博舍

德勤引入人工智能 会计师、税务师会被机器人取代吗 引入人工智能会计公司的例子有哪些

德勤引入人工智能 会计师、税务师会被机器人取代吗

版权声明:

1、凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。2、经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。3、本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。4、如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。

德勤引入人工智能会计分析

版权声明:

1、凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。2、经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。3、本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。4、如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。

人工智能时代企业财务会计面临的问题及对策

刘心昱青岛大学

摘要:伴随信息科技的飞速发展,人工智能时代已全面来临,科学先进的人工智能技术被广泛应用于行业各个领域。与会计行业而言,人工智能技术的应用使得传统会计发生了巨大变革,借助人工智能大大节省了人力、提升了会计核算的精准效率,在感受到受益优势的同时也让我们看到了人工智能对传统会计行业造成的巨大冲击。本文从当前会计行业现状分析出发,提出人工智能对财务会计的影响利弊,并提出应对解决之策,以期促进会计行业积极顺应时代发展转型,借助人工智能实现会计领域的变革创新。

关键词:人工智能时代;企业财务会计;问题;对策

一、前言

当前人工智能的理论和技术日趋成熟化,其应用领域也在不断扩大,从教育到医疗、从科技到金融各个行业都受益匪浅。人工智能就本质而言,是对人的智力活动进行计算分析,通过计算机技术对人的思维信息过程进行模拟的一种智能行为,形成拟人、智能化的计算机系统,以此为人们提供更加人性化的智能服务,帮助人们完成智力工作。

从1987年到2017年,从美国首开会计智能化先河到财务机器人的出现,让人工智能在会计行业实现了质的飞跃。借助财务机器人实现会计自动化操作,替代财务人员完成一些重复性、规则性、结构化的工作,有效提升了会计核算工作,成为人工智能技术在会计行业发展的重要成果。财务机器人的出现无疑给会计行业带来巨大欣喜和变革,与此同时也对传统会计形成挑战和威胁。因此,致力于研究人工智能时代企业财务会计的问题,这是当前会计领域所聚焦的热点话题,值得我们进一步深思探讨。

二、当前财务会计行业现状分析

财务会计工作涉及到社会各个行业,近年来伴随经济的持续向好,国家对财务人员的需求量也在不断攀升,高校财会专业不断扩招,会计从业人员越来越多。2017年国家会计法规定会计从业人员必须持证上岗,会计从业资格证书成为了从事财务会计工作的第一道门槛。经统计了解,2019年我国各级会计人员比例差距很大,其中初级会计、中级会计人员占据了整个会计行业的90%以上,尤其是初级会计人员高达70%以上,而高级会计人员却极度缺失,特别是国家注册会计师更为短缺。从这些数据我们不难发现,会计行业人才两极分化严重,基层会计人员已趋于饱和状态。而在人工智能时代背景之下,会计从最先传统的人工记账向电算化靠拢,再到现阶段的财务软件系统的开发应用,经过科技的不断革新,会计信息化技术日趋稳定和成熟,现代智能化财务管理已然成为当前会计行业的发展新趋势[1]。

三、人工智能对企业财务会计的积极作用

(一)会计工作效率大幅提升

目前人工智能技术主要应用于会计核算方面,传统会计模式下会计人员需要做大量基础性工作,比如整理单据、审核单据、报销费用等,这些工作尽管简单但是重复性大、机械性强,会消耗大量人力和时间。而人工智能就可以很好地解决这一问题,实现会计业务数据的高速处理输入,账单、凭证的全自动生成,促进会计相关数据信息的加快生成、会计核算的效率提高;同时给会计人员减轻大量的工作负担,让他们具备更多的工作时间和精力去处理其它财务工作。

(二)会计信息准确率有效提高

  人工作业是传统会计工作的基础,会计工作人员每天要处理大量原始凭证票据、登记录入等工作,由于纯人工操作很难保证百分之百的准确率,一旦出现人为差错,不但造成返工、加剧工作量,还会影响正常工作进度。同时,由于每个人的财务水平、业务能力不同也会影响财务工作的效率和质量。那么,在日常会计工作中应用人工智能,则可以有效规避这类问题,通过人工智能减少人工操作,简化业务流程,会计数据的录入输出更为规范化,有效提高会计信息的准确率,还能规避人为操作情况下可能发生的信息造假问题。比如,使用财务机器人扫描增值税发票,系统自动设置后能够快速查验发票并将结果登记录入表格中,会计工作人员则可以直接将其转移税务部,通过财务机器人自动访问发票选择确认平台,下载增值税发票批量勾选文件,对比发票清单予以匹配并判断可否认证抵扣,再将所勾选发票批量整理上传导入到发票选择确认平台中进行抵扣进税。再如,通过人工智能操作费用报销业务,在所设定程序中填写步骤提交表单,经财务机器人严格审核,确认发票是否真伪、有无签章等,这样不仅规范了报销业务流程同时提高了会计信息的准确性。

