博舍

人工智能的创新发展与社会影响 人工智能情感研究现状论文怎么写的啊

人工智能的创新发展与社会影响

党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。

一、引言

1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。

跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。

总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。

为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。

二、人工智能的发展历程与启示

1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:

一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。

二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。

三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。

四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。

六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。

通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:

(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。

(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。

(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。

(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。

(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。

(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。

三、人工智能的发展现状与影响

人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。

(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。

(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。

(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。

(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。

由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。

四、人工智能的发展趋势与展望

人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。

(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。

(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。

(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。

(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。

(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。

(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。

五、我国人工智能的发展态势与思考

我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。

三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。

四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。

(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。

我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。

另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。

(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。

(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。

(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!

(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。

(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。

六、结束语

人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!

(主讲人系中国科学院院士)

人工智能论文范文(5篇)

人工智能论文全文(5篇)

时间:2023-04-1322:16:52

第1篇:人工智能论文范文

第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。

2园林设计中人工智能应用现状

2.1系统操作方面

由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。

2.2园林可重复使用性方面

目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。

2.3计算机辅助设计方面

计算机辅助设计即常说的CAD。目前来说,CAD并不能完全对口符合园林设计的需求,因为CAD只能呈现出单一的图形画面,既不利于设计者进行设计,也不利于客户对设计者的设计的理解,导致客户与设计者之间难免信息不对称,造成一定的信息偏差,影响之后园林设计出来的成果。

3加强人工智能在园林设计中应用的办法

3.1园林子系统的设计

作为整个园林系统的组成部分,园林子系统的设定概要应通过计算机实施建模,来对项目实施进行基本设定,在获得项目系统的自动生成规则之后,在对所收集到的园林基本数进行存档,来作为全局的运行参数,在一定程度上影响了计算机的运行结果。一般来说,存档信息有园林的设计规模、投资情况、发展需求以及相关的环境因素等,存档后,可能会对建筑的规模大小、选址、风格特点以及植物的搭配等造成影响。

3.2地形子系统的设计

地形子系统的设计应当是通过计算机对采集到的地质数据进行推理而后才进行的。一般来说,会采用规则引擎最为计算机的推理机,是基于专家系统的模式下进行推理的,工作原理是由机器来仿造人类在对事件进行考虑的思维和方法,通过进行试探性的方法来进行推理,并不断地对推理所得出来的结果进行解释和验证。对地质情况进行实时实地勘查是保证园林设计图纸正常输出的要求,这是不能单纯地依靠计算机来实现的,因为地质勘查涉及到很多复杂地形的勘查,只能依靠人工的方式。地质勘查可以分为前期阶段和后期阶段。前期阶段主要是设定园林工程的初稿,因此,只要对地质情况进行系统的粗略勘察即可。后期阶段主要是完成图纸设计要求,因此,对数据准确性要求更高,并勘查人员对此进行较为细致的处理。这以后才是通过对计算机智能系统软件的使用来将前期阶段和后期阶段所获得的数据进行智能化处理,完成相关数据的细化以及修正,然后通过系统推理得到一个初步的园林模型。

3.3主干道路子系统的设计

对地形子系统进行地形数据的输出即可得到主干道路设计,因为我们首先完成了地形的设计,因此,在接下来对道路进行设计的过程中就可以有效地避免其他的建筑和设施的干扰,这之后的设计才能按部就班地开展。推理的总体规则为:首先,由园林的建设规模、投资情况等来对道路的类型和所需费用等进行计算,得到相关数据;然后,结合之前的输出地形图来生成推荐道路图,并检查道路的密度是否符合园林的设计规范,接着根据道路建设定额表来对工程造价进行计算,看是否符合预期投资情况;最后,对道路图进行人工的调整,并反复验算。

3.4图纸和图表输出子系统的设计

第2篇:人工智能论文范文

“人工智能”一词最早是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能其英文全称为ArtificialIntelligence,缩写为人所共知的AI,它主要是对用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统等进行研究讨论。对于人工智能的定义义众说不一,一般有两种说法:一种是人工智能是关于知识的学科,即怎样对知识进行表示以及怎样获取知识并对知识进行使用的科学;另一种是人工智能研究的是如何实现让计算机做过去只有人才能够做的智能工作。但是不管是哪一种,它都是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能的定义可以分为两部分,即“人工”和“智能”。对于“人工”,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。诞生对于“智能”,则存在着很大的争议。因为这涉及到了诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人类唯一能够了解的智能就是人类本身的智能。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。人工智能的实现方式有2种方法。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineeringapproach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modelingapproach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

