2023年全球人工智能行业市场现状、竞争格局及发展前景分析 未来市场规模高速增长
全球人工智能应用场景将不断丰富,市场规模持续扩大
当前,国内外互联网巨头纷纷将人工智能作为下一次产业革命的突破口,积极加大投资布局,与此同时,随着人工智能技术进步和基础设施建设不断完善的推动下,全球人工智能应用场景将不断丰富,市场规模持续扩大。
“人工智能”一词最初是在1956年美国计算机协会组织的达特矛斯(Dartmouth)学会上提出的,人工智能发展至今经历过经费枯竭的两个寒冬(1974-1980年、1987-1993年),也经历过两个大发展的春天(1956-1974年、1993-2005年)。从2006年开始,人工智能进入了加速发展的新阶段,并行计算能力、大数据和先进算法,使当前人工智能加速发展;同时,近年来人工智能的研究越来越受到产业界的重视,产业界对AI的投资和收购如火如荼。
1、全球人工智能技术迈入深度学习阶段
机器学习是实现人工智能的一种重要方法,深度学习(DeepLearning)是机器学习(MachineLearning)的关键技术之一。深度学习自2006年由JefferyHinton实证以来,在云计算、大数据和芯片等的支持下,已经成功地从实验室中走出来,开始进入到了商业应用,并在机器视觉、自然语言处理、机器翻译、路径规划等领域取得了令人瞩目的成绩,全球人工智能也正式迈入深度学习阶段。
与此同时,全球人工智能领域对新技术的探索从未停止,新技术层出不穷,例如近年来一些新的类脑智能算法提出来,将脑科学与思维科学的一些新的成果结合到神经网络算法之中,形成不同于深度学习的神经网络技术路线,如胶囊网络等,技术的不断进步是推动全球人工智能的发展的不竭动力,这些新技术的研究和应用将加快全球人工智能的发展进程。
2、全球主要经济体加快人工智能战略布局
人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。自2013年以来,包括美国、中国、欧盟、英国、日本、德国、法国、韩国、印度、丹麦、芬兰、新西兰、俄罗斯、加拿大、新加坡、阿联酋、意大利、瑞典、荷兰、越南、西班牙等20多个国家和地区发布了人工智能相关战略、规划或重大计划,越来越多的国家加入到布局人工智能的队列中,从政策、资本、技术人才培养、应用基础设施建设等方面为本国人工智能的落地保驾护航。
3、全球人工智能领域新基建扩容趋势明显
人工智能新基建包含智能芯片、5G、感知网络、数据中心等支持人工智能发展的生产性设施建设,同时人工智能与实体经济深度融合做构建的智能经济形态也是人工智能领域新基建的一部分。
近年来,全球人工智能发展的生产性设施建设步伐加快,2020年新冠疫情在全球爆发,对全球的经济生产活动产生较大的冲击,但值得注意的是,全球范围内的新基建业务扩容未被阻断,从各国政府到行业主要企业都积极参与到人工智能新基建的建设中。
人工智能芯片是人工智能的大脑,随着全球人工智能终端设备数量的增长以及边缘计算的需求逐步提升,全球人工智能芯片需求量快速增长,市场规模不断扩大。
根据Tractica公布的数据显示,2019年全球人工智能芯片市场规模达110亿美元,预计2020年全球人工智能芯片市场规模将增加至175亿美元,2025年全球人工智能芯片市场规模有望突破720亿美元。
5G的低延迟、高速度和边缘计算能力可以推动人工智能设备更智能地进行大量的数据连接,提升人工智能设备的学习能力,与此同时将5G网络与人工智能技术相结合,可以有效提高5G网络的智能化程度,使网络从人工配置参数与使用专家的经验编制策略转变为网络智能配置参数与智能策略自动生成成为可能。
由此可见,5G与人工智能的互促式发展可以加速全球人工智能应用突破与落地,因此,目前全球范围正在加快5G商用推广的步伐,全球5G基础设施建设如火如荼。
根据GSMA(全球移动通信系统协会)公布的数据显示,截至2020年7月底,全球38个国家已经部署了92张5G移动网络,较4月底增加了22张;截至2020年9月,全球5G终端达到18类362款,其中162款手机,113款已经上市,其中70%+支持SA(独立组网),5G商用正在加快。
根据爱立信公布的数据显示,截至2020年6月底,全球范围内共部署了约72万个5G基站,2020年8月这一数据增加至80万个,前瞻预计,到2020年底,全球5G基站总数将达到100万个。
