博舍

人工智能技术应用的领域主要有哪些 人工智能还有什么功能呢

人工智能技术应用的领域主要有哪些

随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?

什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。

##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

1、深度学习

深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;

2、计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

3、语音识别

语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。

语音识别技术原理:

1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;

4、虚拟个人助理

说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。

虚拟个人助理技术原理:(以Siri为例)

1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。

5、语言处理

自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。

语言处理技术原理:

1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;

6、智能机器人

智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

智能机器人技术原理:

人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。

智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐

不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。

Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。

关于人工智能的展望

除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。

当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。

转自:http://www.arduino.cn/thread-45848-1-1.html

人工智能的8个有用的日常例子

如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。

人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。

[[330378]]

术语

人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。

在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。

机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。

深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。

自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。

现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。

8个人工智能的例子

以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。

1.谷歌地图和打车应用

地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。

通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。

该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。

因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。

2.人脸检测与识别

当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。

这是如何运作的?

智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。

人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。

3.文本编辑器或自动更正

当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。

在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。

语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。

下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。

4.搜索和推荐算法

当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。

这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。

同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?

向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。

由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。

诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。

5.聊天机器人

作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。

聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。

如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。

6.数字助理

当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。

Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。

7.社交媒体

社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。

AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。

表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。

社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。

社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。

8.电子支付

银行现在正在利用人工智能通过简化支付流程来便利客户。

通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。

总结

人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。

我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