人工智能(机器学习)学习之路推荐
目录一、人工智能(机器学习)学习之路推荐——Python二、纯小白——计算机小白三、计算机小白——计算机语言(Python)小白四、计算机语言小白——算法小白五、算法小白——人生方向定位六、人生定位——机器学习大师七、推荐书单一、人工智能(机器学习)学习之路推荐——Python虽然自己学过C,但是自己曾从事python后端开发、python算法工程师岗位、Python(机器学习)讲师,所以本篇文章主要通过python来介绍机器学习的路线。当然,前期的机器学习基础的推荐,是不会分语言的。
二、纯小白——计算机小白如果你是完完全全的纯小白,并且只会计算机这三个字。
个人推荐你可以看看《计算机科学导论》(专业书籍个人推荐看纸质书,一是支持正版;二是电子书不利于观看书的全貌;三是电子书不方便做笔记),看完之后你应该明白计算机的相关知识,如计算机网络、数据结构与算法、数据库、文件存储过程、计算机语言。如果看完《计算机科学导论》你对不仅仅对人工智能感兴趣,还对计算机本身感兴趣,可以看看下面几本书。你可以看看《计算机:一部历史》,可以作为你的计算机发展史的普及读物。你可以看看《网络是怎样连接的》——计算机网络,恩,说的简单点就是看完本书,你应该能知道WiFi的实现原理。你可以看看《计算机组成原理》——恩,看完你能明白你的计算机工作的原理,如计算机的五大组成部分为控制器、运算器、存储器、输入设备、输出设备。你可以看看《数据结构与算法》——如果没有编程基础,跳过。有C/C++的基础,可以看看大学的教材《数据结构与算法-C/C++语言》;如果你有Python的基础,可以看看《数据结构与算法-Python描述》,就是总之对应语言的数据结构与算法书籍即可。多说一嘴,可能有同学问:老师,买哪一本《计算机科学导论》。我会回答你:哪一本都行,因为书籍能出现在市面上,就有他出现的理由,你买去看就行了。没必要挑三拣四,虽然我不得不承认市面上真的有一些写的可能不太好的书(我自己看过几本),但这都是个例。
三、计算机小白——计算机语言(Python)小白看完《计算机科学导论》,相信你对计算机应该有了一定的了解。如果你不只是想成为最强王者,这个时候你应该入手一门计算机语言了。C、C++、Java、Python、R、Go、PHP、JavaScript,很多很多,他们各有优缺点,你自己仔细甄选。但是Python毫无疑问是最简单的,又由于本人从事Python开发,我介绍下你如何快速入门Python。
首先你可以看看这两位老师的博客:或,期间你可以穿插我接下来讲的书籍互补,但是你必须的看完博客第一篇——Python入门,之后再去看其他书籍,因为你需要使用Pycharm,而不是其他IDE编辑Python代码。学Python可以看我博客:Python从入门到放弃https://www.cnblogs.com/nickchen121/p/10718112.html第一本书应该是《Python从入门到实践》,这本书很浅显,但很适合小白,看完你可以去美国开个披萨店了。后面三个项目,不推荐做。第二本书应该是《笨方法学Python3》,很适合小白查漏补缺基础知识点。第三本书应该是《Python核心编程》,厚厚的一本书,更多的是接轨未来的项目,选看部分章节。第四本书应该是《流畅的Python》,如果你看完那位老师的Python面向对象高级的时候,可以看这本书,否则慎入,他会让你质疑自己是否学过python。第五本书《编写高质量Python代码的59个有效方法》,书名就可以看出,他能教会你什么。第六本书《改善Python程序的91个建议》,这个也不多说,干就对了,否则你代码写完只有你自己才看得懂了。四、计算机语言小白——算法小白本篇文章主要以Python举例,相信你现在对Python已经应用自如了,这个时候,你就需要补充算法知识,提高你的逻辑思维了。
首先你可以看看《数据结构与算法——Python描述》这本书,由于是中文的,相对友好,看完你最起码得知道线性表、链表、堆、栈、哈希表、二叉树、图之间的区别,然后一些简单的算法。数据结构与算法可以看我博客:数据结构与算法-Python/C-十七岁的有德-博客园人工智能涉及的学科
人工智能涉及的学科人工智能涉及哪些学科?计算机类自动化类数学专业领域类心理学和哲学学习人工智能为什么要会心理学知识?哲学和人工智能有什么关系?其他人工智能涉及哪些学科?人工智能相关学科有很多,看看你的知识储备够不够!需要补充哪些方面?