近年来,随着计算能力越来越强,云计算、大数据、虚拟化等技术的出现,让人工智能有了可依赖的现实技术基础。人工智能的算法需要依赖海量的数据,利用海量的样本进行机器学习。
数据中心天然就是一个海量数据库,每天生成的和转发的数据都在呈指数增长,有了这些数据,再利用大数据技术去分析,就能得到很多有意义的数据供人工智能学习;与此同时,人工智能要依赖计算,只有高速的计算能力才能在短时间完成指定的任务,现在的数据中心利用网络进行分布式计算,大大提高了计算能力,人工智能的学习能力可以得到大幅提升。数据中心为人工智能提供更多的技术支撑与创造无限可能。
全球数据中心建设加快有力的推动了人工智能的发展,从2017年开始,伴随着大型化、集约化的发展,全球数据中心数量开始缩减,但值得注意的是,随着行业集中度的逐步提升,全球超大型数据中心数量总体增长,据Cisco的统计数据显示,2019年,全球超大型数据中心数量约447个;至2020年,全球超大新数据中心将达到485个。
根据Gartner公布的数据显示,2017年底全球部署机架数达到493.3万架,安装服务器超过5500万台,2019年全球数据中心部署的机架数量约为495.4万架。预计2020年机架数将超过498万架,服务器超过6200万台。
4、全球人工智能商业化加速应用场景愈发丰富
人工智能技术经过过去近10年的快速发展已经取得较大突破,随着人工智能理论和技术的日益成熟,人工智能场景融合能力不断提升,因此,近年来商业化应用已经成为人工智能科技企业布局的重点,欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,中国作为后期之秀,近年来在政策、资本的双重推动下,人工智能商业化应用进程加快。目前,人工智能技术已在金融、医疗、安防、教育、交通、制造、零售等多个领域实现技术落地,且应用场景也愈来愈丰富
值得注意的是,尽管目前全球范围内人工智能商业化进程正加速推进,但受制于应用场景的复杂度、技术的成熟度、数据的公开水平等限制,全球人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率仍有待提高。
5、全球人工智能市场规模快速增长
基于人工智能技术的各种产品在各个领域代替人类从事简单重复的体力或脑力劳动,大大提升了生产效率和生活质量,也促进了各个行业的发展和变革。
普华永道数据预测,受到下游需求倒逼和上游技术成型推动的双重动因,2020年全球人工智能市场规模将达到2万亿美元,预计未来几年市场将继续保持高速增长,到2030年全球市场规模将达到15.7万亿美元的规模,约合人民币104万亿元。
6、北美地区人工智能产业发展领先
近年来,人工智能在北美洲、亚洲、欧洲地区发展愈演愈烈。北美、亚洲和欧洲是全球人工智能发展最为迅速的地区。截止2019年底,北美地区共有2472家人工智能活跃企业,超级独角兽企业78家;亚洲地区活跃人工智能企业1667家,超级独角兽企业8家;欧洲地区活跃人工智能企业1149家,超级独角兽企业8家。
注:超级独角兽指的是估值超过100亿美元的企业
7、科技巨头纷纷布局人工智能行业
近年来,全球科技巨头纷纷布局人工智能。在美国地区,Google实行“全面开花”的策略,在云服务、无人驾驶、虚拟现实、无人机、仓储机器人等领域均有布局。Facebook依托社交网络,从产品中获得数据、训练数据,再将其人工智能产品反作用于社交网络用户。
微软则致力于将人工智能技术应用到智能助手、AR/VR等领域,例如Skype及时翻译、小冰聊天机器人、Cortana虚拟助理等应用。在中国,互联网巨头企业如百度、腾讯和阿里均纷纷依托自身平台优势,构建人工智能服务产品,主要布局于人工智能应用层领域。
8、全球人工智能新一轮资本热潮方兴未艾
从生产方式的智能化改造,到生活水平的智能化提升,再到社会治理的智能化升级,新一代人工智能的应用驱动特征愈加明显,大量新兴应用场景持续培育形成。快速丰富的数据储备,逐渐清晰的业务逻辑,以及即将落地的商业价值,促使全球人工智能新一轮资本热潮方兴未艾。
根据CBInsights公布的数据显示,2014-2019年全球人工智能融资金额和融资次数逐年增长,2019年再创新高,融资金额达到265.80亿美元,融资次数超过2000次。