2人工智能的发展

对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3对人工智能的思考

3.1人工智能与人的智能

从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。

3.2对机器人三大定律的困惑

美国最著名的科普作家艾萨克.阿西莫夫提出过比较著名的机器人三大定律:第一定律,机器人不得伤害人,或任人受到伤害而无所作为;第二定律,机器人应服从人的一切命令,但命令与第一定律相抵触时例外;第三定律,机器人必须保护自身的安全,但不得与第一、第二定律相抵触。虽然这只是科幻作家所提出的一家之言,但是也代表了人类对与人工智能发展的一种期望与担心。人们害怕自己所创造出来的人工智能会伤害人类自己。但是阿西莫夫所提出三大定律都是以人类为中心的,而忽视了人工智能本身。或许这是人类的一种天性,世间所有的事物都应该围绕人类自身来定义、发展。就好像人类自以为掌控了能够改变大自然的力量,最终却被大自然反噬一样。同时,随着科学技术的发展,人工智能已经不单单需要逻辑思维与模仿,同时还应该将情感赋予人工智能。因为随着科学家对人类大脑和精神系统的研究的深入,已经愈来愈肯定情感是智能的一部分。如果人工智能具有了情感之后,人类的自我中心又是否会伤害到人类自己创造出来的人工智能。

3.3对人工智能未来的思考

人工智能有着十分巨大的发展潜力,对于人工智能的研究虽然经过了很多年,但是这也仅仅是刚刚开始而已,继续研究下去在很多方面都会有重大的突破。自动推理是人工智能最经典的一个研究分支,它的基本理论是人工智能其它分支的共同基础。一直以来人工智能最热门的研究内容里面就有自动推理,同时在该知识系统中的动态演化特征及可行性推理的研究是一个十分热门的研究内容,很有可能取得大的突破。机器学习一直在致力于研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。在过去的很长的一段时间内都没有取得十分显著的成果。但是许多新的学习方法相继问世,并且已经有了实际的应用,这充分的说明在这方面的研究已经有了很大的进步。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。在经过人工智能研究人员的艰苦努力之后,在该领域中已取得了大量令人瞩目的理论与实际应用成果,许多产品已经进人了众多领域。智能信息检索技术在Internet技术的影响下,近年来发展势头十分迅猛,而且已经成为了人工智能的一个独立研究分支。

第3篇:人工智能论文范文

关键词:人工智能;新闻生产伦理;道德困境

一、人工智能技术在新闻生产中的现状分析

诞生于1960年的计算机辅助新闻是人工智能在新闻生产领域最早的应用。2000年左右,计算机辅助新闻开始进入数据驱动新闻阶段。2006年,汤普森公司开始将新闻机器人运用于财经数据分析,并生产出新闻,这标志着现代意义上的人工智能新闻真正产生。当前,人工智能主要依靠自然语言处理、预测分析和机器学习三种技术。在新闻报道中,人工智能的运用大致可分为自动化生产、人机交互和智能推荐三种类型。

(一)数据挖掘和机器写作推动新闻的自动化生产数据挖掘和机器写作是一种打破了新闻人工作常规模式的特殊的新闻生产方式,依赖于庞大的数据资源,运用技术的手段化繁为简,省去了传统新闻出稿的步骤。因此,数据的积累和清晰的数据支撑是推动新闻自动化生产的关键。这种将采访、写作、编辑、校对、分发、反馈等新闻生产环节融合在一起的方式,节省了人力、物力和时间,大大简化了新闻生产的过程,进一步优化了新闻生产的流程。这意味着,在一些专业报道中,机器人挖掘的数据会比记者发现、找到的数据更为精确可信,人和机器展现出平等合作、相互理解、辅助的关系,在不同方面各显其能,互相配合,可以让记者从单调重复的工作中逃离,从而更加专注于挖掘数字背后的意义,去做更有创造力的事。

(二)智能音箱和聊天机器改变人机交互的传统模式2017年7月,国务院的《新一代人工智能发展规划》中提到未来我国几十年人工智能的发展蓝图,着重强调发展人机智能共生的行为增强与脑机协同及人机群组协同等关键理论和技术,并指出未来人机协同将成为主流的生产和服务方式。智能语音服务由两部分构成,一部分是硬件,一部分是智能语音助手。硬件为语音助手提供运行环境,从物理上接受声音指令,并进行反馈。因此,智能语音可以通过声音方便地与终端交流,不需要控制手机或者终端界面就能参与数字生活和工作的方方面面。社会学家戈夫曼的场景理论认为,媒介、场景和行为之间存在高度的关联与互动关系。“场景”作为内容、形式、社交之后媒体的又一核心要素,在定制化需求体验和实现用户价值匹配方面得到了极大程度的体现。从这个意义上来说,智能语音扩张了我们进行媒介消费的空间。