(三)助推会计行业升级转型发展

在会计行业实现电算化的发展模式下,现在所有企业基本都有引用财务软件系统开展工作,有效改革了传统会计工作模式下的各项会计工作,如审核单据、编写凭证、登记账目、编制报表等。尽管所有的工作效率都有所提升,然而其财务信息却仍然缺少一定的时效性,无法满足企业对财务信息的及时需求。在人工智能背景下,企业的会计核算不再是单一化模式,完全可按照信息使用者的需求将业务和账务相结合,形成对应指标的财务报表,及时反馈出动态化的财务信息数据;还能按照信息使用者的偏好习惯提供个性化财务报告;尤其是能够更为全面深入的分析并处理会计数据,提高数据信息的高质高效,使其转化成企业重要的财务信息,帮助企业实现科学决策[2]。这些都助力推动了会计行业的升级转型发展,让会计工作更好地适应社会发展需求。

四、人工智能时代企业财务会计面临的问题

(一)会计信息安全风险提高

将人工智能应用于现代企业的日常财务会计管理工作中,提高了财务信息数据的分析处理能力,但同时也提高了数据的安全风险性。在人工智能背景下,财务数据达到数字化存储条件,与传统保存形式相比,数字化存储所容纳信息量更大,也更方便财务人员进行查询和使用。然而,它也存在一定的弊端,数据系统如防护措施不强,很容易遭受黑客系统的侵袭,数据在输出输入的过程中受到恶意拦截,极易造成信息的外泄,严重情况下致使重要的商业机密丢失,给企业造成无可挽回的经济损失。所以,企业在使用人工智能开展财务会计工作时一定要增强数据的安全防护,加大防护级别和力度,防范于未然。

(二)会计人员职业需求提高

 在传统固定式会计工作环境中,大部分会计从业人员日复一日进行着重复性、机械性、低难度性的基础工作,而人工智能时代的来临彻底改变了这一现状,在大跨步提高常规性会计工作效率的同时,也预示着未来将有大量的一线财务工作者面临着失业再就业的风险。作为一名财务人员,要想在残酷激烈的时代竞争中站稳脚跟,则必须要满足当前社会对其提出的新标准高要求。人工智能技术的产生和应用,改变了传统会计行业的运作模式、核算方式,促进了行业升级转型,将财务工作者从重复机械化的工作中挣脱出来,使他们能够具备更多时间和精力去处理一些有分析战略性、高附加值的工作,实现传统会计向管理会计的有效变革,在企业财务预测、分析调控以及投资决策等方面发挥出专业优势和价值[3]。因此,在会计领域只有不断加强自我职业技能和水平,掌握现代化办公能力,才能适应会计行业的用人需求,不至于被竞争淘汰掉。

(三)会计人员结构需求改变

鉴于人工智能对企业财务会计工作的积极影响,也预示着未来企业所需的传统会计人员将逐步减少,大批从事基础会计工作的人员要寻求新的生存能力;同时在会计领域,将对掌握财务相关知识同时具备技术研发维护能力的高端复合型人才求贤若渴,综合应用型人才的缺口随之将不断扩大。因此,未来会计行业对人才需求的变化,必定会影响整个行业的会计人员结构产生变化。

(四)人工智能系统管理问题复杂

 应用人工智能开展企业财务会计管理工作尽管益处多多,但同时在实际运作中也会产生一些较为棘手的问题,例如财务机器人在处理实际会计工作时,可能因系统错误影响财务工作、致使财务数据出错,给企业及客户造成经济损失,同时法律责任的主体无法明确追究,究竟是技术研发人员还是财务机器人本身的问题无法确定,人工智能系统管理方面没有一套行之有效的范式依据。所以,要如何管理人工智能系统也是会计行业亟待解决的问题。

五、人工智能时代企业财务会计的应对策略

(一)积极转变传统会计理念

在人工智能时代,人工智能技术的应用给企业和财务人员同时带来了机遇和挑战,总的来说利更大于弊,我们也因此看到了会计工作的高质高效运行,还有一些会计从业人员顺应需求作出的积极转变。在此形势下,作为会计人员首当其冲要尽快转变个人思想,改变传统的会计工作理念,充分认识到行业和形势的需求,明白现代会计工作的内涵,加强财务相关工作业务的学习,尽可能多的掌握一些经济管理、计算机应用等领域相关知识,打牢自身的会计业务处理能力,提升财务分析、预判、管理能力,以更扎实的财务理论和技能基础应对人工智能时代的挑战[4]。

(二)由传统会计向管理会计转型

1.提升企业财务队伍业务能力

企业首先要对财务部门组织架构进行优化调整,重新定位财务工作范围和职责,调整财务人员的岗位职责体系,对原有的财务人员进行岗位分类分工。需要注意的一点是职能定位必须要以创造管理价值为核心,才能从传统核算会计向管理决策会计转变,将财务工作的重心调整到企业财务预测分析、控制决策层面。因此企业必须要实现三个方面的转型,这其中包括财务工作内容、财务业务手段、财务工作人员的全面转型,切实提高企业财务部门的决策支持、风险管理、统筹规划能力。同时,财务工作者应深入业务部门参与过程管控,跟进执行情况,保证目标的达成;提高财务工作的前置性,构建事前分析、事中预警、事后核算反馈的全闭环财务管理模式。此外,要进一步增加财务信息化的建设,按照企业业务部门的管理需求,及时、有效、精确的为其提供财务数据的决策支持。有必要的前提下企业可另设管理会计岗位,提高企业财务管理能力。

