人工智能的三大学术流派有哪些
今天无意间听到了一位同事说起人工智能的三大流派,这个也有流派?想先了解一下,就在网上搜索了一下相关的基础知识进行补充。
前世今生
人工智能在其学科发展的60余年历史中,有许多不同学科背景的学者都曾对人工智能做出过各自的理解,提出不同的观点,由此产生了不同的学术流派。这其中,对人工智能研究影响较大的主要有符号主义、联结主义和行为主义三大学派。
三大学派一、符号主义(symbolicism)-数理逻辑
符号主义学派认为人工智能源于数学逻辑,人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一种运算。
符号主义致力于用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,从而模拟人类的认知过程,实现人工智能。
符号主义的发展大概经历了几个阶段:推理期(20世纪50年代–20世纪70年代),知识期(20世纪70年代—-)。“推理期”人们基于符号知识表示、通过演绎推理技术取得了很大的成就;“知识期”人们基于符号表示、通过获取和利用领域知识来建立专家系统取得了大量的成果
二、联结主义(connectionism)-仿生学
连接学派通过算法模拟神经元,并把这样一个单元叫做感知机,将多个感知机组成一层网络,多层这样的网络互相连接最终得到神经网络。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。联结主义学派从神经生理学和认知科学的研究成果出发,把人的智能归结为人脑的高层活动的结果,强调智能活动是由大量简单的单元通过复杂的相互连接后并行运行的结果。我们可以根据要解决的实际问题来构建神经网络,进而用数据不断训练这一网络,调整连接权重来模拟智能。
20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播算法(BP)算法。进入21世纪后,连接主义卷土重来,提出了“深度学习”的概念。
三、行为主义(actionism)-控制论
是一种基于“感知—行动”的行为智能模拟方法。行为主义学派认为,行为是有机体用以适应环境变化的各种身体反应的组合,它的理论目标在于预见和控制行为。
行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作首推布鲁克斯(Brooks)的六足行走机器人,它被看作新一代的“控制论动物”,是一个基于感知-动作模式的模拟昆虫行为的控制系统。
备注:https://www.toutiao.com/a6639167420290302467/
人工智能流派——天才AI
人工智能的发展,在不同的时间阶段经历了不同的流派,并且相互之间盛衰有别。目前人工智能的主要学派有下列三家:
符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统,即符号操作系统,假设和有限合理性原理。连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
会发现三者的根源依据存在着较大的差异性,也为后世的学派发展产生了较为深远的影响。
符号主义(优秀的老式人工智能)
认为人工智能源于数理逻辑,主张用公理和逻辑体系搭建一套人工智能系统。代表的有支持向量机(SVM),长短期记忆(LSTM)算法。
数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。
正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。
符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。
优点:越来越多的人认识到,高风险决策领域对人工智能系统有需求,因此这些系统的行为要有可验证性与可解释性,而这恰恰是符号主义AI的优势,联结主义算法的短板。
不足:虽然符号主义AI技术可以处理部分不可观察概率模型,但这些技术并不适用于有噪输入信号,也不适用于无法精确建模的场合。在那些可以准确判断出特定条件下特定动作利弊与否的场合中,它们会更有效。此外,算法系统还要提供适当的机制来实现清晰的规则编码与规则执行。
符号主义算法会剔除不符合特定模型的备选值,并能对符合所有约束条件的所求值做出验证,以后者而言,符号主义AI远比联结主义AI便捷。因为符号主义AI几乎或根本不包括算法训练,所以这个模型是动态的,能根据需要迅速调整
连接主义(壮年最普遍的人工智能)
认为人工智能源于仿生学,神经网络,特别是对人脑模型的研究,主张模仿人类的神经元,用神经网络的连接机制实现人工智能。
它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。
它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。
直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。