(三)基于兴趣的智能推荐助推新闻传播的个性化人工智能视域下的智能推荐是指通过技术手段介入信息内容和信息受众之间,更改内容的传播方式和路径,从而更好地利用用户行为大数据,在“千人千面”的背景下实现用户不同偏好的内容推荐,达到分析并改变信息受众阅读偏好的效果。2019年,尼曼实验室在预测新闻业趋势时选出的一个关键词是“Newsfatigue”(新闻疲劳症)。因此,基于用户兴趣的算法可以督促记者更加全面地考虑用户需求,增加新闻内容曝光量,唤起用户的更多互动,从而更加有目的地进行个性化的推荐,将信息精准地投向用户,节省时间,优化用户在人工智能视域下的新闻阅读体验。

二、新闻生产伦理在人工智能视域下面临的困境

新闻伦理学的研究对象除新闻工作者的职业道德外,还应包括新闻媒体的社会道德功能。无论是从社会和谐还是科技发展的角度,传统媒体一直遵循的生产伦理价值,如真实性、客观性、把关控制等,都在新媒体技术的冲击下不断地受到挑战。

(一)新闻工作者面临的职业道德挑战1.人在技术裹挟下影响对新闻客观性的认识黄旦教授认为“客观性是指意识到新闻报道中的主观”,从而要求事实和价值分开的一种专业信念和道德准则。2019年两会期间,国内多家媒体都采用了时下流行的轻松、生活化的vlog报道形式。在传统新闻人看来,这种在生产过程中模糊新闻和娱乐、事实和意见的边界,无异于“国家和教堂间的界限”。随着技术的不断发展,算法成了大众传播中的“把关人”,控制着人类信息分发的权力,驱动着媒介生态环境的重构。这种信息生产、筛选与分发其实是一种有意识的信息“加工”行为。技术本身无好坏,但技术如何使用,算法按什么逻辑编写,界面如何设计等,都受到政治经济和人类心理的影响。2.科技的发展加剧新闻反转,影响新闻真实性真实是新闻的生命。近年来,“反转新闻”大量进入公众视野。闾丘露薇认为:“所谓的反转,只不过是公共舆论基于错误或者并不足够的信息而做出的价值判断,之后被更多的事实所证明是错误的而已。”“反转新闻”之所以出现,是由于传统媒体面临着互联网科技的冲击而陷入经济运营的困境,调查型记者的数量急剧锐减,越来越少的媒体机构有充足的时间、资源投入深入的调查。同时,在智能化算法的分发下,具有视觉冲击力、语言夸张的报道得到更多的推荐,使得真相或有用的信息隐藏在众多的声音中,用户更加难以把握事件的真实性。因此,信息不再是人们发现真相的帮手,而变成了认识世界的障碍,当用户无法获得优质的信息时,再多的信息也失去了意义。3.人工智能视域下新闻生产权力主体的转移法国思想家布莱兹•帕斯卡曾说,人的“主体性”指的是“与客体相对的主体所具有的特性,包括独立性、个体性、能动性以及占有和改变客体的能力”。但人工智能介入新闻生产与报道后会对部分职业新闻工作者带来冲击,担心一旦新闻生产的权力从人类手中交给机器,人类为了追求幸福快乐会放弃以人为中心的价值观,秉承以数据为中心的世界观,那么新闻生产者所谓的思想,即其引以为豪的创造天性也就逐渐逝去了,成了麻木的人、过时的人。但就目前来看,机器新闻取代的只是程序化、格式化的新闻报道,而这正是人的主体性得到释放的一种方式和渠道。然而需要承认的是,人工智能发展的脚步不会停止,只会被更巧妙地利用起来。在这种情况下,新闻生产者调和好工具理性与价值理性之间的冲突就显得十分必要了。