以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资、IPO募投可研等解决方案。
一文了解人工智能芯片的发展和现状
之后,由于高清视频、游戏等行业的发展,GPU产品取得快速的突破;同时人们发现GPU的并行计算特性恰好适应人工智能算法大数据并行计算的要求,如GPU比之前传统的CPU在深度学习算法的运算上可以提高9倍到72倍的效率,因此开始尝试使用GPU进行人工智能的计算。
进入2010年后,云计算广泛推广,人工智能的研究人员可以通过云计算借助大量CPU和GPU进行混合运算,事实上今天人工智能主要的计算平台还是云计算。但人工智能业界对于计算能力的要求不断快速地提升,因此进入2015年后,业界开始研发针对人工智能的专用芯片,通过更好的硬件和芯片架构,在计算效率上进一步带来10倍的提升。
人工智能核心计算芯片发展趋势
目前,根据计算模式,人工智能核心计算芯片的发展分为两个方向:一个是利用人工神经网络从功能层面模仿大脑的能力,其主要产品就是通常的CPU、GPU、FPGA及专用定制芯片ASIC。
另一个神经拟态计算则是从结构层面去逼近大脑,其结构还可进一步分为两个层次,一是神经网络层面,与之相应的是神经拟态架构和处理器,如IBM的TrueNorth芯片,这种芯片把数字处理器当作神经元,把内存作为突触。
与传统冯诺依曼结构不同,它的内存、CPU和通信部件完全集成在一起,因此信息的处理完全在本地进行,克服了传统计算机内存与CPU之间的瓶颈。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。二是神经元层面,与之相应的是元器件层面的创新。如IBM苏黎世研究中心宣布制造出世界上首个人造纳米尺度随机相变神经元,可实现高速无监督学习。
从人工智能芯片所处的发展阶段来看,从结构层面去模仿大脑运算虽然是人工智能追求的终极目标,但距离现实应用仍然较为遥远,功能层面的模仿才是当前主流。因此CPU、GPU和FPGA等通用芯片是目前人工智能领域的主要芯片,而针对神经网络算法的专用芯片ASIC也正在被Intel、Google、英伟达和众多初创公司陆续推出,并有望将在今后数年内取代当前的通用芯片成为人工智能芯片的主力。
2
人工智能芯片(二):GPU
“人工智能算法的实现需要强大的计算能力支撑,特别是深度学习算法的大规模使用,对计算能力提出了更高的要求。”
传统的通用CPU之所以不适合人工智能算法的执行,主要原因在于其计算指令遵循串行执行的方式,没能发挥出芯片的全部潜力。与之不同的是,GPU具有高并行结构,在处理图形数据和复杂算法方面拥有比CPU更高的效率。
对比GPU和CPU在结构上的差异,CPU大部分面积为控制器和寄存器,而GPU拥有更多的ALU(ARITHMETICLOGICUNIT,逻辑运算单元)用于数据处理,这样的结构适合对密集型数据进行并行处理。
CPU执行计算任务时,一个时刻只处理一个数据,不存在真正意义上的并行,而GPU具有多个处理器核,在一个时刻可以并行处理多个数据。程序在GPU系统上的运行速度相较于单核CPU往往提升几十倍乃至上千倍。
随着英伟达、AMD等公司不断推进其GPU的大规模并行架构支持,面向通用计算的GPU(即GPGPU,GENERALPURPOSEGPU,通用计算图形处理器)已成为加速可并行应用程序的重要手段。
CPU及GPU结构及功能对比
GPU的发展经历了三个阶段:第一代GPU(1999年以前),部分功能从CPU分离,实现硬件加速,以GE(GEOMETRYENGINE)为代表,只能起到3D图像处理的加速作用,不具有软件编程特性。
第二代GPU(1999-2005年),实现进一步的硬件加速和有限的编程性。1999年英伟达GEFORCE256将T&L(TRANSFORMANDLIGHTING)等功能从CPU分离出来,实现了快速变换,这成为GPU真正出现的标志;2001年英伟达和ATI分别推出的GEFORCE3和RADEON8500,图形硬件的流水线被定义为流处理器,出现了顶点级可编程性,同时像素级也具有有限的编程性,但GPU的编程性比较有限。
第三代GPU(2006年以后),GPU实现方便的编程环境可以直接编写程序;2006年英伟达与ATI分别推出了CUDA(COMPUTERUNIFIEDDEVICEARCHITECTURE,统一计算架构)编程环境和CTM(CLOSETOTHEMETAL)编程环境;2008年,苹果公司提出一个通用的并行计算编程平台OPENCL(OPENCOMPUTINGLANGUAGE,开放运算语言),与CUDA绑定在英伟达的显卡上不同,OPENCL和具体的计算设备没有关系。