2.重新梳理企业流程制度

在传统会计模式下,会计工作处于一种局部性、被动化状态,这种事后核算的会计形式不利于企业实现财务预测。为改变这种局面,企业必须重新梳理业务、财务的工作流程,构建财务事前预测、事中预警、事后反馈的流程,将其融入进业务流程的每个阶段,将财务管理覆盖到整个业务链,建立企业内部管理会计体系,其中涵盖有财务核算、成本控制、资金管理、预算分析、资产管理、合同管理、绩效管理等各个方面,促进企业财务管理体系和企业相关业务相互结合,让财务和业务两大部门形成合作关系,为企业各项业务的经营提供精确有效及时的财务信息和指导意见[5]。

3.积极推进业务和财务的融合

将传统会计向管理会计转型发展,企业将一部分财务人员从原来单一的工作中脱离出来,让他们参与到企业经营管理中。实施具体操作流程如下:首先将财务和业务部门相融合,让财务人员深入了解业务环节,充分了解企业的业务模式、流程以及产品相关知识;其次优化业务流程,财务人员通过业务单据收集并存储业务相关数据;最后再对业务数据进行分类加工、整理汇总,最终形成一份完整详尽的经营分析报告。经过以上的财务介入操作,对业务施行全程监控,为企业运营管理人员提供及时准确的预算监管、经营分析、决策数据,全方位参与到企业的日常经营管理之中,实现财务价值的提升【6】。

4.强化内部培训和专业人才引进

企业要想获得管理会计的全面转型,首先要对现有财务人员进行强化培训,提高他们对管理会计的认知和技能,积极鼓励他们报考管理会计师证,加强理论和实践的相互结合,并从现有财务人员中遴选一批重点培养对象进行特别培养;其次要在企业内部进行一定宣传引导,让公司的管理人员能够了解一定的管理会计知识,明白管理会计在整个企业的关键影响,引进有经验和资质的管理会计人才。通过内抓外聘双管齐下扩大企业财务管理能力,提高财务人员职业素质,为企业实现管理财务夯实人才基础。

5.充分利用信息化手段

财务工作要实现转型发展,信息化办公是必要途径,通过信息化技术实现信息数据的深度挖掘,让企业实现合理预算、集中管理、成本控制、风险管控、资产管理、财务报账等工作的有机融合,同时还可为企业运营决策提供价值参考、数据支撑,极大化的提升财务管理的效能。企业建立办公自动化系统(OA系统),对企业资源计划系统(ERP系统)进行升级,构建ERP云端系统,将OA系统与ERP系统连接,从而实现数据的自动传输,保证信息数据的同时同步和精确化,以此形成财务共享平台,促使财务和业务实现融合并进,进一步提升企业价值。例如OA费控系统的应用,可以直接进行网络报销、实现无纸化办公,解决纸质单据面对面报销问题,即便是跨区域也能完成网络审核报销流程,提高财务报销工作的效率。故此,做好信息系统功能建设将为企业向管理会计转型提供有利条件。

(三)增强企业会计信息安全防护

企业要增强会计信息安全防护意识,组织财务工作人员参与网络使用安全问题的有关培训,提高员工对信息的甄别能力、规范员工操作流程,尽量规避因个人工作失误导致的出错问题;其次,企业可成立网络维护部门或外聘网络维护专员,定期为企业的网络进行检查、维护并更新,增强网络的安全性,及时解决黑客入侵、信息拦截威胁等问题,保障财务信息数据的安全性。此外,企业应构建财务信息安全预警机制,做到防控在先、预警在前、管控有力。

(四)完善人工智能监管系统

在大数据时代,人工智能所能搜集的数据更为广泛,在目标信息之外还可能触及到一些非必要信息,可能侵犯到他人隐私或知识产权问题。为规避此类现象,则要在应用中构建相对透明公开的人工智能监管体系,将应用问责制与应用监管相统一,对人工智能的设计算法、产品研发、成果应用的全过程予以监管。同时,有必要监督应用人工智能产品的企业自觉自律,平时在管理上加以监管,构建良好的企业文化机制,重视企业长远规划发展,加强对恶意侵犯他人隐私、滥用信息数据、违背职业道德等行为的惩戒措施。

六、结束语

伴随科技不断创新发展,未来人工智能技术在财务会计领域的应用只会越来越广泛、越来越普及。作为企业和会计从业人员,应该积极转变理念,顺应新时期会计行业的变革创新,主动引入人工智能应用于企业财务管理工作中,财务人员更要积极学习新观念、新知识、新技能,提高自身职业素养和专业水平,加强管理会计意识和能力,以求适应企业对财务人员的用工需求,为企业发展获取长远经济效益贡献财务管理支持。

参考文献:

[1]曾靖.新时代人工智能对财会工作的影响及对策研究[J].福建质量管理,2020(06):76.

[2]王赟.人工智能对会计行业的影响[J].现代营销,2020(06):208-209.