(二)新闻媒体面临的社会道德挑战1.个性化的推荐导致信息茧房和政治极化现象2006年,美国学者桑斯坦提出了“信息茧房”的概念,指的是人们根据不同的兴趣、价值观、身份、经历形成不同的部落,通过增强部落内部联系获得归属感。但由于每个人只接触属于自己的个人议程设置,就会出现和圈内人交流加剧意见极化的现象,而对外交流则很难进行沟通,从而使社会意见整合变得更加困难,公共生活更加难以协调,整个舆论生态环境不断恶化,有价值、有意义的信息难以得到有效的传递。如果说,过去我们评价一个新闻事件的影响力,看中的是它是否推动了制度变革,那么现在的评价标准或许就变成造就了几篇“10万+”。尤其是社交媒体中的机器人,运用算法,通过点赞、分享和搜索信息,将未经过筛选的假新闻传播力进行数量级扩大,导致受众缺乏社会责任感,难以认知自己所处的大环境,封闭于自我的想象中,使得极化现象在种族、宗教分裂原本就十分剧烈的发展中国家显得更加突出。尤其是对那些基础机构薄弱的国家来说,虚拟世界的愤怒激发的是现实世界中的暴力。而在经济结构稳定的国家,新闻生产的低门槛和低成本也使得假新闻泛滥,选民的自由意志被操纵,政治站位被重新定义。这一切都是技术缺陷在流量驱动商业模式下所带来的结果。2.社会资本的推动加剧了算法歧视和社会偏见技术和社会之间的关系是双向互动的。一种技术如何被使用、产生了怎样的效果,固然和技术本身的特性有关,但也会受到政治经济社会整体环境的影响。萨菲娅•诺布尔提到,Google搜索引擎的返回结果及其排序主要受到PageRank算法的影响,它会根据一个页面的超链接被其他页面引用的数量来决定搜索结果的排序。其背后的逻辑可以称为“引用多的即是好的或重要的”,这是一种价值判断,也是一种利益交换,遵循和延续了社会上的主流看法,但如果主流看法本身是带有偏见的,那么算法将延续这种偏见。这说明了算法并不是中立客观的,歧视就在眼前,但是披着中立的外衣,对社会上的边缘群体产生系统性的压迫。算法既可能复制主流社会对边缘群体的偏见,也可能受到商业资本的影响,将信息和知识商品化,从而加剧社会的不平等。3.人工智能扩大对数据的使用和隐私的侵犯信息社会的发展使得各国对隐私权保护的重心再一次发生了转移,促成这种变化的原因在于政府和商业组织搜集了太多受众自己都不知道的信息。因此,人工智能时代,我们每个人都生活在数据与算法中,无时无刻不在被“记录”和“监控”着。就像福柯所说的“全景监狱”,受众就是其中的一个个“囚犯”,而作为“狱卒”的媒体集团投其所好地向受众推送新闻,受众在享受人工智能带来的便利服务的同时,也会对自我控制权的丧失、个人信息的使用以及隐私的侵犯感到深深的忧虑。2019年1月,腾讯对各年龄层用户特征进行画像分析的大数据报告被网友质疑:微信“监控”了聊天数据。这不是社交媒体第一次遇到类似的质疑。即使腾讯声称所有数据均已进行匿名及脱敏处理,不涉及具体用户的隐私内容,但并不能完全消除公众的疑虑。当忧虑隐私近乎成为生活的一种常态,我们不禁要思考这样一个问题:我们到底是如何被技术力量裹挟着走到今天这一步的?又是在何时,我们开始认为体验了就要记录,记录了就要上传,上传了就要分享的这种行为模式再正常不过?

三、新闻生产伦理在人工智能视域下的发展策略

(一)从个人层面规范新闻生产伦理智能手机的迅速普及使新闻制作的门槛和成本降低,传统的新闻传播模式被打破,我们已来到一个人人均可发声的“去中心化”时代。作为人工智能时代的信息传播者,我们不仅要提高自我的媒介工具使用素养,还应不断加强在海量信息中筛选出有用信息的鉴别能力,从源头上降低新闻受失真、虚假信息误导的可能性。同时,在传受角色功能定位不断消弭的今天,提高传播者的媒介素养,使其拥有多元化的信息获取渠道、独立自主的思想意识和道德水平,给冰冷的算法和数据注入“温度”和人文关怀,不仅可以抵御经济快速发展带来的社会问题,也是净化舆论生态环境的需要。只有这样,人工智能时代的传媒业才能走得更远。此外,在智能信息时代,科学家、工程师不仅人数众多,而且参与社会重大决策和治理,他们的行为会对他人、社会带来比其他人更大的影响。他们在参与新闻生产的过程中通过合理的结构代码决定什么被看见,什么被隐藏,直接影响着新闻生产伦理。利用技术能做好事,也能做坏事,关键是被谁使用,如何使用。那么,要研究媒体技术在新闻生产伦理中的应用就不能忽视对开发应用这一技术的科技工作者的伦理道德规范。

