人工智能的伦理问题与治理原则
第一类问题来自我们对人工智能系统对其决策结果的伦理意义缺乏判断的忧虑。人工智能往往被用来解决一个具体问题,而且只能通过已有的有限数据来作出决策,往往无法像人一样理解更广的社会和伦理语境。故此,我们对人工智能缺乏对决策后果的伦理意义的认知有恐惧,这是完全可以理解的。当人工智能决策的后果涉及一个结果和另外一个结果之间的比较时,往往造成难以预料的后果。例如,人可能给人工智能系统一个获取食物的指令,结果这个系统却杀死了人的宠物。这是因为人工智能对某个结果的伦理意义无法完全理解,以致于错误地执行了指令。我们对人工智能对决策结果的伦理判断能力不足的忧虑,在人工智能技术本身缺乏透明度(黑箱问题)时就更加严重了。人工智能采纳的机器学习往往因为算法(例如机器学习)和算力限制的原因,无法回溯机器作出决定的具体机制。无法回溯会带来我们在事先预测后果和事后作出纠正的能力的局限,导致我们在决定是否应用人工智能技术的问题上踌躇不决。
第二类问题来自我们对人工智能的潜力的忧虑。人工智能可能成为人类全部决定的参与和影响者,但我们尚且不知道没有任何已知的伦理准则能指引上述行为。人类创造的“上帝”无力护理这个世界,这让我们恐惧震惊。我们担心随着人工智能的发展,它会导致已有的社会问题进一步恶化,同时可能带来新的社会问题。
从上述前提出发,笔者从目的、手段两个层面提出思考人工智能伦理(嵌入机器的伦理)的两个基本方向:技术必须促进人类的善(体现在人的根本利益原则);在越来越发达的机器的自主性背景下确认人的主体性(体现在责任原则)。换言之,认识到新的技术本身的特征和它的潜在社会影响,我们看到人工智能伦理要强调:(1)人可以利用人工智能得到更大的能力(行善/伤害),因此有更大的责任,所以应当更加强调归责性;(2)人工智能则必须服从人类设定的伦理规则。这也是《人工智能标准化白皮书(2018)》中提出了人工智能设计和应用中应遵循的两个基本原则的基本依据。违反人的根本利益原则的人工智能,无论是用来欺诈顾客的营销算法、用于司法造成歧视部分公民的司法决策系统,还是对个人信息的过度收集和滥用,都违反人工智能伦理原则。
根据人工智能伦理风险的具体性质与特征,可从算法、数据和应用三个方面度来梳理人工智能的风险。对伦理风险的治理,需要立法和政策明确各相关主体的责任,包括信息提供者、信息处理者和系统协调者。此外,人工智能还可能对社会产生远期发展的风险,如对既有的就业、市场竞争秩序、产权等法律制度的挑战,甚至生产方式的根本变革,这些我们将其归入长期和间接的伦理风险之中。
算法方面
算法方面的风险主要包括算法安全问题、算法可解释性问题、算法歧视问题和算法决策困境问题。算法安全问题产生于算法漏洞被黑客攻击和恶意利用的挑战,同时算法从设计、训练到使用中面临可信赖性问题和算法随时可用对可靠性带来挑战。
算法可解释性涉及人类的知情利益和主体地位,对人工智能的长远发展意义重大。国务院颁布《新一代人工智能发展规划》,同时,潘云鹤院士提到人工智能应用的一个需要关注的问题是算法的不可解释性。算法可解释性问题在国外也引起媒体和公众的关注。例如,电气和电子工程师协会(IEEE)在2016年和2017年连续推出的《人工智能设计的伦理准则》白皮书,在多个部分都提出了对人工智能和自动化系统应有解释能力的要求。美国计算机协会美国公共政策委员会在2017年年初发布了《算法透明性和可问责性声明》,提出了七项基本原则,其中一项即为“解释”,希望鼓励使用算法决策的系统和机构,对算法的过程和特定的决策提供解释。2017年,美国加州大学伯克利分校发布了《对人工智能系统挑战的伯克利观点》,从人工智能的发展趋势出发,总结了九项挑战和研究方向。其中之一,即第三项,就是要发展可解释的决策,使人们可以识别人工智能算法输入的哪些特性引起了某个特定的输出结果。