[3]朱玉梅.人工智能时代企业财务会计面临的问题及对策[J].商场现代化,2019(10):127-128.

[4]王贺.人工智能时代企业财务会计向管理会计的转型研究[J].环球市场,2019(36):70,72.

[5]刘春红.浅析企业财务会计向管理会计的转型[J].经营者,2020,34(9):169-170.

[6]朱石玉.人工智能发展对会计行业的影响及应对措施[J].江苏商论,2020(08):37-40.

人工智能发展现状及应用

导读:

人工智能(ArtificialIntelligence),英文缩写为AI。人工智能被认为是第四次科技革命的核心驱动力,目前许多领域都在探索AI技术的应用,可谓方兴未艾。那么什么是人工智能,它经历了怎样的发展历程,现阶段发展状况如何,它有哪些应用。本篇文章就为大家做个简单分享。同时也会为大家详细介绍一下百度的AI技术体系。

 

本文主要内容:

1.人工智能概念

①智能

②人工智能

2.人工智能的发展

①人工智能的发展历程

②AI是中国的机遇

3.AI与百度

①百度AI的发展历程

②百度AI的技术体系

③百度AI的场景化应用

 

 

1.人工智能概念

1.1智能

谈到人工智能,需要首先理解“智能”一词的具体含义。智能是指人类才具有的一些技能。人在进行各种活动的过程中,从感觉到记忆再到思维产生了智慧,智慧产生了人类本身的行为和语言,行为和语言统称为能力;智慧和能力结合在一起就是人工智能中的智能一词。

比如,人类的语言表达能力就是一种智能(语言智能);人类进行复杂数学运算的能力也是一种智能(数字逻辑智能);人类的交往能力也是一种智能(人际智能),人们对音调、旋律、节奏、音色的感知能力,也是一种智能(音乐智能)。他们都属于智能的范畴。

1.2人工智能

把智能的概念与人的逻辑理解相结合,并应用到机器中,让机器能更好的模拟人的相关职能,这就是人工智能。人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

人工智能概念,最早可以追溯到上世纪90年代初,这个时候需要提到一位科学家:图灵。

艾伦·麦席森·图灵(英语:AlanMathisonTuring,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵最早定义了什么是人工智能,怎样去界定一个机器(或一个设备)是否具备智能。他最早提出了图灵测试(即:一个人在不接触对方的情况下,经过某种特殊的方式和对方进行一系列的问答,如果在某些时间之内,他无法根据这些问题判断对方是人还是计算机,那么我们就认为这台机器具备智能化的思维)。直到2000年左右,才真正有计算机通过了图灵测试,才实现了一个突破。在2014年图灵测试大会上,出现了一个通过图灵测试的机器(或者称为智能聊天的机器人)。这两年人工智能的高速发展,也印证了最早的图灵测试,这也让我们反向看到了图灵在人工智能定义方面做出的突出贡献。

现今,在做图灵测试时,判断这个设备是否具备人工智能,更多的还是从模拟人的角度来考量。但在当前科技背景下,人工智能需要涵盖更广的内容,它不仅仅要模拟人本身的职能,还需要具备一些扩展、替代甚至延伸的职能。

举个例子,在医疗领域,需要经常在实验室进行病毒化验,人处这样的实验环境下会比较危险,经常会出现一些事故,如果能够用机器替代人来做这些实验,这些事故就可以避免。此时,这台机器就不仅仅是在模拟人,而是在替代人,机器本身就具备了替代人的能力。

当前,很多人在担忧:人工智能的发展会不会对人类造成威胁。其实,目前人工智能还处于早期的阶段(或者称之为婴幼儿阶段),我们还处于弱人工智能时代。

当然,随着时间的推移,将来我们可能会把弱人工智能时代推进到强人工智能,甚至再往前推进到超人工智能和智能爆炸时代。但至少目前,我们离这样的时代还有非常远的距离,要实现这样的目标,需要非常多的时间积累,可能要通过几代人甚至十几代人的努力。所以大家不要有过多的担心,人工智能现在更多的还是用于服务人类,用来提高人们的工作效率。

上图引自MIT大学一位教授。

针对人工智能所覆盖的领域,这位教授提出一个观点:“我们要尽可能避免做这些容易“进水”的工作,以免被日后所淘汰掉”。

这张图水平面以下的工作,如存储,计算、甚至象棋活动等,已经被海平面淹没。在海平面边缘的工作,如翻译、驾驶、视觉和音频等,很有可能在未来的一段时间,随着技术的进步也会被淹没。再来看图上高海拔地区的工作,如艺术创新、科学研究,文学创作等,让人工智能替代人类去做这些工作,在现阶段是比较困难的。要让人工智能实现像人一样具备主观能动性,还需要比较长的时间。我们在选择工作,或者在做技术探索的时候,应该从更高的层面布局,而把那些可以被人工智能替代的工作交给计算机去做,这样我们就可以从一些重复性、冗余性的工作中抽离出来,去专门从事创造性的工作(比如艺术创作等)。