(二)从组织层面规范新闻生产伦理与其他完全市场化的商品不同,媒体机构的公信力一方面承担着自身的发展前景,另一方面也关乎着国家社会的安全稳定。在人工智能背景下,新时代的媒体机构具有大众性和多元性等特征,覆盖的内容更加广泛,大多是靠广告获取收入,部分是通过付费订阅,且不同媒体机构间的竞争愈发激烈。但受众情愿买单的背后是对媒介机构的信任,一旦媒介机构肆无忌惮地利用受众的信任去欺骗受众,不遵守基本的媒介伦理,终会遭到受众的抛弃。因此,媒体机构要保证新闻的真实性、客观性,不断强化媒体机构履行社会责任的方式,推动社会的进步。在本质上,企业的社会责任和商业利益是一致的。当企业成长得足够强大时,“外部性”就会被内化。一个假新闻和低俗信息泛滥、全民娱乐至上、戾气十足的社会,不会为互联网的健康发展提供适合的土壤,所以要追究新闻平台的主体责任。平台在享受着杠杆规模效应的同时,更应该用高于法律和行业的标准来要求自己。另一方面,对于技术导致的部分问题,平台也可以通过技术的发展来解决。目前,“区块链+媒体”肩负着媒体人的夙愿,虽然这种模式对现有媒体生态的改变十分有限。但从“效率”转向“价值”,单一的技术思维转向立体的社会思维、公共思维来看,这是平台型产品发展壮大过程中的必经之路,也是以后互联网产业的重要动向。

(三)从社会层面规范新闻生产伦理在技术迭展的情况下,与新出现的人工智能相关的法律制定,在缺乏有价值的参照系下,很多方面的实施往往落后于新技术、新实践的发展。因此,我国于2017年开始实行的《网络安全法》对网络运营者在搜集用户信息、个人信息方面做出了规定,并对不当运用用户信息的行为给出了明确的处罚条例。人工智能媒体时代条件下,我们必须本着维护和发展的原则来实现人工智能的法律体系,慎重处理人工智能技术给社会带来的贡献,客观地看待它的价值和潜在的风险,尽快完善法律法规,适应新的媒体环境,特别是在人工智能技术无所不能的情况下,更要强调其价值理性,规范其行为,慎用公众数据,保护公众隐私,营造一个良好的新闻生态环境。

四、结语

人工智能与新闻传媒业的融合越来越成为行业人讨论的焦点。人工智能技术在改变着新闻信息生产、传播方式的同时,也要求着原有的新闻生产伦理做出调整,以适应科技的发展。除此之外,人工智能导致的在新闻生产领域产生的伦理问题,不是技术的失败,而是科学发展与我们对自身及他人在新闻生产过程中产生的伦理之间的深层联系。因此,探究人工智能在新闻生产伦理领域的发展及其带来的问题,不仅能够拓展新闻生产伦理与技术的研究视野,更有助于指导人工智能在未来不断变革的新闻实践。

参考文献:

1.张志强.新闻算法推送对“信息茧房”的构建探究[J].新媒体研究,2018(14):24-25.

2.赵瑜.人工智能时代的新闻伦理:行动与治理[J].学术前沿,2018(24):6-15.

3.许向东.关于人工智能时代新闻伦理与法规的思考[J].学术前沿,2018(12):60-66.

第4篇:人工智能论文范文

陈宝鑫等采用蒙特利尔认知量表,制定中医证候观察表,通过采集中医四诊信息,研究血管源性认知功能障碍合并代谢综合征患者的中医证候特点,总结出血管源性MCI合并代谢综合征组痰、瘀最为多见,非代谢综合征组以阴虚、血虚最为多见。血管源性MCI的证候要素主要为阴虚、阳虚、痰湿、火热、血瘀、气虚、血虚等7个证候要素。张允岭等采用因子分析寻找血管源性认知障碍的常见证候要素,统计其证候要素分布特点,最终得出6种证候要素,按比例大小依次为气虚、血瘀、痰、阴虚、阳虚、火。余忠海等在对历代医家以及大量文献研究的基础上,总结出MCI中医证型可以归纳为肾虚证、血瘀证、痰浊证、气血亏虚证、热毒内盛证、腑滞浊留证、阴虚阳亢证、气郁证。赵明星等以中医证素辨证理论为指导,设心、肝、脾、肺、肾五脏为病位要素,以气虚、血虚、阴虚、阳虚、精亏、痰、瘀等为病性要素,初步发现肾精亏虚证、心气虚证、痰浊证、血瘀证是MCI常见证型。以上对于MCI的中医证候的研究,都是基于小样本,被研究对象大都在65岁以上,而近年来,随着生活方式的改变、社会压力的不断增大,年龄在65岁以下非老年人记忆力也有明显下降趋势,其中也不乏有非正常的记忆减退,即MCI患者,因此,对65岁以下MCI患者的研究应引起足够重视。