与可解释性问题常常同时出现的是算法歧视问题,即在看似中立的算法中,由于算法的设计者的认知存在某种偏见,或者训练算法使用了有问题的数据集等原因,带来了人工智能系统决策出现带有歧视性的结果。这类例子媒体时有报道,例如在金融领域“降低弱势群体的信贷得分”、“拒绝向‘有色人种’贷款”、“广告商更倾向于将高息贷款信息向低收入群体展示”等。
算法歧视主要分为“人为造成的歧视”“数据驱动的歧视”与“机器自我学习造成的歧视”三类。人为造成的歧视,是指由于人为原因而使算法将歧视或偏见引入决策过程中。数据驱动造成的歧视,是指由于原始训练数据存在偏见性,而导致算法执行时将歧视带入决策过程中。算法本身不会质疑其所接收到的数据,只是单纯地寻找、挖掘数据背后隐含的模式或者结构。如果数据一开始就存在某种选择上的偏见或喜好,那么算法会获得类似于人类偏见的输出结果。机器自我学习造成的歧视,是指机器在学习的过程中会自我学习到数据的多维不同特征,即便不是人为地赋予数据集某些特征,或者程序员或科学家刻意避免输入一些敏感的数据,但是机器在自我学习的过程中,仍然会学习到输入数据的其它特征,从而将某些偏见引入到决策过程中,这就是机器自我学习造成的歧视。
算法决策困境源于人工智能自学习能力导致的算法结果的不可预见性。为此要减少或杜绝算法决策困境,除了提高算法的可解释性,还可以引入相应的算法终结机制。
数据方面
数据方面的风险主要包括侵犯隐私的风险和个人敏感信息识别与保护的风险。在现代社会,隐私保护是信任和个人自由的根本,同时也是人工智能时代维持文明与尊严的基本方式。人工智能时代下侵犯隐私的风险更大,受害者也更多。
传统法律规范对隐私的保护集中于对个人在私人领域、私人空间活动的保护,以及个人私密的、非公开的信息保护。在个人信息的基础之上,法律规范区分普通个人信息和个人敏感信息。法律通常对个人敏感信息予以更高的保护,例如对个人敏感信息的处理需要基于个人信息主体的明示同意,或重大合法利益或公共利益的需要等,严格限制对个人敏感信息的自动化处理,并要求对其进行加密存储或采取更为严格的访问控制等安全保护措施。个人敏感信息在授权同意范围外扩散,或者个人信息的扩散超出收集、使用个人信息的组织和机构控制范围,以及使用者超出授权使用(如变更处理目的、扩大处理范围等),都可能对个人信息主体权益带来重大风险。
人工智能技术的应用极大地扩展了个人信息收集的场景、范围和数量。图像识别、语音识别、语义理解等人工智能技术实现海量非结构化数据的采集,而人工智能与物联网设备的结合丰富了线下数据采集的场景。例如,家用机器人、智能冰箱、智能音箱等各种智能家居设备走进人们的客厅、卧室,实时地收集人们的生活习惯、消费偏好、语音交互、视频影像等信息;各类智能助手在为用户提供更加便捷服务的同时,也在全方位地获取和分析用户的浏览、搜索、位置、行程、邮件、语音交互等信息;支持面部识别的监控摄像头,可以在公共场合且个人毫不知情的情况下,识别个人身份并实现对个人的持续跟踪。这些都需要法律进一步地规范。
社会方面
与社会相关的伦理问题主要包括算法滥用和误用。算法滥用和误用是指人们利用算法进行分析、决策、协调、组织等一系列活动中,其使用目的、使用方式、使用范围等出现偏差并引发不良影响或不利后果的情况。例如,人脸识别算法能够提高治安水平、加快发现犯罪嫌疑人的速度等,但是如果把人脸识别算法应用于发现潜在犯罪人或者根据脸型判别某人是否存在犯罪潜质,就属于典型的算法滥用。由于人工智能系统的自动化属性,算法滥用将放大算法所产生的错误效果,并不断强化成为一个系统的重要特征。
算法滥用主要由算法设计者出于经济利益或者其他动机的操纵行为、平台和使用者过度依赖算法、将算法的应用盲目拓展到算法设计未曾考虑的领域等。电商平台算法设计者推荐不符合用户利益的产品,或者娱乐平台为了自身的商业利益对用户的娱乐或信息消费行为进行诱导、导致用户沉迷等,都是算法设计者操纵行为的展现。在医疗领域过度依赖人工智能平台的读图诊断,导致误诊,以及在安防领域和犯罪误判导致的问题,都直接关系到公民的人身安全与自由。