2.人工智能的发展2.1人工智能的发展历程

我们回顾一下人工智能发展的历程。

人工智能并不是特别新鲜的词,在计算机出现后不久,大家就已经开始探索人工智能的发展了。

1943到1956年这段时间,为人工智能的诞生期,期间有很多人尝试用计算机进行智能化的应用,当然此时不能称为人工智能,只是有类似的概念。

人工智能的分水岭是1956年达特茅斯会议,在本次会议上正式提出了AI这个词。

1956到1974年这段时间,是人工智能发展的黄金时代,是人工智能的第1个高速发展期,通常把这段时间称之为人工智能大发现时代。

1974到1980年这6年的时间里,进入了人工智能发展的第1个低谷,在这个低谷期,出现了非常多的问题,比如计算上的问题、存储上的问题、数据量的问题,这些问题限制了人工智能的发展。

1980到1987年这段时间是人工智能的第2个繁荣期。期间诞生了大量的算法,推动了神经网络的高速发展,同时出现了许多专业的科研人员,发表了许多创造性的论文。

1987到1993年这段时间是人工智能的第2个低谷期,期间有个词叫“AI之冬”。有大量的资本从AI领域撤出,整个AI科研遇到了非常大的财政问题,这是导致”AI之冬”的主要原因。

1993年之后,人工智能又进入到高速发展期,期间出现了许多经典案例,比如1997年IBM公司的深蓝案例,2001年IBM的沃森案例,2016年谷歌AlphaGo案例。这些案例是人工智能在应用层面的体现。

上图概括了人工智能的发展历程。

可以看到,从1956年达特茅斯会议AI这个词诞生,一直发展到现在,人工智能共经历了60多年的跌宕起伏,并不是仅在2016、2017这两年间才出现了人工智能这个概念。

从宏观上看,AI的发展历程经历了三次比较大的起伏。

第1次起伏是从1943年到1956年,首次出现了神经网络这个词,把人工智能推到一个高峰,期间出现了许多大发现。而第1次低谷使人工智能进入到了反思的阶段,人们开始探讨人工智能的应用。

第2次起伏是在上世纪80年代,期间BP算法的出现,神经网络新概念的普及,推动了人工智能又进入第2次高峰和发展。然而从1987年到1993年又进入到了了第2次低谷,这主要因为一些财政原因导致。

第3次起伏从2006年开始,由辛顿提出了深度学习的概念,把神经网络往前推动了一大步,也把人工智能推到了高速发展阶段,尤其是近几年在非结构化领域取得了许多突破(例如在语音与视觉方面),给人工智能进入商业化应用带来许多的基础性技术沉淀。

人工智能为什么会在前面的发展过程里遇到了那么多的坎坷?为什么在最近这几年会进入一个高速发展期?

我们归结了近几年人工智能高速发展的三点原因:

①算力飞跃

人工智能(尤其是深度学习),对底层计算能力的要求非常高。早期的计算受到了极大限制,从CPU发展到了GPU,使得算力几乎能达到几倍甚至十几倍量级的增长。再从GPU到TPU,计算速度能达到15~30倍的增长,使得在算力层面不断取得突破。此外,大量云资源的出现将我们计算的成本压到了最低,我们在处理海量计算的同时,也可以享受比较低的成本。再者,芯片技术的发展,使得端处理能力持续提高,这些都帮助我们在算力层面取得了很大的突破。

②数据井喷

从PC互联网时代到移动互联网时代,再到可穿戴设备的应用,都产生了大量的数据。这两年,每年产生的数据量可以达到50%左右的增长。2017年到2018年,这段时间内基本上每个月产生的数据量可以达到几十个亿的量级,数据量已经非常高。物联网的连接,能帮助我们把更多的数据采集回来,帮助我们在数据层面做更多的积累,这是数据井喷带来的积极影响。

③算法突破

近几年来,从机器学习到深度学习,算法不断取得突破。使得我们可以处理更多的大规模、无监督、多层次等复杂业务。

算法、算力、数据是人工智能的三要素,算力是骨骼,数据是血液和食物,算法就是大脑,三者不断取得突破,才能促进人工智能高速发展。

2.3AI是中国的机遇

人工智能技术的发展也促进了很多产业的发展。中国目前有非常好的历史机遇,不仅仅是在技术上有大量的积累,同时,国家也为人工智能的发展提供了非常好的政策环境。此外,市场空间、资金支持、人才储备,也都为人工智能的发展提供了非常好的条件。

通过上图可以看到,人工智能的研发人才目前还比较短缺。图上数据来源于领英在2017年所做的全球AI人才报告。以2017年的数据来看,全球人工智能专业的人才数量超过190万,在这190万人才中,美国处于第一梯队,有85万+;而中国在人工智能领域的人才积累比较少,从数据上来看,目前国内人工智能方面的专业技术人才可能只有5万+,当然这是2017年的数据,现在可能会有一些增长,但是量级也没有达到我们想象的那么大。

所以从国内目前来看,这约5-10万的AI技术人才,对比AI产业的高速发展需求,两者之间有巨大矛盾。那怎样更好的用这些人才作为突破,把人工智能方面的技术人才储备提高到百万级别。这正是整个百度(包括百度的教育合作与共建,包括百度所有对外输出的体系,包括我们今天所做的课程)所努力的方向,我们期望通过百度的技术赋能,真正的帮助人工智能取得更好的人才积累,真正培养一些在未来对人工智能行业有巨大贡献的专业人才,这是百度现在的定位目标。