二、临床治疗研究

1.药物治疗

田军彪等根据MCI浊凝清窍,瘀损脑络的病机确立了化浊解毒活血通络法,方中石菖蒲辟秽化浊,黄连味苦性寒,苦能去浊,寒可清毒,郁金活血兼有清心开窍之功,三药合而为君。川芎为血中气药,地龙性善走窜,两药可通达脑络气血之瘀滞,丹参、赤芍凉血活血,当归养血活血,诸药共担臣药之职。茯苓健脾渗湿,使痰浊无以生成。泽泻渗湿泄热,使浊毒之邪从下而出,为方中之佐。川芎上行头目兼有引经之用,为方中之使。共奏化浊解毒、活血通络之功。区树阳等治疗MCI则以健脾益气、活血化瘀、通窍益脑为原则。选用半夏燥湿化痰,天麻、僵蚕熄风化痰,白术燥湿分健脾,黄芪、党参健脾益气,丹参、赤芍、桃仁、红花活血化瘀通经络;配合川芎理气通滞、黄精、益智仁补肝肾益智。从化痰通窍汤组成看,经现代药理学研究,方中党参、黄芪、益智仁、白术、黄精,能提高老年人体质和免疫功能,同时丹参、红花、川芎、赤芍、桃仁、半夏可降低老年人的血液黏稠度,对MCI患者的微循环有显著改善作用,对改善老年人认知功能障碍有明显疗效。

2.非药物治疗

针灸等非药物治疗在MCI治疗康复中起着重要作用,针灸是中医又一特色,但是目前研究较少。陈仿英等通过观察64名老年MCI患者,在药物治疗同时给予耳穴压豆(耳穴心、肾、额、皮质下、神门),结果表明耳穴压豆辅助治疗MCI简便易行、无创、无明显不良反应,易被老年人接受。推拿具有疏通经络、调和气血的功效,孙莉等通过推拿百会、风池(双)、翳风(双)、四白(双)、印堂对MCI进行干预,通过调和气血、醒脑开窍,改善脑动脉的血液供应和局部血液循环,从而改善下降的认知状况或延缓MCI进程。潘锋丰认为可以针对加重认知功能障碍的因素进行治疗,如睡眠障碍的评估和治疗在改善患者记忆和认知功能过程中是重要的因素;孤独也被看做是加重认知损害的因素,对于那些社交网络缺乏或相对局限的人群,其痴呆风险增加,而随着社会联系的增加,痴呆风险呈现下降趋势。因此认为,使MCI患者身心放松,保持积极畅快的心情对MCI防治也会产生积极作用,但尚需大样本研究以证实。

三、MCI的预防

随着生活方式的改变、社会压力不断增加,各类疾病患病率明显上升,而65岁以下非老年人患MCI的概率也在不断增大,但医务人员对这类人群的关注度普遍较低,这应引起研究人员重视。在舒缓精神压力的同时,更应该注意MCI的预防。目前,还没有合适的药物可以预防MCI发生,但是,从中医辨证角度来看,65岁以下非老年人的中医证候类型大多以痰浊、瘀血为主,早期进行干预可能会减少MCI发生,同时改变不良生活方式、积极干预危险因素,对减少MCI发生肯定会产生积极作用。

四、问题与展望

第5篇:人工智能论文范文

关键词:科技期刊;人工智能;数字化;同行评议

2021年,中共中央宣传部、教育部、科技部印发《关于推动学术期刊繁荣发展的意见》,指出学术期刊要加快融合发展,推动数字化转型,引导学术期刊适应移动化、智能化发展方向,推动融合发展平台建设。人工智能正推动社会从数字化、网络化向智能化转型,科技期刊是率先有效引入人工智能的领域,人工智能与科技期刊出版的融合是发展的必然趋势。人工智能技术正越来越多地被开发、应用来帮助作者和出版人员,如对海量文献进行检索和分析,提取有用的信息;协助组稿审稿、编辑加工、出版发行;检出学术不端、鉴别数据造假等。人工智能可提高期刊出版和学术交流的效率,保证客观公正性和质量控制,减少人为偏倚和编辑职业倦怠,未来甚至可以指导特定领域如何开展新的研究。科技期刊出版平台未来将不仅限于提供学术论文数据库服务,还可以提供更多的信息和服务,人工智能在科技期刊出版中的应用前景值得思考和探索。