应当注意的是,与社会相关的伦理问题有如下特性:其一,它们与个人切身利益密切相关,如算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,对个人切身利益的影响广泛。其二,它们带来的问题通常难以短时间应对,例如深度学习是一个典型的“黑箱”算法,如果深度学习为基础建立的模型存在歧视,应对时难以查清原因。其三,在商业应用中出现这类问题时,由于资本的逐利性,公众权益容易受到侵害。
人工智能治理原则与实践
人工智能技术的特质及其伦理挑战,给社会的治理带来了问题。传统上,治理所预设能够遵循规则的主体(Agent),也就是人本身。今天我们认识到人工智能的特征在于其高度的自主性,即其决策不再需要操控者进一步的指令,考虑到这种决策可能会产生人类预料不到的结果,人工智能技术的设计者和应用者必须在人工智能技术研发、应用的各个环节贯彻伦理原则,以实现对人工智能的有效治理。
在传统技术领域,常见的防止损害的方式是在造成伤害之后进行干预。但是,等待人工智能系统造成伤害之时才考虑干预,很多时候为时已晚。一个更好的方法是将即时和持续的伦理风险评估和合规体系建设作为系统运行的一个组成部分,即时和持续评估人工智能系统是否存在伦理风险、并在损害产生之前以及损害不大的时候就通过合规体系进行处理。即时和持续的风险评估对于人工智能系统的保障要比按下“紧急按钮”要有效得多。
故此,我们在讨论人工智能治理应遵循的思路和逻辑时,必须警醒行业自律的有限性和立法的滞后性。如阿西莫夫等科技伦理的思想者所意识到的,必须将伦理在技术层面就进行明确,才能保证治理的有效性。构建人工智能的伦理标准是治理不可或缺的一面。此外,根据法律和政策本身的特征来制定法律、完善政策、设立管制机构,也是治理必须执行的方法。
国内外人工智能治理方面的探索值得我们关注和借鉴。例如,欧盟通过对机器人规制体现了依据人工智能伦理来设计治理体系的前沿探索。美国于2016年出台的战略文件就提出要理解并解决人工智能的伦理、法律和社会影响。英国政府曾在其发布的多份人工智能报告中提出应对人工智能的法律、伦理和社会影响,最为典型的是英国议会于2018年4月发出的长达180页的报告《英国人工智能发展的计划、能力与志向》。
联合国于2017年9月发布《机器人伦理报告》,建议制定国家和国际层面的伦理准则。电气和电子工程师协会(InstituteofElectricalandElectronicsEngineers,IEEE)于2016年启动“关于自主/智能系统伦理的全球倡议”,并开始组织人工智能设计的伦理准则。在未来生命研究所(futureoflifeinstitute,FLI)主持下,近4000名各界专家签署支持23条人工智能基本原则。
我国也在这个方面开展了探索与实践。2017年发布的《新一代人工智能发展规划》提出了中国的人工智能战略,制定促进人工智能发展的法律法规和伦理规范作为重要的保证措施被提了出来。2018年1月18日,在国家人工智能标准化总体组、专家咨询组的成立大会上发布了《人工智能标准化白皮书(2018)》。白皮书论述了人工智能的安全、伦理和隐私问题,认为设定人工智能技术的伦理要求,要依托于社会和公众对人工智能伦理的深入思考和广泛共识,并遵循一些共识原则。
人工智能技术的开发和应用深刻地改变着人类的生活,不可避免地会冲击现有的伦理与社会秩序,引发一系列问题。这些问题可能表现为直观的短期风险,如算法漏洞存在安全隐患、算法偏见导致歧视性政策的制定等,也可能相对间接和长期,如对产权、竞争、就业甚至社会结构的影响。尽管短期风险更具体可感,但长期风险所带来的社会影响更为广泛而深远,同样应予重视。
