这样一个开源的云平台OpenStack,所有的IT厂商都加入到这个社区中来,对这个云平台进行贡献,包装成自己的产品,连同自己的硬件设备一起卖。有的做了私有云,有的做了公有云,OpenStack已经成为开源云平台的标准。

1.8 IaaS(基础设施服务), 资源层面的灵活性

随着OpenStack的技术越来越成熟,可以管理的规模也越来越大,并且可以部署多套,比如北京部署一套,杭州部署两套,广州部署一套,然后进行统一的管理。这样整个规模就更大了。在这个规模下,对于普通用户的感知来讲,想要多少就有多少。还是拿云盘举例子,每个用户云盘都分配了5T甚至更大的空间,如果有1亿人,那加起来空间多大啊。其实背后的机制是这样的,分配你的空间,你可能只用了其中很少一点,比如说它分配给你了5个T,这么大的空间仅仅是你看到的,而不是真的就给你了,你其实只用了50个G,则真实给你的就是50个G,随着你文件的不断上传,分给你的空间会越来越多。当大家都上传,云平台发现快满了的时候(例如用了70%),会采购更多的服务器,扩充背后的资源,这个对用户来说是看不到的。其实有点像银行,给储户的感觉是什么时候取钱都有,只要不同时挤兑,银行就不会没钱。

到了这个阶段,云计算基本上实现了灵活性,实现了计算,网络,存储资源的弹性。

计算,网络,存储我们称为基础设施,管理这些基础设施的云平台,我们称为基础设施服务,也就是我们常说的IaaS。

二、云计算不光管资源,也要管应用

有了IaaS,实现了资源层面的弹性就够了吗?显然不是。还有应用层面的弹性。这里举个例子,比如说实现一个电商的应用,平时十台机器就够了,双十一需要一百台。你可能觉得很好办啊,有了IaaS,新创建九十台机器就可以了啊。但是90台机器创建出来是空的啊,电商应用并没有放上去啊,只能你公司的运维人员一台一台的弄,还是需要很长时间才能安装好的。虽然资源层面实现了弹性,但是没有应用层的弹性,依然灵活性是不够的。

有没有方法解决这个问题呢?于是人们在IaaS平台之上又加了一层,用于管理应用层面的弹性,这一层通常称为PaaS(平台服务)。这一层往往比较难理解,其实大致分两部分,一部分自己的应用自动安装,一部分通用的应用不用安装。

我们先来说第一部分,自己的应用自动安装。比如电商应用是你自己开发的,除了你自己,其他人是不知道怎么安装的,比如电商应用,安装的时候需要配置支付宝或者微信的账号,才能让别人在你的电商上买东西的时候,付的钱是打到你的账户里面的,除了你,谁也不知道,所以安装的过程中平台帮不了忙,但是能够帮你做到自动化,你需要做一些工作,将自己的配置信息融入到自动化的安装过程中即可。比如上面的例子,双十一新创建出来的90台机器是空的,如果能够提供一个工具,能够自动在这新的90台机器上将电商应用安装好,就能够实现应用层面的真正弹性。例如Puppet,Chef,Ansible,CloudFoundary都可以干这件事情,最新的容器技术Docker能更好的干这件事情,不做技术的可以不用管这些词。

第二部分,通用的应用不用安装。所谓通用的应用,一般指一些复杂性比较高,但是大家都在用的,例如数据库。几乎所有的应用都会用数据库,但是数据库软件是标准的,虽然安装和维护比较复杂,但是无论谁安装都是一样。这样的应用可以变成标准的PaaS层的应用放在云平台的界面上。当用户需要一个数据库的时候,一点就出来了,用户就可以直接用了。大多数云平台会提供Mysql这样的开源数据库,维护这个数据库,却需要一个很大的团队,如果这个数据库能够优化到能够支撑双十一,也不是一年两年能够搞定的。比如您是一个做单车的,就没必要招一个非常大的数据库团队来干这件事情,应该交给云平台来做这件事情,云平台专门养了几百人维护这套系统,您只要专注于您的单车应用就可以了。

要么是自动部署,要么是不用部署,总的来说就是应用层你也要少操心,这就是PaaS层的重要作用。

虽说脚本的方式能够解决自己的应用的部署问题,然而不同的环境千差万别,一个脚本往往在一个环境上运行正确,到另一个环境就不正确了。而容器是能更好的解决这个问题的。

容器是Container,Container另一个意思是集装箱,其实容器的思想就是要变成软件交付的集装箱。集装箱的特点,一是封装,二是标准。

         