GPU芯片的发展阶段
目前,GPU已经发展到较为成熟的阶段。谷歌、FACEBOOK、微软、TWITTER和百度等公司都在使用GPU分析图片、视频和音频文件,以改进搜索和图像标签等应用功能。GPU也被应用于VR/AR相关的产业。此外,很多汽车生产商也在使用GPU芯片发展无人驾驶。
根据研究公司TRACTICALLC预测,用于人工智能的GPU将从2016年的不到一亿美元增长到2025年的140亿美元,GPU将出现爆炸式增长。
2016-2025年不同区域人工智能GPU收入预测(来源:TRACTICA)
近十年来,人工智能的通用计算GPU完全由英伟达引领。2010年英伟达就开始布局人工智能产品,2014年宣布了新一代PASCALGPU芯片架构,这是英伟达的第五代GPU架构,也是首个为深度学习而设计的GPU,它支持所有主流的深度学习计算框架。
2016年上半年,英伟达又针对神经网络训练过程推出了基于PASCAL架构的TESLAP100芯片以及相应的超级计算机DGX-1。对于TESLAP100,英伟达首席执行官黄仁勋称这款GPU的开发费用高达20亿美元,而英伟达全年的营收也不过才50亿美元。
深度学习超级计算机DGX-1包含TESLAP100GPU加速器,并采用英伟达NVLINK互联技术,软件堆栈包含主要深度学习框架、深度学习SDK、DIGITSGPU训练系统、驱动程序和CUDA,能够快速设计深度神经网络(DNN)。拥有高达170TFLOPS的半精度浮点运算能力,相当于250台传统服务器,可以将深度学习的训练速度加快75倍,将CPU性能提升56倍,报价12.9万美元。2016年9月北京GTC大会上,英伟达针对神经网络推理过程又推出了基于PASCAL的产品TESLAP4/P40。
AMD则在2016年底集中发布了一系列人工智能产品,包括3款图形加速卡(品牌名MI),4款OEM机箱和一系列开源软件,以及下一代VEGA架构的GPU芯片。未来,AMD希望MI系列硬件加速器、ROCM软件平台和基于ZEN的32核以及64核服务器CPU三者合力,为超算客户提供一整套基于AMD产品线的解决方案。
除了英伟达和AMD之外,INTEL计划在2017年将深度学习推理加速器和72核至强XEONPHI芯片推向市场。除了传统的CPU、GPU大厂,移动领域的众巨头在GPU的布局也非常值得关注。据说苹果也在搜罗GPU开发人才以进军VR市场,目前苹果A9的GPU性能与骁龙820相当,A9GPU采用
除了英伟达和AMD之外,INTEL计划在2017年将深度学习推理加速器和72核至强XEONPHI芯片推向市场。除了传统的CPU、GPU大厂,移动领域的众巨头在GPU的布局也非常值得关注。
据说苹果也在搜罗GPU开发人才以进军VR市场,目前苹果A9的GPU性能与骁龙820相当,A9GPU采用的是POWERVRROGUE家族的另外一种设计——GT7600,而苹果开发的A9X处理器性能与INTEL的酷睿M处理器相当,断了移动处理器市场的ARM也开始重视GPU市场,其推出的MALI系列GPU凭借低功耗、低价等优势逐渐崛起。
3
人工智能芯片(三):FPGA
FPGA(FIELD-PROGRAMMABLEGATEARRAY),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。用户可以通过烧入FPGA配置文件来定义这些门电路以及存储器之间的连线。
这种烧入不是一次性的,即用户可以把FPGA配置成一个微控制器MCU,使用完毕后可以编辑配置文件把同一个FPGA配置成一个音频编解码器。因此它既解决了定制电路灵活性的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA内部包含大量重复的IOB、CLB和布线信道等基本单元。FPGA在出厂时是“万能芯片”,用户可根据自身需求,用硬件描述语言(HDL)对FPGA的硬件电路进行设计;每完成一次烧录,FPGA内部的硬件电路就有了确定的连接方式,具有了一定的功能;输入的数据只需要依次经过各个门电路,就可以得到输出结果。