一、人工智能在审稿中的应用

Dimensions数据显示,2019年有超过420万篇,与十年前相比翻了一番。辛巴信息(SimbaInformation)统计数据显示,每年有超过250万篇学术在28000余种英文科技期刊上,科技期刊同行评议的论文数量是这个数量的两倍以上。数量的增加意味着高质量同行评议审稿的需求增加,也带来了严格保持审稿高质量和高标准的挑战。数量如此庞大的学术论文交到数量相对较少的固定的学者间进行同行评议,势必造成审稿效率的低下和学术论文的延迟发表。同行评议过程还存在个人偏见,审稿人可能是稿件作者的竞争者或反对者,抑或是朋友、未来的合作者或资助者等,这些可能会影响审稿意见的客观性和公正性。在实际的期刊出版工作中,也缺乏对审稿人审稿质量,以及拖延审稿或无效审稿等不当行为的约束和监督。这种情况亟须人工智能等可用于决策支持的技术来保证海量论文得到严格、一贯且高效的审评。引入人工智能技术可以大大优化审稿流程、提高审稿效率、缩短审稿周期。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的审稿专家,帮助提高审稿的效率和成功率。人工智能可以在数据库中根据研究方向、审稿记录、审稿效率和其他预设条件等,自动筛选最合适的审稿专家,分析排序后生成审稿人列表;并根据审稿人信息自动完成审稿邀请邮件的发送,还可以实时监控审稿状态和审稿人反馈;一旦出现审稿超时,自动向列表中下一位审稿人发出审稿邀请;收到审稿人的审稿意见后,实时通过邮件、APP、短信等及时反馈给期刊编辑进行相应处理。人工智能还可以根据论文标题、摘要、关键词和正文内容等对来稿进行初审,对图文进行快速识别,对论文的真实性、合理性、逻辑性、科学性、创新性和规范性等做出判断,为编辑初审提供详尽精准的参考。人工智能可以对论文的学术价值进行初步判断,对其中的文字和插图等进行深度识别。人工智能可以整句或整段地阅读释义,能识别出传统软件识别不出的同义表达,如此可减少学术不端,保证期刊的学术价值和品质。人工智能或许可以一定程度上遏制掠夺性期刊和掠夺性出版的泛滥。人工智能通过帮助编辑寻找新的审稿人并进行自动审稿等,大大提高学术和科技出版机构编辑出版高质量学术论文的能力,增加学术和科技期刊的论文接纳能力,也就减少了掠夺性期刊侵占学术资源的机会。人工智能还能对已发表的论文进行自动浏览回顾,基于掠夺性期刊的一些特征和标准,帮助筛选出那些不坚持标准的掠夺性期刊和出版商。Elsevier用人工智能软件EVISE取代了其过时的编辑系统,支持其编辑流程,提高了学术论文处理效率。EVISE可将来稿链接学术不端检测软件,从数据库中筛选推荐合适的审稿专家,链接其他项目资源对稿件内容、科学性和审稿人利益冲突等进行检测,自动生成与个人或机构的往来邮件等。开放获取期刊出版商Frontiers推出人工智能软件AIRA,对Frontiers的10万名编辑、审稿人和作者开放,能帮助他们自动评估学术论文的质量。AIRA可以阅读每篇论文,并在几秒钟内给出20条建议,包括对文字质量、图表的完整性、学术不端检测以及可能的利益冲突等。AIRA经过了Frontiers的审稿经验培训和测试,已完全融入Frontiers的内部工作流程,自动筛选和识别潜在的审稿人,加快审稿进程的同时,保证质量控制和客观公正,缩短了发表时滞,提高了出版效率。AIRA通过给出建议及半自动化检查的方式提供决策支持,仍然由相关领域专业人士做出最终决策,这种用户反馈被AIRA捕捉并进行学习和自我完善,这种人机协作有助于保证高准确性和高效率。

二、人工智能在策划选题中的应用

传统的策划选题依靠编委和编辑的经验、知识积累对学科发展方向的判断和预见,这种方式受人为因素限制,容易忽略有价值的选题且费时费力。未来,我们可借助人工智能的帮助,对已发表的海量文献、资源数据库进行检索分析,获取有用的信息进行相应的操作。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的作者,帮助提高组稿的效率和成功率。数据思维就是利用数据来深度挖掘和了解需求,了解存在和需要解决的问题,通过量化的数据来解决问题。人工智能基于大数据可以辅助选题策划选题、收集专家学者信息和研究方向,通过读者阅读信息和反馈来分析其关注点和需求,提供个性化的文献检索和信息传递服务等。人工智能可以通过对大数据的深度挖掘和学习,通过云计算技术,敏锐捕捉专业领域的新热点、新技术、新理论等;基于读者的阅读习惯、倾向及频率等进行量化分析,获取读者的需求信息;对国家自然科学基金等基金组织申报和资助情况、科技奖获奖情况、国际学术会议研讨热点等进行整合分析,对文献数据库等潜在信息进行挖掘和分析,快速推测出哪些内容具有独创性、前瞻性和话题性,生成选题策划资源库,帮助期刊编辑更精准高效的策划选题。基于人工智能的新型搜索工具Iris.AI,可以帮助学者从海量文献中筛选研究论文或专利等,提取关键的数据和要查找的信息。学术搜索平台SemanticScholar也是基于人工智能自主学习的学术搜索引擎,可快速筛选相关有用内容,并在一定程度上理解这些内容,展示相关主题历年文章发表情况及相关推荐内容等,可辅助期刊策划选题。