人工智能技术的日新月异与治理体系相对稳定性之间不可避免地存在矛盾,这需要我们明确应对人工智能的基本原则。在国际范围内比较,人工智能伦理基本原则以2017年1月在阿西洛马召开的“有益的人工智能”(BeneficialAI)会议提出的“阿西洛马人工智能原则”(AsilomarAIPrinciples),以及电气和电子工程师协会(IEEE)组织开展的人工智能伦理标准的工作受到了最多的关注。此前,各国也提出了机器人原则与伦理标准。作者认为,我国人工智能的研究和应用应遵循两个人工智能伦理基本原则,即人的根本利益原则和责任原则。
人的根本利益原则
人的根本利益原则,即人工智能应以实现人的根本利益为终极目标。这一原则体现对人权的尊重、对人类和自然环境利益最大化以及降低技术风险和对社会的负面影响。人的根本利益原则要求:
(1)在对社会的影响方面,人工智能的研发与应用以促进人类向善为目的(AIforgood),这也包括和平利用人工智能及相关技术,避免致命性人工智能武器的军备竞赛。
(2)在人工智能算法方面,人工智能的研发与应用应符合人的尊严,保障人的基本权利与自由;确保算法决策的透明性,确保算法设定避免歧视;推动人工智能的效益在世界范围内公平分配,缩小数字鸿沟。
(3)在数据使用方面,人工智能的研发与应用要关注隐私保护,加强个人数据的控制,防止数据滥用。
责任原则
责任原则,即在人工智能相关的技术开发和应用两方面都建立明确的责任体系,以便在人工智能应用结果导致人类伦理或法律的冲突问题时,人们能够从技术层面对人工智能技术开发人员或设计部门问责,并在人工智能应用层面建立合理的责任体系。在责任原则下,在人工智能技术开发方面应遵循透明度原则;在人工智能技术应用方面则应当遵循权责一致原则。
透明度原则
透明度原则要求人工智能的设计中,保证人类了解自主决策系统的工作原理,从而预测其输出结果,即人类应当知道人工智能如何以及为何做出特定决定。透明度原则的实现有赖于人工智能算法的可解释性(explicability)、可验证性(verifiability)和可预测性(predictability)。
权责一致原则
权责一致原则,是指在人工智能的设计和应用中应当保证问责的实现,这包括:在人工智能的设计和使用中留存相关的算法、数据和决策的准确记录,以便在产生损害结果时能够进行审查并查明责任归属。权责一致原则的实现需要建立人工智能算法的公共审查制度。公共审查能提高相关政府、科研和商业机构采纳的人工智能算法被纠错的可能性。合理的公共审查能够保证一方面必要的商业数据应被合理记录、相应算法应受到监督、商业应用应受到合理审查,另一方面商业主体仍可利用合理的知识产权或者商业秘密来保护本企业的利益。
应当明确,我们所说的人工智能伦理原则,不仅应当由人工智能系统的研发和应用的人类主体遵守(包括在研究机构、行业领域的科技企业和科技工作者),而且这些原则应当嵌入人工智能系统本身。机器如何遵循伦理规则这一点,有人仍有质疑。典型的看法是,伦理规则只是给人的,没有可能给人工智能系统(包括机器人)设定伦理规则。的确,传统上伦理原则所针对的是能够遵循这些原则的主体(Agent)也就是人本身。但是,考虑到人工智能的特征在于机器对人的智能的“模拟、延伸和扩展”,即其决策不需要操控者一步步的指令,同时这种决策可能会产生人类预料不到的结果,人工智能系统也应当受到伦理规则的规制。
结论