换言之,FPGA的输入到输出之间并没有计算过程,只是通过烧录好的硬件电路完成信号的传输,因此对于计算任务的针对性非常强,速度很高。
而正是因为FPGA的这种工作模式,决定了需要预先布置大量门阵列以满足用户的设计需求,因此有“以面积换速度”的说法:使用大量的门电路阵列,消耗更多的FPGA内核资源,用来提升整个系统的运行速度。
FPGA在人工智能领域的应用
FPGA可同时进行数据并行和任务并行计算,在处理特定应用时有更加明显的效率。对于某个特定运算,通用CPU可能需要多个时钟周期;而FPGA可以通过编程重组电路,直接生成专用电路,仅消耗少量甚至一次时钟周期就可完成运算。
在功耗方面,FPGA也具有明显优势,其能耗比是CPU的10倍以上、GPU的3倍。究其原因,在FPGA中没有去指令与指令译码操作,在INTEL的CPU里,由于使用了CISC架构,仅仅译码就占整个芯片能耗的约50%;在GPU里,取指与译码也消耗10%至20%的能耗。
此外,由于FPGA的灵活性,很多使用通用处理器或ASIC难以实现的下层硬件控制操作技术利用FPGA可以很方便的实现,从而为算法的功能实现和优化留出了更大空间。
同时FPGA一次性成本(光刻掩模制作成本)远低于ASIC,在芯片需求还未成规模、深度学习算法暂未稳定需要不断迭代改进的情况下,利用具备可重构特性的FPGA芯片来实现半定制的人工智能芯片是最佳选择。
由于FPGA灵活快速的特点,在众多领域都有替代ASIC的趋势,据市场机构GRANDVIEWRESEARCH的数据,FPGA市场将从2015年的63.6亿增长到2024年的约110亿美元,年均增长率在6%。
2014-2024年全球FPGA市场规模预测(来源:GRANDVIEWRESEARCH)
目前,FPGA市场基本上全部被国外XILINX、ALTERA(现并入INTEL)、LATTICE、MICROSEMI四家占据。其中XILINX和ALTERA两大公司对FPGA的技术与市场占据绝对垄断地位。在ALTERA尚未被INTEL收购的2014年,XILINX和ALTERA分别实现23.8亿美元和19.3亿美元的营收,分别占有48%和41%的市场份额,而同年LATTICE和MICROSEMI(仅FPGA业务部分)两公司营收为3.66亿美元和2.75亿美元,前两大厂商占据了近90%的市场份额。
2015年FPGA厂商市场份额分析(来源:IHS)
4
人工智能芯片(四):专用集成电路
目前以深度学习为代表的人工智能计算需求,主要采用GPU、FPGA等已有适合并行计算的通用芯片来实现加速。在产业应用没有大规模兴起之时,使用这类已有的通用芯片可以避免专门研发定制芯片(ASIC)的高投入和高风险。但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而天然存在性能、功耗等方面的瓶颈。随着人工智能应用规模的扩大,这类问题将日益突出。
GPU作为图像处理器,设计初衷是为了应对图像处理中需要大规模并行计算。因此,其在应用于深度学习算法时,有三个方面的局限性:第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理,并行度的优势不能完全发挥。
第二,硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法像FPGA一样可以灵活的配制硬件结构;第三,运行深度学习算法能效远低于FPGA。
尽管FPGA倍受看好,甚至新一代百度大脑也是基于FPGA平台研发,但其毕竟不是专门为了适用深度学习算法而研发,实际仍然存在不少局限:第一,基本单元的计算能力有限。
为了实现可重构特性,FPGA内部有大量极细粒度的基本单元,但是每个单元的计算能力(主要依靠LUT查找表)都远远低于CPU和GPU中的ALU模块。第二,速度和功耗相对专用定制芯片(ASIC)仍然存在不小差距;第三,FPGA价格较为昂贵,在规模放量的情况下单块FPGA的成本要远高于专用定制芯片。
因此,随着人工智能算法和应用技术的日益发展,以及人工智能专用芯片ASIC产业环境的逐渐成熟,人工智能ASIC将成为人工智能计算芯片发展的必然趋势。
首先,定制芯片的性能提升非常明显。例如英伟达首款专门为深度学习从零开始设计的芯片TeslaP100数据处理速度是其2014年推出GPU系列的12倍。谷歌为机器学习定制的芯片TPU将硬件性能提升至相当于当前芯片按摩尔定律发展7年后的水平。