在没有集装箱的时代,假设将货物从A运到B,中间要经过三个码头、换三次船。每次都要将货物卸下船来,摆的七零八落,然后搬上船重新整齐摆好。因此在没有集装箱的时候,每次换船,船员们都要在岸上待几天才能走。

      

有了集装箱以后,所有的货物都封装在标准的集装箱里,集装箱的尺寸全部一致,所以每次换船的时候,一个箱子整体搬过去就行了,小时级别就能完成,船员再也不用上岸长时间耽搁了。

这是集装箱“封装”、“标准”两大特点在生活中的应用。

          

那么容器如何对应用打包呢?还是要学习集装箱,首先要有个封闭的环境,将货物封装起来,让货物之间互不干扰,互相隔离,这样装货卸货才方便。好在Ubuntu中的LXC技术早就能做到这一点。

封闭的环境主要使用了两种技术,一种是看起来是隔离的技术,称为Namespace,也即每个Namespace中的应用看到的是不同的IP地址、用户空间、程号等。另一种是用起来是隔离的技术,称为Cgroups,也即明明整台机器有很多的CPU、内存,而一个应用只能用其中的一部分。

所谓的镜像,就是在你焊好集装箱的那一刻,将集装箱的状态保存下来,就像孙悟空说:“定”,集装箱里面的状态就定在了那一刻,然后将这一刻的状态保存成一系列文件。这些文件的格式是标准的,谁看到这些文件都能还原当时定住的那个时刻。将镜像还原成运行时的过程(就是读取镜像文件,还原那个时刻的状态),就是容器运行的过程。

有了容器,使得PaaS层对于用户自身应用的自动部署变得快速而优雅。

三、大数据拥抱云计算

在PaaS层中一个复杂的通用应用就是大数据平台。大数据是如何一步一步融入云计算的呢?

3.1数据不大也包含智慧

一开始这个大数据并不大,你想象原来才有多少数据?现在大家都去看电子书,上网看新闻了,在我们80后小时候,信息量没有那么大,也就看看书,看看报,一个星期的报纸加起来才有多少字啊,如果你不在一个大城市,一个普通的学校的图书馆加起来也没几个书架,是后来随着信息化的到来,信息才会越来越多。

首先我们来看一下大数据里面的数据,就分三种类型,一种叫结构化的数据,一种叫非结构化的数据,还有一种叫半结构化的数据。什么叫结构化的数据呢?叫有固定格式和有限长度的数据。例如填的表格就是结构化的数据,国籍:中华人民共和国,民族:汉,性别:男,这都叫结构化数据。现在越来越多的就是非结构化的数据,就是不定长,无固定格式的数据,例如文本,图片,音频,视频都是非结构化的数据。半结构化数据是一些xml或者html的格式的,不从事技术的可能不了解,但也没有关系。

数据怎么样才能对人有用呢?其实数据本身不是有用的,必须要经过一定的处理。例如你每天跑步带个手环收集的也是数据,网上这么多网页也是数据,我们称为Data,数据本身没有什么用处,但是数据里面包含一个很重要的东西,叫做信息Information,数据十分杂乱,经过梳理和清洗,才能够称为信息。信息会包含很多规律,我们需要从信息中将规律总结出来,称为知识knowledge,知识改变命运。信息是很多的,但是有人看到了信息相当于白看,但是有人就从信息中看到了电商的未来,有人看到了直播的未来,所以人家就牛了,你如果没有从信息中提取出知识,天天看朋友圈,也只能在互联网滚滚大潮中做个看客。有了知识,然后利用这些知识去应用于实战,有的人会做得非常好,这个东西叫做智慧intelligence。有知识并不一定有智慧,例如好多学者很有知识,已经发生的事情可以从各个角度分析的头头是道,但一到实干就歇菜,并不能转化成为智慧。而很多的创业家之所以伟大,就是通过获得的知识应用于实践,最后做了很大的生意。

所以数据的应用分这四个步骤:数据,信息,知识,智慧。这是很多商家都想要的,你看我收集了这么多的数据,能不能基于这些数据来帮我做下一步的决策,改善我的产品,例如让用户看视频的时候旁边弹出广告,正好是他想买的东西,再如让用户听音乐的时候,另外推荐一些他非常想听的其他音乐。用户在我的应用或者网站上随便点点鼠标,输入文字对我来说都是数据,我就是要将其中某些东西提取出来,指导实践,形成智慧,让用户陷入到我的应用里面不可自拔,上了我的网就不想离开,手不停的点,不停的买,很多人说双十一我都想断网了,我老婆在上面不断的买买买,买了A又推荐B,老婆大人说,“哎呀,B也是我喜欢的啊,老公我要买”。你说这个程序怎么这么牛,这么有智慧,比我还了解我老婆,这件事情是怎么做到的呢?