现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
行为主义
行为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论,和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。
控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。
到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。
这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。
总结
三大主义,从不同的侧面研究了人的自然智能,与人脑的思维模型有着对应的关系。粗略地划分,可以认为
符号主义研究抽象思维;连接主义研究形象思维;而行为主义研究感知思维。
研究人工智能的三大学派、三条途径发挥到各个领域,又各有所长。
符号主义注重数学可解释性;连接主义偏向于仿人脑模型,更加感谢;行为主义偏向于应用和模拟。
免责声明:本文来自钱多多先森客户端,不代表超天才网的观点和立场。文章及图片来源网络,版权归作者所有,如有投诉请联系删除。
人工智能三大流派
从学术的观点看,人工智能主要分三大学派,分别是符号主义学派、连接主义学派和行为主义学派。在对人工智能进行研究时,可能会按照某一理论或方法展开探讨分析,但在实地落地的项目或产品可能综合应用了多个学派的知识。比如,最近我们为某制造企业提供智能客服系统,其中语音识别、语音合成和语义理解技术等属于连接主义的成果,同时,也使用了知识库等属于符号主义的成果。一、符号主义学派符号主义,又称逻辑主义、心理学派或计算机学派,是一种基于逻辑推理的智能模拟方法,认为人工智能源于数学逻辑,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。该学派认为人类认知和思维的基本单元是符号,智能是符号的表征和运算过程,计算机同样也是一个物理符号系统,因此,符号主义主张(由人)将智能形式化为符号、知识、规则和算法,并用计算机实现符号、知识、规则和算法的表征和计算,从而实现用计算机来模拟人的智能行为。其首个代表性成果是启发式程序LT(逻辑理论家),它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。此后,符号主义走过了一条启发式算法——专家系统——知识工程的发展道路。专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。1980年卡内基梅隆大学为数字设备公司设计了一个名为XCON的专家系统,在1986年之前,它每年为公司省下四千万美元。专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。专家系统仅限于一个专业细分的知识领域,从而避免了常识问题,其简单的设计又使它能够较为容易地编程实现或修改。专家系统的成功开发与应用,对人工智能走向实际应用具有特别重要的意义,也是符号主义最辉煌的时候。但凡事有利有弊,专家系统仅仅局限于某些特定情景,且知识采集难度大、费用高、使用难度大,在其它领域如机器翻译、语音识别等领域基本上未取得成果。日本、英国、美国在80年代初都曾制订过雄心勃勃的人工智能研发计划,如日本的第五代计算机项目,其目标是造出能够与人对话、翻译语言、解释图像,并且像人一样推理的机器,但直到1991年,这个目标依然未能实现。20世纪80年代末,符号主义学派开始走向式微,日益衰落,其重要原因是:符号主义追求的是如同数学定理般的算法规则,试图将人的思想、行为活动及其结果,抽象化为简洁深入而又包罗万象的规则定理,就像牛顿将世间万物的运动蕴含于三条定理之中。但是,人的大脑是宇宙中最复杂的东西,人的思想无比复杂而又广阔无垠,人类智能也远非逻辑和推理。所以,用符号主义学派理论解决智能问题难度可想而知;另一个重要原因是:人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。要实现类人乃至超人智能,就不能仅仅依靠计算机。1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。【网图,符号主义代表作——知识库】二、连接主义学派连接主义,又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。连接主义强调智能活动是由大量简单单元通过复杂连接后,并行运行的结果,基本思想是,既然生物智能是由神经网络产生的,那就通过人工方式构造神经网络,再训练人工神经网络产生智能。1943年形式化神经元模型(M-P模型)被提出,从此开启了连接主义学派起伏不平的发展之路。1957年感知器被发明,之后连接主义学派一度沉寂。1982年霍普菲尔德网络、1985年受限玻尔兹曼机、1986多层感知器被陆续发明,1986年反向传播法解决了多层感知器的训练问题,1987年卷积神经网络开始被用于语音识别。