正如CPU改变了当年庞大的计算机一样,人工智能ASIC芯片也将大幅改变如今AI硬件设备的面貌。如大名鼎鼎的AlphaGo使用了约170个图形处理器(GPU)和1200个中央处理器(CPU),这些设备需要占用一个机房,还要配备大功率的空调,以及多名专家进行系统维护。而如果全部使用专用芯片,非常可能只需要一个盒子大小,且功耗也会大幅降低。
第二,下游需求促进人工智能芯片专用化。从服务器,计算机到无人驾驶汽车、无人机再到智能家居的各类家电,至少数十倍于智能手机体量的设备需要引入感知交互能力和人工智能计算能力。而出于对实时性的要求以及训练数据隐私等考虑,这些能力不可能完全依赖云端,必须要有本地的软硬件基础平台支撑,这将带来海量的人工智能芯片的需求。
近两年,国内国外人工智能芯片层出不穷。英伟达在2016年宣布研发投入超过20亿美元用于深度学习专用芯片,而谷歌为深度学习定制的TPU芯片甚至已经秘密运行一年,该芯片直接支撑了震惊全球的人机围棋大战。无论是英伟达、谷歌、IBM、高通还是国内的中星微、寒武纪,巨头和新创企业都将人工智能芯片视为具有战略意义的关键技术进行布局,人工智能芯片正呈现百花齐放的局面。
人工智能专用芯片研发情况一览
目前人工智能专用芯片的发展方向包括:主要基于FPGA的半定制、针对深度学习算法的全定制和类脑计算芯片三个阶段。
在芯片需求还未成规模、深度学习算法暂未稳定需要不断迭代改进的情况下,利用具备可重构特性的FPGA芯片来实现半定制的人工智能芯片是最佳选择。这类芯片中的杰出代表是国内初创公司深鉴科技,该公司设计了“深度学习处理单元”(DeepProcessingUnit,DPU)的芯片,希望以ASIC级别的功耗来达到优于GPU的性能,其第一批产品就是基于FPGA平台。
这种半定制芯片虽然依托于FPGA平台,但是利用抽象出了指令集与编译器,可以快速开发、快速迭代,与专用的FPGA加速器产品相比,也具有非常明显的优势。
在针对深度学习算法的全定制阶段,芯片是完全采用ASIC设计方法全定制,性能、功耗和面积等指标面向深度学习算法都做到了最优。谷歌的TPU芯片、我国中科院计算所的寒武纪深度学习处理器芯片就是这类芯片的典型代表。
在类脑计算阶段,芯片的设计目的不再局限于仅仅加速深度学习算法,而是在芯片基本结构甚至器件层面上希望能够开发出新的类脑计算机体系结构,比如会采用忆阻器和ReRAM等新器件来提高存储密度。
这类芯片的研究离成为市场上可以大规模广泛使用的成熟技术还有很大的差距,甚至有很大的风险,但是长期来看类脑芯片有可能会带来计算体系的革命。
这类芯片的典型代表是IBM的Truenorh芯片。类脑计算芯片市场空间巨大。根据第三方预测,包含消费终端的类脑计算芯片市场将在2022年以前达到千亿美元的规模,其中消费终端是最大市场,占整体98%,其他需求包括工业检测、航空、军事与国防等领域。返回搜狐,查看更多
人工智能产业发展现状与四大趋势
随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。
一人工智能的内涵与产业链
(一)人工智能的内涵
人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。
图1:人工智能内涵示意图
来源:火石创造根据公开资料绘制
(二)人工智能的发展历程
从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。
第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。
第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。
第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。
图2:人工智能的三次发展浪潮
来源:火石创造根据公开资料绘制
(三)人工智能的产业链
人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。
图3:人工智能产业链
来源:火石创造根据公开资料绘制
二全球人工智能产业发展现状
(一)人工智能产业规模保持快速增长