社会必须信任人工智能技术能够给人带来的利益大于伤害,才有可能支持继续发展人工智能。而这种信任,需要我们认识和探讨人工智能领域的伦理和治理问题,并且在发展人工智能技术发展的早期就有意识地加以运用。今天学者、科技工作者和社会已经有基本共识,就是负责人工智能系统的研发和应用的人类主体,包括在研究机构、行业领域的科技企业和科技工作者,应当服从一些基本的伦理原则。本文提出的两个基本伦理原则,是国内在这方面思考的总结和升华。除了人工智能的基本伦理原则,前人给我们的另一个启发是人工智能伦理应该嵌入系统本身。当我们越来越依赖于机器人代替我们作出决策时,我们应当在这个决策过程中嵌入伦理思考,而不是等待决策结果已经给我们带来负面影响之后再去纠正。
本文希望用一种更清醒的眼光去看待人工智能伦理和治理问题。学者和公众需要一起探讨:我们有没有可能防止人工智能给个人和社会带来的损害?只有在这个问题得到更深入的思考和妥善解决的时候,人工智能的发展才有真正的基础。
转自丨法理杂志返回搜狐,查看更多
发展负责任的人工智能:新一代人工智能治理原则发布
6月17日,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》(以下简称《治理原则》),提出了人工智能治理的框架和行动指南。
近年来,人工智能迅速发展,正在深刻改变人类社会生活、改变世界。为促进新一代人工智能健康发展,加强人工智能法律、伦理、社会问题研究,积极推动人工智能全球治理,新一代人工智能发展规划推进办公室成立了国家新一代人工智能治理专业委员会。
起草《治理原则》是委员会今年的重点工作,《治理原则》经过网上建议征集、专家反复研讨、多方征求意见等环节,凝聚了广泛共识。
《治理原则》旨在更好协调人工智能发展与治理的关系,确保人工智能安全可控可靠,推动经济、社会及生态可持续发展,共建人类命运共同体。《治理原则》突出了发展负责任的人工智能这一主题,强调了和谐友好、公平公正、包容共享、尊重隐私、安全可控、共担责任、开放协作、敏捷治理等八条原则。
《治理原则》全文如下:
新一代人工智能治理原则——发展负责任的人工智能
全球人工智能发展进入新阶段,呈现出跨界融合、人机协同、群智开放等新特征,正在深刻改变人类社会生活、改变世界。为促进新一代人工智能健康发展,更好协调发展与治理的关系,确保人工智能安全可靠可控,推动经济、社会及生态可持续发展,共建人类命运共同体,人工智能发展相关各方应遵循以下原则:
一、和谐友好。人工智能发展应以增进人类共同福祉为目标;应符合人类的价值观和伦理道德,促进人机和谐,服务人类文明进步;应以保障社会安全、尊重人类权益为前提,避免误用,禁止滥用、恶用。
二、公平公正。人工智能发展应促进公平公正,保障利益相关者的权益,促进机会均等。通过持续提高技术水平、改善管理方式,在数据获取、算法设计、技术开发、产品研发和应用过程中消除偏见和歧视。
三、包容共享。人工智能应促进绿色发展,符合环境友好、资源节约的要求;应促进协调发展,推动各行各业转型升级,缩小区域差距;应促进包容发展,加强人工智能教育及科普,提升弱势群体适应性,努力消除数字鸿沟;应促进共享发展,避免数据与平台垄断,鼓励开放有序竞争。
四、尊重隐私。人工智能发展应尊重和保护个人隐私,充分保障个人的知情权和选择权。在个人信息的收集、存储、处理、使用等各环节应设置边界,建立规范。完善个人数据授权撤销机制,反对任何窃取、篡改、泄露和其他非法收集利用个人信息的行为。
五、安全可控。人工智能系统应不断提升透明性、可解释性、可靠性、可控性,逐步实现可审核、可监督、可追溯、可信赖。高度关注人工智能系统的安全,提高人工智能鲁棒性及抗干扰性,形成人工智能安全评估和管控能力。
六、共担责任。人工智能研发者、使用者及其他相关方应具有高度的社会责任感和自律意识,严格遵守法律法规、伦理道德和标准规范。建立人工智能问责机制,明确研发者、使用者和受用者等的责任。人工智能应用过程中应确保人类知情权,告知可能产生的风险和影响。防范利用人工智能进行非法活动。