AI浪潮已然到来,行业人工智能时代已经到来。目前,人工智能已经大量应用在2c和2b领域,怎么让人工智能跟具体行业有更好的接触,产生更多的积累,是我们正在重点探索的方向。

比如百度的搜索引擎,已经融入了很多AI元素。模糊匹配、拍照识图、深度挖掘检索等都应用到了大量的人工智能技术。

再如推荐系统,他会基于个人的一些喜好和历史阅读习惯来给用户做一些内容的推荐和匹配,这是很典型的结合大数据做的精准应用,实际上也属于人工智能的范畴。

再如人脸识别技术、语音技术、智慧交通和无人驾驶等,都是AI技术与行业应用的融合,并且这些技术正在不断取得突破。百度现在L4级别的无人驾驶车已经初步实现了一些小规模的量产,未来会有更多的人将真正的体会到无人驾驶给生活带来的便利。

3.AI与百度

3.1百度AI的发展历程

上图为百度在人工智能领域的发展轨迹,早在2009年,百度就开始尝试探索人工智能相关技术,直到2019年,百度用了近十年的时间布局人工智能。

2009年尝试性布局人工智能,2013年发布IDL,2014年成立硅谷实验室以及百度研究院,2015年首次发布DuerOS,2016年发布百度大脑1.0版本,同年,百度的自动驾驶技术进入试运营状态,2017年是百度人工智能技术高速发展的一年,不仅成立了深度学习国家实验室,同时也成立了硅谷第二实验室以及西雅图实验室,并且Apollo平台开始运行并对外推广,在2018年到2019年,DuerOS和Apollo平台发展到3.0版本,百度大脑发展到5.0版本。经过近十年的发展和积累,百度的人工智能技术目前处于相对领先的位置。

百度在人工智能领域领域取得的进展有目共睹,比如,百度成立了首个国家级AI实验室;2016年被美国《财富》杂志评选为深度学习领域四大巨头之一;百度的刷脸支付、强化学习、自动驾驶等技术入选MIT2017年全球十大突破性技术;在AI领域,百度的中国专利申请超过2000项。

3.2百度AI的技术体系

百度的技术体系非常全面,覆盖了计算体系、大数据技术体系以及人工智能技术体系等,在机器学习、深度学习、区块链、知识图谱、自然语言处理、量子计算等领域均有雄厚的技术积累。这些技术可以按内容划分成三个板块,第一是A板块(即AI技术板块),第二是B板块(即大数据板块),第三是C板块(即云计算板块)。这就是百度在2016年提出的ABC概念。从一开始的1.0版本,发展到如今的3.0版本,代表着百度在人工智能领域的整体布局。在人工智能领域的布局中,百度的探索不仅停留在最核心的技术上,也同时将核心技术与更多的领域相结合,如边缘计算、物联网(InternetofThings,IoT)和区块链等,得到了如ABC+区块链、ABC+DuerOS、ABC+Apollo等对外输出模式,向各行各业提供解决方案。

在A板块中,将百度大脑分成了不同的层次。最底层是算法层,包含机器学习和深度学习算法,使用百度的PaddlePaddle深度学习框架提供算法层的基础支撑;算法层之上为感知层,感知层可分为对声音的感知和对光的感知,其中,对声音的感知主要是语音技术板块,对光的感知主要是图像技术、视频技术、AR/VR等技术板块;在感知层之上是认知层,认知层更多的是处理人类听到和看到的内容,对其进行深度理解,深度理解需要自然语言处理(NLP/NLU)、知识图谱等技术作为支撑,同时也需要积累大量用户画像数据,这些技术能帮助人们快速的理解和分析人类听到和看到的内容,并对内容进行有效的反馈,这是认知层面的技术;在认知层之上是平台层,平台层将底层的内容进行融合、封装,对外提供开放、完整的AI技术,并引入大量的生态合作伙伴,共同探讨人工智能产业的布局。

百度人工智能整体技术体系,最底层是深度学习框架飞桨PaddlePaddle,作为底层计算框架,飞桨PaddlePaddle支撑着上层场景化能力与平台中的全部板块。在场景化能力与平台中,包含了诸多场景大板块,每个大板块下又细分为多个技术板块,比如语音板块包含了语音合成以及语音唤醒等技术板块;计算机视觉技术中的OCR技术,包括传统通用OCR识别,以及垂直领域OCR的识别,可以对30多个OCR识别领域进行精准识别,比如票据识别、证件识别以及文字识别等;在人脸/人体识别板块,同时也会引入图像审核以及图像识别方面的技术;在视频板块,有视频比对技术,视频分类和标注技术,以及视频审核技术;在自然语言处理板块,有机器翻译技术;知识图谱板块,有AR/VR技术。这些板块构成了人工智能体系的技术蓝图。