         

3.2数据如何升华为智慧

数据的处理分几个步骤,完成了最后才会有智慧。

第一个步骤叫数据的收集。首先得有数据,数据的收集有两个方式,第一个方式是拿,专业点的说法叫抓取或者爬取,例如搜索引擎就是这么做的,它把网上的所有的信息都下载到它的数据中心,然后你一搜才能搜出来。比如你去搜索的时候,结果会是一个列表,这个列表为什么会在搜索引擎的公司里面呢,就是因为他把这个数据啊都拿下来了,但是你一点链接,点出来这个网站就不在搜索引擎它们公司了。比如说新浪有个新闻,你拿百度搜出来,还没点的时候,看到的信息在百度数据中心,一点出来的网页就是在新浪的数据中心了。另外一个方式就是推送,有很多终端可以帮我收集数据,比如说小米手环,可以将你每天跑步的数据,心跳的数据,睡眠的数据都上传到数据中心里面。

第二个步骤是数据的传输。一般会通过队列方式进行,因为数据量实在是太大了,数据必须经过处理才会有用,可是系统处理不过来,只好排好队,慢慢的处理。

第三个步骤是数据的存储。现在数据就是金钱,掌握了数据就相当于掌握了钱。要不然网站怎么知道你想买什么呢?就是因为它有你的历史交易数据,这个信息可不能给别人,十分宝贵,所以需要存储下来。

第四个步骤是数据的处理和分析。上面存储的数据是原始数据,原始数据多是杂乱无章的,有很多垃圾数据在里面,因而需要清洗和过滤,得到一些高质量的数据。对于高质量的数据,就可以进行分析,从而对数据进行分类,或者发现数据之间的相互关系,得到知识。比如盛传的沃尔玛超市的啤酒和尿布的故事,就是通过对人们购买数据进行分析,发现了男人一般买尿布的时候,会同时购买啤酒,这样就发现了啤酒和尿布之间的相互关系,获得知识,然后应用到实践中,将啤酒和尿布的柜台弄的很近,就获得了智慧。

第五个步骤就是对于数据的检索和挖掘。检索就是搜索,所谓外事不决问google,内事不决问百度。内外两大搜索引擎都是将分析后的数据放入搜索引擎,从而人们想寻找信息的时候,一搜就有了。另外就是挖掘,仅仅搜索出来已经不能满足人们的要求了,还需要从信息中挖掘出相互的关系。比如财经搜索,当搜索某个公司股票的时候,该公司的高管是不是也应该被挖掘出来呢?如果仅仅搜索出这个公司的股票涨的特别好,于是你就去买了,其实此公司的高管刚发了一个声明,对股票十分不利,第二天就跌了,这不坑害广大股民么?所以通过各种算法挖掘数据中的关系,形成知识库,十分重要。

 

 

3.3大数据时代,众人拾柴火焰高

当数据量很小的时候,很少的几台机器就能解决。慢慢的当数据量越来越大,最牛的服务器都解决不了问题的时候,就得想怎么办呢?要聚合多台机器的力量,大家齐心协力一起把这个事搞定,众人拾柴火焰高。

对于数据的收集,对于IoT(物联网)来讲,外面部署着成千上万的检测设备(传感器),将大量的温度,适度,监控,电力等等数据统统收集上来;对于互联网网页的搜索引擎来讲,需要将整个互联网所有的网页都下载下来,这显然一台机器做不到,需要多台机器组成网络爬虫系统,每台机器下载一部分,同时工作,才能在有限的时间内,将海量的网页下载完毕。

对于数据的传输,一个内存里面的队列肯定会被大量的数据挤爆掉,于是就产生了基于硬盘的分布式队列,这样队列可以多台机器同时传输,随你数据量多大,只要我的队列足够多,管道足够粗,就能够撑得住。

对于数据的存储,一台机器的文件系统肯定是放不下了,所以需要一个很大的分布式文件系统来做这件事情,把多台机器的硬盘看成一块大的文件系统。

再如数据的分析,可能需要对大量的数据做分解,统计,汇总,一台机器肯定搞不定,处理到猴年马月也分析不完,于是就有分布式计算的方法,将大量的数据分成小份,每台机器处理一小份,多台机器并行处理,很快就能算完。例如著名的Terasort对1个TB的数据排序,相当于1024G,如果单机处理,怎么也要几个小时,但是并行处理209秒就完成了。

所以说大数据平台,什么叫做大数据,说白了就是一台机器干不完,大家一起干。随着数据量越来越大,很多不大的公司都需要处理相当多的数据,这些小公司没有这么多机器可怎么办呢?