三、人工智能在编校加工中的应用

传统期刊出版工作中,编辑需要在细致琐碎的编校加工工作中花费大量时间和精力,编辑主观因素影响编校质量和效率,编辑易产生职业倦怠,传统编校模式难以应对现代出版工作快节奏和大体量的挑战。人工智能可以自动对稿件进行编校加工,帮助提高科技期刊的编校效率和规范编校质量。人工智能不仅能对错别字、语法等进行更正处理,还能对专业词汇的表达、参考文献的格式、引用是否合适等进行识别,还能检查出是否遗漏重要的研究部分、统计学分析方法是否有问题、是否为了达到想要的结果而改动过数据,还能理解图像和说明文字的逻辑关系,自动为插图补充描述性文字、为文字配上插图、为文本格式的文字生成曲线图等,还能完成后续的排版和校对。将机械、重复、枯燥的编辑工作交给人工智能完成,这将大大减轻编辑的工作负担,并大大缩短稿件的处理周期。IBM公司的智能机器人“沃森”曾为名为TheDrum的市场营销公司独立编辑出版了一整期杂志,这期杂志大部分内容的编辑、加工、排版和校对等都由人工智能独自完成。科技期刊内容的编校涉及对稿件内容的理解,但人工智能依然能很好地完成内容和格式的编校加工和规范化处理。人工智能还可以帮助编辑高效处理信息、调取和整合分析数据资源,优化期刊出版流程和期刊编辑的工作内容。编辑有望从原来繁琐的工作中解放出来,转到对专业性和方向性的把控上。

四、人工智能在推广发行中的应用

人工智能可以高效完成学术成果的推广和传播。人工智能程序可实时将科技期刊论文向所有大型学术论文数据库上传发送,并能根据读者研究领域、浏览阅读习惯、科研和社交平台动态等大数据进行实时监测分析。基于读者的信息需求,实现向相关领域读者的精准信息推送,大大提高学术成果的传播效率和影响力。人工智能平台还可通过对读者的需求信息进行分析,获取相关领域关注点,反馈给期刊审稿系统,增加对相关学术内容的收录建议。国家新闻出版署武汉重点实验室打造的开放科学计划(OSID计划),体现了利用人工智能实现多元化精准推送的重要性,打破传统出版模式编辑到读者的单向内容服务模式,为读者和作者提供了多维度交流空间,丰富了学术论文的传播交流方式,扩大了学术传播的广度和深度。TrendMD公司的内容推荐引擎,可以将科技期刊的稿件推荐到上千个科研网站。期刊网站安装TrendMD插件后,经过筛选的内容链接便会自动出现在网页的指定位置,通过数据挖掘算法对稿件进行自动推荐,将相关内容推荐给感兴趣的潜在读者,实现科技期刊学术资源的精准传播和高效共享。通过精准推送,科技期刊的论文曝光率和点击率都会增加,一方面为学者开展学术研究提供了新的资源和参考,另一方面实现了科技期刊传播推广的效率和精准度。

五、人工智能在论文写作中的应用

人工智能也被尝试用于论文写作,人工智能软件不仅可以实现识别和记录功能,还能学习掌握不同专业的写作方式和技巧,能高效地协助作者完成论文写作,甚至还能进行内容创新。例如,ManuscriptWriter软件可以从SciNote的ELN和开放获取杂志的相关文献提取数据,通过机器学习和人工智能技术,帮助作者生成一个论文初稿,供作者进一步编辑利用。Trinka是首款专为学术、科技和商业写作设计的人工智能软件,能纠正上万种复杂书写错误,且能纠正其他工具不能检出的复杂语言错误,尤其是学术和科技写作中的专业术语及专用表述等,对论文给出详细建议。但人工智能软件撰写的假论文事件一度引起人们对科技期刊同行评议制度的质疑,SCIgen软件生成的假论文骗过了斯普林格等知名出版机构和期刊。可能在收集相关资料用于背景的撰写方面,人工智能有一定的优势,但撰写后面的讨论部分,就需要研究者的智慧了。讨论部分是最具创造性和创新性的部分,最能体现研究者个性风格、行文习惯和思维方式的部分,每位学者都会将自己的专长和学识等融入讨论部分,这不是人工智能可以轻易取代的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