近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。
图4:2017-2025年全球人工智能产业规模(单位:亿美元)
数据来源:火石创造根据公开资料整理
(二)全球主要经济体争相布局,中美两国占据领先位置
人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。
图5:全球人工智能企业数量分布
数据来源:中国信通院,火石创造整理
(三)公共数据集不断丰富,关键平台逐步形成
全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。
(四)人工智能技术飞速发展,应用持续深入
近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。
三全球人工智能产业发展趋势
(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎
算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。
(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点
随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。
(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临
在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。
(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识
随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。
原文标题 : 全球视野下人工智能产业发展现状与四大趋势
全球人工智能十大芯片
麒麟980是华为卓越人工智能手机芯片,是目前全球最领先的手机SoC。麒麟980在业内最早商用TSMC7nm工艺,首次实现基于ARMCortex-A76的开发商用,首商用Mali-G76GPU,实现业界最优性能与能效;首搭载双核NPU,实现业界最高端侧AI算力,全面开启智慧生活;全球率先支持LTECat.21,实现业界最快峰值下载速率1.4Gbps,为用户在全场景下带来稳定极速的移动联接体验。
搭载麒麟980的华为Mate20系列、荣耀V20、荣耀20、华为P30系列、Nova5Pro等手机已全面上市,为广大消费者带来更丰富、更强大、更智慧的AI手机使用体验。同时,华为全新推出HiAI2.0,带来更强劲的AI算力,提供更丰富的接口、算子和简单易用的开发工具包,携手广大开发者及合作伙伴,共同创造更智慧的美好未来。
昇腾310
昇腾310是一款面向边缘场景的高效灵活可编程的AI处理器,采用12nm工艺,典型配置在8W的功耗条件下整型性能可达16TOPS,半精度性能达到8TFLOPS。
芯片设计充分考虑边缘场景的性能,成本和功耗等因素,致力于将智能从中心侧带入边缘。其计算核心采用华为自研的达芬奇架构,针对深度学习的计算负载做了高度优化,大幅提高计算效率,确保在有限的功耗条件下高算力的输出.芯片采用主流的LPDDR4接口,同时内置了8个CPU核以及16路的视频处理单元和多种预处理单元等,从全系统视角进行芯片设计,进而达成系统成本最优。该芯片可以被广泛应用于智能安防,辅助驾驶,机器人,智能新零售和数据中心等场景。
华为昇腾910AI处理器
昇腾910处理器采用创新的华为自研达芬奇架构,针对AI运算特征而设计,通过3DCube来提升矩阵乘加的运算效率,支持多种混合精度计算及业界主流AI框架,提供256TFLOPSFP16的超强算力,实现业界最大单芯片计算密度,可用于大规模训练、AI超算集群等场景。
02地平线
02地平线
地平线边缘人工智能视觉处理器-征程/旭日
基于自主研发的人工智能专用计算架构BPU,地平线已成功流片量产了中国首款边缘人工智能处理器——面向智能驾驶的“征程”系列处理器和面向AIoT的“旭日”系列处理器,并已大规模商用。
此外,搭载地平线第二代BPU的车规级人工智能处理器现已流片成功,并拿下多个车厂前装项目。