3.4大数据需要云计算,云计算需要大数据

说到这里,大家想起云计算了吧。干这些活的时候,需要好多好多的机器一块做,想什么时候要,想要多少,都能满足。例如使用大数据分析公司的财务情况,可能一周分析一次,如果要把这一百台机器或者一千台机器都在那放着,一周用一次,非常浪费。那能不能需要计算的时候,把这一千台机器拿出来,然后不算的时候,这一千台机器可以去干别的事情。谁能做这个事儿呢?只有云计算,可以为大数据的运算提供资源层的灵活性。而云计算平台也会把大数据平台放到它的PaaS平台上,作为一个非常重要的通用应用。因为大数据平台能够使得多台机器一起干一个事儿,这个东西不是一般人能开发出来的,也不是一般人玩得转的,怎么也得雇个几十上百号人才能把这个玩起来,所以说就像数据库一样,其实还是需要有一帮专业的人来玩这个东西。现在公有云上基本上都会有大数据的解决方案了,一个小公司需要大数据平台的时候,不需要采购一千台机器,只要到公有云上一点,这一千台机器都出来了,并且上面已经部署好了的大数据平台,只要把数据放进去算就可以了。

云计算需要大数据,大数据需要云计算,两个人就这样结合了。

四、人工智能拥抱大数据

4.1机器什么时候才能懂人心

虽说有了大数据,人的欲望总是不能够满足。虽说在大数据平台里面有搜索引擎这个东西,想要什么东西我一搜就出来了。但是也存在这样的情况,我想要的东西不会搜,表达不出来,搜索出来的又不是我想要的。例如音乐软件里面推荐一首歌,这首歌我没听过,当然不知道名字,也没法搜,但是软件推荐给我,我的确喜欢,这就是搜索做不到的事情。当人们使用这种应用的时候,会发现机器知道我想要什么,而不是说当我想要的时候,去机器里面搜索。这个机器像我的朋友一样懂我,这就有点人工智能的意思了。

人们很早就在想这个事情了。最早的时候,人们想象,如果要是有一堵墙,墙后面是个机器,我给它说话,它就给我回应,我如果感觉不出那边是人还是机器,那它就真的是一个人工智能了。

4.2让机器学会推理

怎么才能做到这一点呢?人们就想:我首先要告诉计算机人类推理的能力。你看人重要的是什么呀,人和动物的区别在什么呀,就是能推理。我要是把这个推理的能力告诉机器,机器就能根据你的提问,推理出相应的回答,真能这样多好。人们其实慢慢的让机器能够做到一些推理了,例如证明数学公式。这是一个非常让人惊喜的一个过程,机器竟然能够证明数学公式。但是慢慢发现其实这个结果,也没有那么令人惊喜,因为大家发现了一个问题,数学公式非常严谨,推理过程也非常严谨,而且数学公式很容易拿机器程序语言来进行表达。然而人类的语言就没这么简单了,比如今天晚上,你和你女朋友约会,你女朋友说:如果你早来,我没来,你等着,如果我早来,你没来,你等着。这个机器就比比较难理解了,但是人都懂,所以你和女朋友约会,你是不敢迟到的。

4.3教给机器知识

所以仅仅告诉机器严格的推理是不够的,还要告诉机器一些知识。但是知识这个事儿,一般人可能就做不来了,专家也许可以,比如语言领域的专家,或者财经领域的专家。语言领域和财经领域的知识能不能表示成像数学公式一样稍微严格点的规律呢?例如语言专家可能会总结出主谓宾定状补这些语法规则,主语后面一定是谓语,谓语后面一定是宾语,将这些总结出来,并严格表达出来不就行了吗?后来发现这个不行,太难总结了,语言表达千变万化。就拿主谓宾的例子,很多时候在口语里面就省略了谓语,别人问:你谁啊?我回答:我刘超。但是你不能规定在语音语义识别的时候,要求对着机器说标准的书面语,这样还是不够智能,就像罗永浩在一次演讲中说的那样,每次对着手机,用书面语说:请帮我呼叫某某某,这是一件很尴尬的事情。

人工智能这个阶段叫做专家系统。专家系统不易成功,一方面是知识比较难总结,另一方面总结出来的知识难以教给计算机。因为你自己还迷迷糊糊,似乎觉得有规律,就是说不出来,怎么能够通过编程教给计算机呢?