七、开放协作。鼓励跨学科、跨领域、跨地区、跨国界的交流合作,推动国际组织、政府部门、科研机构、教育机构、企业、社会组织、公众在人工智能发展与治理中的协调互动。开展国际对话与合作,在充分尊重各国人工智能治理原则和实践的前提下,推动形成具有广泛共识的国际人工智能治理框架和标准规范。
八、敏捷治理。尊重人工智能发展规律,在推动人工智能创新发展、有序发展的同时,及时发现和解决可能引发的风险。不断提升智能化技术手段,优化管理机制,完善治理体系,推动治理原则贯穿人工智能产品和服务的全生命周期。对未来更高级人工智能的潜在风险持续开展研究和预判,确保人工智能始终朝着有利于人类的方向发展。
国家新一代人工智能治理专业委员会2019年6月17日
扫一扫在手机打开当前页人工智能技术发展必须遵循的基本伦理原则
人工智能在推动网络信息技术发展的同时,模糊了物理现实、数字和个人的界限,也衍生出诸多复杂的法律、伦理问题,我们所要应对的已经不单单是弱人工智能和强人工智能,还有未来的超人工智能问题。
人工智能技术发展必须遵循的基本伦理原则
人工智能技术发展必须遵循的基本伦理原则:第一,保障人类安全,追求公共利益。
网络伦理涉及网络社会人与网络、人与人的关系问题,以及人们应该遵守的道德准则和规范,网络伦理原则的确立是立法规范的前提和指引。近年来,人工智能技术为人类提供便捷的同时,也衍生出一系列的问题,但是由于世界各国暂时没有针对人工智能技术出台专门的法律规范,立法的空缺使得人工智能技术发展受限,也危及到人类的安全和公共利益,人工智能技术的发展要以为人类作贡献和保障人类安全利益为基本原则。
人工智能技术发展必须遵循的基本伦理原则
第二,故障透明且可追溯。
人工智能作为一项新技术,其系统运行的稳定和安全直接关系技术应用领域的安全,如果人工智能系统出现了故障或者遭到损害,造成损害的原因是可以被查明的,应该由人类监管机构来审核人工智能系统的安全性和故障,即人类参与司法决策,要求故障透明和司法透明。这样有利于增加公众对人工智能技术的信任,如果发生事故,故障透明原则有助于事故调查人员查明事故原因。
第三,尊重个人隐私。
人工智能技术应保障人类隐私和自由安全,不应以牺牲自由和隐私为技术发展代价,考虑到人工智能技术的数据分析和使用功能,人类应有权访问管理和控制数据来源和应用。未来的超人工智能系统的设计者和建造者同时也是人工智能技术利用的利益相关者,更应承担相应的安全责任。
人工智能的伦理挑战
原标题:人工智能的伦理挑战控制论之父维纳在他的名著《人有人的用处》中曾在谈到自动化技术和智能机器之后,得出了一个危言耸听的结论:“这些机器的趋势是要在所有层面上取代人类,而非只是用机器能源和力量取代人类的能源和力量。很显然,这种新的取代将对我们的生活产生深远影响。”维纳的这句谶语,在今天未必成为现实,但已经成为诸多文学和影视作品中的题材。《银翼杀手》《机械公敌》《西部世界》等电影以人工智能反抗和超越人类为题材,机器人向乞讨的人类施舍的画作登上《纽约客》杂志2017年10月23日的封面……人们越来越倾向于讨论人工智能究竟在何时会形成属于自己的意识,并超越人类,让人类沦为它们的奴仆。
一
维纳的激进言辞和今天普通人对人工智能的担心有夸张的成分,但人工智能技术的飞速发展的确给未来带来了一系列挑战。其中,人工智能发展最大的问题,不是技术上的瓶颈,而是人工智能与人类的关系问题,这催生了人工智能的伦理学和跨人类主义的伦理学问题。准确来说,这种伦理学已经与传统的伦理学旨趣发生了较大的偏移,其原因在于,人工智能的伦理学讨论的不再是人与人之间的关系,也不是与自然界的既定事实(如动物,生态)之间的关系,而是人类与自己所发明的一种产品构成的关联,由于这种特殊的产品――根据未来学家库兹威尔在《奇点临近》中的说法――一旦超过了某个奇点,就存在彻底压倒人类的可能性,在这种情况下,人与人之间的伦理是否还能约束人类与这个超越奇点的存在之间的关系?