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。1989年反向传播和神经网络被用于识别银行手写支票的数字,首次实现了人工神经网络的商业化应用。与符号主义学派强调对人类逻辑推理的模拟不同,连接主义学派强调对人类大脑的直接模拟。如果说神经网络模型是对大脑结构和机制的模拟,那么连接主义的各种机器学习方法就是对大脑学习和训练机制的模拟。学习和训练是需要有内容的,数据就是机器学习、训练的内容。连接主义学派可谓是生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生了大量的数据,包括海量行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献。当然,仅有数据也不够,2004年后大数据技术框架的行成和图形处理器(GPU)发展使得深度学习所需要的算力得到满足。在人工智能的算法、算力、数据三要素齐备后,连接主义学派就开始大放光彩了。2009年多层神经网络在语音识别方面取得了重大突破,2011年苹果工作将Siri整合到iPhone4中,2012年谷歌研发的无人驾驶汽车开始路测,2016年DeepMind击败围棋冠军李世石,2018年DeepMind的Alphafold破解了出现了50年之久的蛋白质分子折叠问题。近年来,连接主义学派在人工智能领域取得了辉煌成绩,以至于现在业界大佬所谈论的人工智能基本上都是指连接主义学派的技术,相对而言,符号主义被称作传统的人工智能。虽然连接主义在当下如此强势,但可能阻碍它未来发展的隐患已悄然浮现。连接主义以仿生学为基础,但现在的发展严重受到了脑科学的制约。虽然以连接主义为基础的AI应用规模在不断壮大,但其理论基础依旧是上世纪80年代创立的深度神经网络算法,这主要是由于人类对于大脑的认知依旧停留在神经元这一层次。正因如此,目前也不明确什么样的网络能够产生预期的智能水准,因此大量的探索最终失败。【网图,大数据用途之一】三、行为主义学派行为主义,又称进化主义或控制论学派,是一种基于“感知——行动”的行为智能模拟方法,思想来源是进化论和控制论。其原理为控制论以及感知——动作型控制系统。该学派认为:智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,不同的行为表现出不同的功能和不同的控制结构。生物智能是自然进化的产物,生物通过与环境及其他生物之间的相互作用,从而发展出越来越强的智能,人工智能也可以沿这个途径发展。行为主义对传统人工智能进行了批评和否定,提出了无须知识表示和无须推理的智能行为观点。相比于智能是什么,行为主义对如何实现智能行为更感兴趣。在行为主义者眼中,只要机器能够具有和智能生物相同的表现,那它就是智能的。这一学派的代表作首推六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。另外,著名的研究成果还有波士顿动力机器人和波士顿大狗。你可以在网上搜到它们各种炫酷的视频,包括完成体操动作,踹都踹不倒,稳定性、移动性、灵活性都极具亮点。他们的智慧并非来源于自上而下的大脑控制中枢,而是来源于自下而上的肢体与环境的互动。行为主义学派在诞生之初就具有很强的目的性,这也导致它的优劣都很明显。其主要优势便在于行为主义重视结果,或者说机器自身的表现,实用性很强。行为主义在攻克一个难点后就能迅速将其投入实际应用。例如机器学会躲避障碍,就可应用于星际无人探险车和扫地机器人等等。不过也许正是因为过于重视表现形式,行为主义侧重于应用技术的发展,无法如同其他两个学派一般,在某个重要理论获得突破后,迎来爆发式增长。这或许也是行为主义无法与连接主义抗衡的主要原因之一。【网图,行为主义的代表作——波士顿大狗】四、总结综上所述,我们可以简略地认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。符号主义注重数学可解释性;连接主义偏向于仿人脑模型;行为主义偏向于应用和身体模拟。从共同性方面来说,算法、算力和数据是人工智能的三大核心要素,无论哪个学派,这三者都是其创造价值和取得成功的必备条件。行为主义有一个显著不同点是它有一个智能的“载体”,比如上文所说到的“机器狗”的身体,而符号主义和连接主义则无类似“载体”(当然你也可以认为其“载体”就是计算机,只不过计算机不能感知环境)。人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。连接主义和行为主义都使用强化学习方法进行训练。三者之间的长处与短板都很明显,意味着彼此之间可以扬长补短,共同合作创造更强大的强大的人工智能。比如说将连接主义的“大脑”安装在行为主义的“身体”上,使机器人不但能够对环境做出本能的反应,还能够思考和推理。再比如,是否用可以符号主义的方法将人类的智能尽可能地赋予机器,再按连接主义的学习方法进行训练?这也许可以缩短获得更强机器智能的时间。相信随着人工智能研究的不断深入,这三大学派会融合贯通,可共同为人工智能的实际应用发挥作用,也会为人工智能的理论找到最终答案。