4.4算了,教不会你自己学吧

于是人们想到,看来机器是和人完全不一样的物种,干脆让机器自己学习好了。机器怎么学习呢?既然机器的统计能力这么强,基于统计学习,一定能从大量的数字中发现一定的规律。

其实在娱乐圈有很好的一个例子,可见一斑

有一位网友统计了知名歌手在大陆发行的9张专辑中117首歌曲的歌词,同一词语在一首歌出现只算一次,形容词、名词和动词的前十名如下表所示(词语后面的数字是出现的次数):

如果我们随便写一串数字,然后按照数位依次在形容词、名词和动词中取出一个词,连在一起会怎么样呢?

例如取圆周率3.1415926,对应的词语是:坚强,路,飞,自由,雨,埋,迷惘。稍微连接和润色一下:

坚强的孩子,

依然前行在路上,

张开翅膀飞向自由,

让雨水埋葬他的迷惘。

是不是有点感觉了?当然真正基于统计的学习算法比这个简单的统计复杂的多。

然而统计学习比较容易理解简单的相关性,例如一个词和另一个词总是一起出现,两个词应该有关系,而无法表达复杂的相关性,并且统计方法的公式往往非常复杂,为了简化计算,常常做出各种独立性的假设,来降低公式的计算难度,然而现实生活中,具有独立性的事件是相对较少的。

4.5模拟大脑的工作方式

于是人类开始从机器的世界,反思人类的世界是怎么工作的。

人类的脑子里面不是存储着大量的规则,也不是记录着大量的统计数据,而是通过神经元的触发实现的,每个神经元有从其他神经元的输入,当接收到输入的时候,会产生一个输出来刺激其他的神经元,于是大量的神经元相互反应,最终形成各种输出的结果。例如当人们看到美女瞳孔放大,绝不是大脑根据身材比例进行规则判断,也不是将人生中看过的所有的美女都统计一遍,而是神经元从视网膜触发到大脑再回到瞳孔。在这个过程中,其实很难总结出每个神经元对最终的结果起到了哪些作用,反正就是起作用了。

于是人们开始用一个数学单元模拟神经元

这个神经元有输入,有输出,输入和输出之间通过一个公式来表示,输入根据重要程度不同(权重),影响着输出。

于是将n个神经元通过像一张神经网络一样连接在一起,n这个数字可以很大很大,所有的神经元可以分成很多列,每一列很多个排列起来,每个神经元的对于输入的权重可以都不相同,从而每个神经元的公式也不相同。当人们从这张网络中输入一个东西的时候,希望输出一个对人类来讲正确的结果。例如上面的例子,输入一个写着2的图片,输出的列表里面第二个数字最大,其实从机器来讲,它既不知道输入的这个图片写的是2,也不知道输出的这一系列数字的意义,没关系,人知道意义就可以了。正如对于神经元来说,他们既不知道视网膜看到的是美女,也不知道瞳孔放大是为了看的清楚,反正看到美女,瞳孔放大了,就可以了。

对于任何一张神经网络,谁也不敢保证输入是2,输出一定是第二个数字最大,要保证这个结果,需要训练和学习。毕竟看到美女而瞳孔放大也是人类很多年进化的结果。学习的过程就是,输入大量的图片,如果结果不是想要的结果,则进行调整。如何调整呢,就是每个神经元的每个权重都向目标进行微调,由于神经元和权重实在是太多了,所以整张网络产生的结果很难表现出非此即彼的结果,而是向着结果微微的进步,最终能够达到目标结果。当然这些调整的策略还是非常有技巧的,需要算法的高手来仔细的调整。正如人类见到美女,瞳孔一开始没有放大到能看清楚,于是美女跟别人跑了,下次学习的结果是瞳孔放大一点点,而不是放大鼻孔。

4.6没道理但做得到

听起来也没有那么有道理,但是的确能做到,就是这么任性。

神经网络的普遍性定理是这样说的,假设某个人给你某种复杂奇特的函数,f(x):