近两年来,人工智能技术在各行各业中的应用不断加深,实践证明,单一的技术在落地时会受到诸多限制,所以现在人工智能在落地时可能不仅仅用到某一个单独的技术板块,而是需要先把这些板块进行融合,然后再进行实际应用,比如在拍照翻译的应用场景下,既需要用到OCR技术,同时也用到NLP技术。因此在实际应用中,需要综合各个板块的技术,把不同的技术体系和技术内容有机地融合起来,再去解决行业中面临的痛点。

 

3.3百度AI的场景化应用

2014年到2015年期间,在计算机视觉领域的部分场景下,计算机视觉识别准确率已经超过了人眼识别。而利用深度学习技术的计算机听觉识别,在2017年左右也已经超过人耳听力极限。

人工智能业务场景化不仅依赖底层的硬件资源,也需要超大规模的标注数据,这是监督学习的特点,所以在人工智能早期研究中,有评论说“有多少人工就有多少智能”,这句话在特定角度来看是具有一定意义的。在监督学习中,训练模型需要庞大的标注数据,再结合GPU强大的数据处理能力去训练特定模型,也就是从算法的层面去做更多的工作,在训练模型的过程中需要发挥人的主观能动性,更好的解决在行业应用中出现的一些痛点,构建出行业专属的模型。

比如,将人体分析技术应用到实际行业场景中时,需要结合人脸识别技术和人体识别技术。可以通过基础手势识别,识别一个人在开车时有没有系安全带、是不是在打电话等。

利用人体分析技术,可以做到行为识别,首先设定特定区域,然后对区域内的人员行为进行识别,比如人群过密、区域越界、人员逆行、徘徊以及吸烟等,在特定场景下,行为识别能够帮助用户避免安全隐患。

自然语言处理有很多相关技术,比如说词法分析、词向量表示、语义相似度、短文本相似度、情感相似度分析等。这些技术用在不同的应用场景下。

在公检法系统应用中,为了避免出现非常严重的问题,如同案不同判,具体解决方案是当诉讼呈递给法官时,根据当前诉讼内容在公检法系统中寻找历史上类似的案件,参考历史类似案件的判决,给法官提供判案依据。

在媒体领域应用中,对基础的财经类新闻,可以由机器进行新闻文章的编写,即机器写作。这些技术都是基于NLP在相应领域做的智能化应用,可以让编辑或记者从重复性的工作中解脱出来。

人工智能从广义上来看,也包括大数据及云计算相关技术,这些技术也都涵盖在百度AI技术体系中。在大数据领域,主要包括数据采集、数据存储、数据分析以及数据可视化等,利用这些技术,我们在进行模型训练的时候,对数据进行科学的管理可以帮助我们提高模型训练效率。

百度AI技术体系也提供算力层面的支持,通过GPU服务器以及FPGA服务器提供的算力,更好的解决应用层面的问题。

百度AI就是这样一个从基础层,到感知层、认知层的完整体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

回顾

本篇文章,我们和大家分享了人工智能的相关概念,人工智能的发展历程,从中也可以看出AI是我们的历史机遇。同时本文也为大家详细介绍了百度的AI技术体系,经过10余年的努力,百度AI已经形成从基础层,到感知层、认知层的完整技术体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

人工智能在日常生活中的12个例子

在下面的文章中,您可以查看我们日常生活中出现的12个人工智能示例。

人工智能(AI)越来越受欢迎,不难看出原因。人工智能有可能以多种不同的方式应用,从烹饪到医疗保健。

虽然人工智能在今天可能是一个流行词,但在明天,它可能会成为我们日常生活的标准一部分。事实上,它已经在这里了。

1.自动驾驶汽车

他们通过使用大量传感器数据、学习如何处理交通和做出实时决策来工作并继续前进。

这些汽车也被称为自动驾驶汽车,使用人工智能技术和机器学习来移动,而乘客无需随时控制。

2.智能助手

让我们从真正无处不在的东西开始——智能数字助理。在这里,我们谈论的是Siri、GoogleAssistant、Alexa和Cortana。

我们将它们包含在我们的列表中是因为它们基本上可以倾听然后响应您的命令,将它们转化为行动。

所以,你打开Siri,给她一个命令,比如“给朋友打电话”,她会分析你所说的话,筛选出围绕你讲话的所有背景噪音,解释你的命令,然后实际执行,这一切只需要几个秒。

这里最好的部分是这些助手变得越来越聪明,改进了我们上面提到的命令过程的每个阶段。您不必像几年前那样对命令进行具体化。

此外,虚拟助手在从你的实际命令中过滤无用的背景噪音方面变得越来越好。3.微软项目InnerEye

最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。

微软项目InnerEye是最先进的研究,有可能改变世界。

这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。

最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。

微软项目InnerEye是最先进的研究,有可能改变世界。

这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。

4.抄袭

大学生的(或者是教授的)?)噩梦。无论你是内容经理还是给论文评分的老师,你都有同样的问题——互联网让抄袭变得更容易。

那里有几乎无限量的信息和数据,不太谨慎的学生和员工很容易利用这一点。

事实上,没有人能够将某人的文章与所有的数据进行比较和对比。人工智能是一种完全不同的东西。

它们可以筛选数量惊人的信息,与相关文本进行比较,看是否有匹配。

此外,由于这一领域的进步和发展,一些工具实际上可以检查外语来源,以及图像和音频。

5.推荐

你可能已经注意到,某些平台上的媒体推荐越来越好,Netflix、YouTube和Spotify只是三个例子。这要感谢人工智能和机器学习。

我们提到的三个平台都考虑了你已经看到和喜欢的内容。这是容易的部分。然后,他们将其与成千上万的媒体进行比较和对比。他们主要从您提供的数据中学习,然后使用自己的数据库为您提供最适合您需要的内容。