基于自主研发的AI芯片,地平线可提供超高性价比的边缘AI芯片、极致的功耗效率、开放的工具链、丰富的算法模型样例和全面的赋能服务。
03高通
03高通
Qualcomm骁龙855移动平台
我们第四代终端侧AI引擎是面向拍摄、语音、XR和游戏的终极私人助理,打造更加智能、快速和安全的体验。第四代终端侧AI引擎充分利用所有内核,其能力是前代产品的3倍,带来卓越的终端侧AI功能。
Qualcomm致力于发明移动基础科技,从根本上改变了世界连接、计算与沟通的方式。把手机连接到互联网,Qualcomm的发明开启了移动互联时代;今天,Qualcomm发明的基础科技催生了那些改变人们生活的产品、体验和行业。5G时代已经开启,Qualcomm始终位于无线通信科技变革的中心,为创新的未来奠定根基。在AI领域,Qualcomm的战略是将领先的5G连接与其AI研发相结合,以平台式创新助力AI变革众多行业并开启全新体验。目前,Qualcomm已支持完整的从云到端的AI解决方案,并与多家领先的中国AI软件开发商、云服务供应商和终端厂商建立了坚实的合作关系,打造最广泛的AI生态圈。
04寒武纪
04寒武纪
思元270
思元270芯片集成了寒武纪在处理器架构领域的一系列创新性技术,处理非稀疏深度学习模型的理论峰值性能提升至上一代MLU100的4倍,达到128TOPS(INT8);同时兼容INT4和INT16运算,理论峰值分别达到256TOPS和64TOPS;支持浮点运算和混合精度运算。思元270采用寒武纪公司自主研发的MLUv02指令集,可支持视觉、语音、自然语言处理以及传统机器学习等高度多样化的人工智能应用,更为视觉应用集成了充裕的视频和图像编解码硬件单元。
寒武纪在定点训练领域已实现关键性突破,思元270训练版板卡将可通过8位或16位定点运算提供卓越的人工智能训练性能,该技术有望成为AI芯片发展的重要里程碑。在系统软件和工具链方面,思元270继续支持寒武纪Neuware软件工具链,支持业内各主流编程框架。
05平头哥
05平头哥
玄铁910
玄铁910是一款高性能CPUIPCore,为高性能边缘计算芯片提供计算核心,可应用于机器视觉、人工智能、5G、边缘服务器、网络通信等领域。玄铁910是多核64位处理器,采用RISC-V架构,并扩展了百余条指令,设计有AI增强的向量计算引擎。性能方面,玄铁910最高支持16核心,单核性能达到7.1Coremark/MHz,主频达到2.5GHz,单核性能比目前业界最好的RISC-V处理器性能高40%以上。玄铁910配有完整、稳定的商业软件,涵盖编译器、集成开发工具、Linux操作系统、AI算法库与部署工具等。
06依图
06依图
求索(questcore)
求索(questcore™)是全球首款云端视觉AI芯片,由依图科技与ThinkForce联合打造,基于全球领先人工智能算法,旨在提升智能密度,是目前性价比最高的云端AI推理芯片。单芯片支持50路高清视频实时全解析,AI计算能效比是市面上最先进GPU方案的5-10倍。
求索基于拥有自主知识产权的ManyCore™架构,采用16nmFinFET工艺,是一颗具有完整端到端业务处理能力的异构运算处理器,作为服务器芯片独立可用,不依赖IntelX86CPU,特有的灵活架构能兼顾云端和边缘的视觉推理需求。
求索依托依图世界领先的视觉算法,可用于人脸识别、视频结构化、轨迹追踪等多种实时智能视频分析任务。基于求索构建的智能视频解析系统,将原本需要16台机柜的方案压缩到1台,使数据中心整体建设费用投入减少50%,运维成本降低80%,能实现一台机柜驱动一座城市的视频流实时分析,让10万路智能视频解析成标配,50万路成现实,创新城市管理与建设思路,为智慧城市、智慧交通、智能安防等人工智能行业大规模应用落地和普及奠定了坚实的基础。
07紫光展锐
07紫光展锐
虎贲T710
紫光展锐虎贲T710是紫光展锐新一代AI芯片平台,八核架构,由4颗2.0GHz的ArmCortex-A75以及4颗1.8GHz的ArmCortex-A55组成,GPU采用IMGPowerVRGM9446。
虎贲T710拥有在人工智能AI、安全性、连接、性能、功耗五大领域的突出优势。通过更强的AI算力,虎贲T710可实现丰富的AI应用,为图片和视频的拍摄、AR/VR游戏等应用带来更加优异的体验。返回搜狐,查看更多