不管这个函数是什么样的,总会确保有个神经网络能够对任何可能的输入x,其值f(x)(或者某个能够准确的近似)是神经网络的输出。

如果在函数代表着规律,也意味着这个规律无论多么奇妙,多么不能理解,都是能通过大量的神经元,通过大量权重的调整,表示出来的。

4.7人工智能的经济学解释

这让我想到了经济学,于是比较容易理解了。

我们把每个神经元当成社会中从事经济活动的个体。于是神经网络相当于整个经济社会,每个神经元对于社会的输入,都有权重的调整,做出相应的输出,比如工资涨了,菜价也涨了,股票跌了,我应该怎么办,怎么花自己的钱。这里面没有规律么?肯定有,但是具体什么规律呢?却很难说清楚。

基于专家系统的经济属于计划经济,整个经济规律的表示不希望通过每个经济个体的独立决策表现出来,而是希望通过专家的高屋建瓴和远见卓识总结出来。专家永远不可能知道哪个城市的哪个街道缺少一个卖甜豆腐脑的。于是专家说应该产多少钢铁,产多少馒头,往往距离人民生活的真正需求有较大的差距,就算整个计划书写个几百页,也无法表达隐藏在人民生活中的小规律。

基于统计的宏观调控就靠谱的多了,每年统计局都会统计整个社会的就业率,通胀率,GDP等等指标,这些指标往往代表着很多的内在规律,虽然不能够精确表达,但是相对靠谱。然而基于统计的规律总结表达相对比较粗糙,比如经济学家看到这些统计数据可以总结出长期来看房价是涨还是跌,股票长期来看是涨还是跌,如果经济总体上扬,房价和股票应该都是涨的。但是基于统计数据,无法总结出股票,物价的微小波动规律。

基于神经网络的微观经济学才是对整个经济规律最最准确的表达,每个人对于从社会中的输入,进行各自的调整,并且调整同样会作为输入反馈到社会中。想象一下股市行情细微的波动曲线,正是每个独立的个体各自不断交易的结果,没有统一的规律可循。而每个人根据整个社会的输入进行独立决策,当某些因素经过多次训练,也会形成宏观上的统计性的规律,这也就是宏观经济学所能看到的。例如每次货币大量发行,最后房价都会上涨,多次训练后,人们也就都学会了。

4.8人工智能需要大数据

然而神经网络包含这么多的节点,每个节点包含非常多的参数,整个参数量实在是太大了,需要的计算量实在太大,但是没有关系啊,我们有大数据平台,可以汇聚多台机器的力量一起来计算,才能在有限的时间内得到想要的结果。

人工智能可以做的事情非常多,例如可以鉴别垃圾邮件,鉴别黄色暴力文字和图片等。这也是经历了三个阶段的。第一个阶段依赖于关键词黑白名单和过滤技术,包含哪些词就是黄色或者暴力的文字。随着这个网络语言越来越多,词也不断的变化,不断的更新这个词库就有点顾不过来。第二个阶段时,基于一些新的算法,比如说贝叶斯过滤等,你不用管贝叶斯算法是什么,但是这个名字你应该听过,这个一个基于概率的算法。第三个阶段就是基于大数据和人工智能,进行更加精准的用户画像和文本理解和图像理解。

由于人工智能算法多是依赖于大量的数据的,这些数据往往需要面向某个特定的领域(例如电商,邮箱)进行长期的积累,如果没有数据,就算有人工智能算法也白搭,所以人工智能程序很少像前面的IaaS和PaaS一样,将人工智能程序给某个客户安装一套让客户去用,因为给某个客户单独安装一套,客户没有相关的数据做训练,结果往往是很差的。但是云计算厂商往往是积累了大量数据的,于是就在云计算厂商里面安装一套,暴露一个服务接口,比如您想鉴别一个文本是不是涉及黄色和暴力,直接用这个在线服务就可以了。这种形势的服务,在云计算里面称为软件服务,SaaS(SoftwareASAService)。

于是人工智能程序作为SaaS平台进入了云计算。

五、云计算,大数据,人工智能过上了美好的生活

终于云计算的三兄弟凑齐了,分别是IaaS,PaaS和SaaS,所以一般在一个云计算平台上,云,大数据,人工智能都能找得到。对一个大数据公司,积累了大量的数据,也会使用一些人工智能的算法提供一些服务。对于一个人工智能公司,也不可能没有大数据平台支撑。所以云计算,大数据,人工智能就这样整合起来,完成了相遇,相识,相知。 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