让我们为YouTube简化这个过程,只是作为一个例子。

该平台使用标签等数据,年龄或性别等人口统计数据,以及消费者使用其他媒体的相同数据。然后,它混合和匹配,给你建议。

6.银行业务

如今,许多较大的银行都给你提供了通过智能手机存入支票的选项。你不用真的走到银行,只需轻点几下就可以了。

除了通过手机访问银行账户的明显安全措施外,支票还需要你的签名。

现在银行使用AIs和机器学习软件来读取你的笔迹,与你之前给银行的签名进行比较,并安全地使用它来批准一张支票。

总的来说,机器学习和人工智能技术加快了银行软件完成的大多数操作。这一切都有助于更高效地执行任务,减少等待时间和成本。

7.信用和欺诈

既然我们谈到了银行业,那就让我们稍微谈一下欺诈。银行每天处理大量的交易。追踪所有这些,分析,对一个普通人来说是不可能的。

此外,欺诈交易的形式每天都在变化。有了人工智能和机器学习算法,你可以在一秒钟内分析成千上万的交易。此外,您还可以让他们学习,弄清楚有问题的事务可能是什么样子,并为未来的问题做好准备。

接下来,无论何时你申请贷款或者申请信用卡,银行都需要检查你的申请。

考虑到多种因素,比如你的信用评分,你的金融历史,所有这些现在都可以通过软件来处理。这缩短了审批等待时间,降低了出错率。

8.聊天机器人

许多企业正在使用人工智能,特别是聊天机器人,作为他们的客户与他们互动的方式。

聊天机器人通常被用作公司的客户服务选项,这些公司在任何给定时间都没有足够的员工来回答问题或回应询问。

通过使用聊天机器人,这些公司可以在从客户那里获得重要信息的同时,将员工的时间腾出来做其他事情。

在交通拥挤的时候,像黑色星期五或网络星期一,这些是天赐之物。它们可以让你的公司免于被问题淹没,让你更好地为客户服务。

9.让您远离垃圾邮件

现在,我们都应该感谢垃圾邮件过滤器。

典型的垃圾邮件过滤器有许多规则和算法,可以最大限度地减少垃圾邮件的数量。这不仅能让你免受烦人的广告和尼日利亚王子的骚扰,还能帮助你抵御信用卡欺诈、身份盗窃和恶意软件。

现在,让一个好的垃圾邮件过滤器有效的是运行它的人工智能。过滤器背后的AI使用电子邮件元数据;它关注特定的单词或短语,它关注一些信号,所有这些都是为了过滤掉垃圾邮件。

10.视频摘要

这种日常人工智能在网飞变得非常流行。

也就是说,你可能已经注意到,网站和某些流媒体应用程序上的许多缩略图已经被短视频取代。这变得如此流行的一个主要原因是人工智能和机器学习。

人工智能会为你做这些,而不是让编辑们花费数百个小时来缩短、过滤和切割较长的视频,变成三秒钟的视频。它分析数百小时的内容,然后成功地将其总结成一小段媒体。

11.食谱和烹饪

人工智能在更多意想不到的领域也有潜力,比如烹饪。

一家名为Rasa的公司开发了一种人工智能系统,该系统可以分析食物,然后根据您冰箱和储藏室中的食物推荐食谱。对于喜欢烹饪但又不想花太多时间提前计划膳食的人来说,这种类型的人工智能是一种很好的方式。

12.人脸识别

关于人工智能和机器学习,如果我们可以说一件事,那就是它们使他们接触到的每一项技术都更加有效和强大。面部识别也不例外。

现在有许多应用程序使用人工智能来满足他们的面部识别需求。例如,Snapchat使用AI技术通过实际识别呈现为人脸的视觉信息来应用面部过滤器。

Facebook现在可以识别特定照片中的面孔,并邀请人们标记自己或他们的朋友。

而且,当然,考虑用你的脸解锁你的手机。好吧,它需要人工智能和机器学习才能发挥作用。

让我们以AppleFaceID为例。当你设置它的时候,它会扫描你的脸,然后在上面放大约3万个DoS。它使用这些圆点作为标记,帮助它从多个不同的角度识别你的脸。

这使您可以在许多不同的情况和照明环境中用脸部解锁手机,同时防止其他人做同样的事情。

结论

未来就是现在。人工智能技术只会继续发展、壮大,并对每个行业和我们日常生活的几乎每个方面变得越来越重要。如果以上例子是可信的,这只是个时间问题。

未来,人工智能将继续发展,并出现在我们生活的新领域。随着更多创新应用的问世,我们将看到更多人工智能让我们的生活变得更轻松、更有效率的方式!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