计算机类首先,人工智能是计算机科学中的一个分支,所以对应的计算机科学、计算机基础知识、编程语言、互联网知识、物联网知识、软件工程、信息安全等是必备的。
自动化类其次,人工智能的目标是实现辅助人类智慧、部分代替人类智能、扩展人类智能,所以还会涉及自动化、机器学习、智能科学与技术、空间信息与数字技术、电子与计算机工程、信息与计算科学。
数学然后,人工智能需要处理大量的数据,所以数学和逻辑思维也很重要,高数、数学与应用数学、信息与计算科学、数理基础科学、数据科学与大数据技术等。
专业领域类另外,除了一些通用的学科,面对不同的领域,还要学习不同的学科,如:通信工程、信息工程、水声工程、电子信息工程、微电子科学与工程、光电信息科学与工程、自然语言处理、电磁度场与无线技术、电子信息科学与技术、电波传播与天线、集成电路设计与集成系统、轨道交通信号与控制。
心理学和哲学除了计算机知识,心理学和哲学也是必学的学科。
学习人工智能为什么要会心理学知识?试想一下人工智能模仿的是人类的什么?是人类的智慧。人类的智慧由什么产生?人的思想、知识、记忆、创造力。而这一切皆由人的大脑控制。而心理学其实是大脑活动后的一种产物,所以要想让一台计算机真正拥有人类智慧,必须了解人类的心理活动和思考方式。与其说人工智能是在模仿人类智慧,不如说人工智能是在模仿人类思维。只有当人工智能可以像人类一样思考、分析问题、拥有人类的喜怒哀乐,才能算得上是真正的人工智能。
哲学和人工智能有什么关系?说到人工智能中的哲学问题,不得不提著名的图灵测试。图灵测试是由阿兰·麦席森·图灵在1950年的一篇论文《计算机器与智能》中提出的。图灵是英国著名的数学家和逻辑学家,被称为计算机科学之父、人工智能之父,是计算机逻辑的奠基者。图灵测试说的是,一个人和一台机器,在人类不知道对面是机器的情况下对他提问,以此来判断对面的是人类还是机器。进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。从哲学层面来说,如果一台机器通过了图灵测试,那么它真的能被称之为和人类一样有智慧吗?判定一台机器有智慧的标准或者说是界限到底是什么?在实际应用中,哲学在人工智能上也起到了很多决定性的作用。比如一台人工智能机器,在面对文化、信仰、法律都不同的日本人和阿拉伯人,一个可能说这台机器非常智能,一个可能说并不智能,达不到想要的、或做的不对。那么这时,这台机器能不能被称之为是一台人工智能机器?在人工智能发展上,有很多关于类似的哲学问题。仅仅是“智能”二字,在哲学上都有很多的争议。比如,智能的含义到底要怎么去定义?达到什么样的界定才能称之为智能?在这里,我给自己留一个作业,等以后我积累了更多的知识,再和大家讨论关于“人工智能与哲学之间的关系”的问题。
其他除了上面提到的学科,还有认知科学、神经生理学、信息论、控制论、不定性论等。因为人工智能属于跨学科的技术,所以想要学习人工智能,不仅要知道人工智能的基本知识,还要确定研究的方向,朝着既定的目标前进,才不至于在人工智能的学习道路上走岔了。