实际上,对人工智能与人类之间伦理关系的研究,不能脱离对人工智能技术本身的讨论。在人工智能领域,从一开始,准确来说是依从着两种完全不同的路径来进行的。
首先,是真正意义上的人工智能的路径,1956年,在达特茅斯学院召开了一次特殊的研讨会,会议的组织者约翰・麦卡锡为这次会议起了一个特殊的名字:人工智能(简称AI)夏季研讨会。这是第一次在学术范围内使用“人工智能”的名称,而参与达特茅斯会议的麦卡锡和明斯基等人直接将这个名词作为一个新的研究方向的名称。实际上,麦卡锡和明斯基思考的是,如何将我们人类的各种感觉,包括视觉、听觉、触觉,甚至大脑的思考都变成称作“信息论之父”的香农意义上的信息,并加以控制和应用。这一阶段上的人工智能的发展,在很大程度上还是对人类行为的模拟,其理论基础来自德国哲学家莱布尼茨的设想,即将人类的各种感觉可以转化为量化的信息数据,也就是说,我们可以将人类的各种感觉经验和思维经验看成是一个复杂的形式符号系统,如果具有强大的信息采集能力和数据分析能力,就能完整地模拟出人类的感觉和思维。这也是为什么明斯基信心十足地宣称:“人的脑子不过是肉做的电脑。”麦卡锡和明斯基不仅成功地模拟出视觉和听觉经验,后来的特里・谢伊诺斯基和杰弗里・辛顿也根据对认知科学和脑科学的最新进展,发明了一个“NETtalk”的程序,模拟了类似于人的“神经元”的网络,让该网络可以像人的大脑一样进行学习,并能够做出简单的思考。
然而,在这个阶段中,所谓的人工智能在更大程度上都是在模拟人的感觉和思维,让一种更像人的思维机器能够诞生。著名的图灵测试,也是在是否能够像人一样思考的标准上进行的。图灵测试的原理很简单,让测试一方和被测试一方彼此分开,只用简单的对话来让处在测试一方的人判断,被测试方是人还是机器,如果有30%的人无法判断对方是人还是机器时,则代表通过了图灵测试。所以,图灵测试的目的,仍然在检验人工智能是否更像人类。但是,问题在于,机器思维在作出自己的判断时,是否需要人的思维这个中介?也就是说,机器是否需要先绕一个弯路,即将自己的思维装扮得像一个人类,再去作出判断?显然,对于人工智能来说,答案是否定的,因为如果人工智能是用来解决某些实际问题,它们根本不需要让自己经过人类思维这个中介,再去思考和解决问题。人类的思维具有一定的定势和短板,强制性地模拟人类大脑思维的方式,并不是人工智能发展的良好选择。
二
所以,人工智能的发展走向了另一个方向,即智能增强(简称IA)上。如果模拟真实的人的大脑和思维的方向不再重要,那么,人工智能是否能发展出一种纯粹机器的学习和思维方式?倘若机器能够思维,是否能以机器本身的方式来进行。这就出现了机器学习的概念。机器学习的概念,实际上已经成为发展出属于机器本身的学习方式,通过海量的信息和数据收集,让机器从这些信息中提出自己的抽象观念,例如,在给机器浏览了上万张猫的图片之后,让机器从这些图片信息中自己提炼出关于猫的概念。这个时候,很难说机器自己抽象出来的猫的概念,与人类自己理解的猫的概念之间是否存在着差别。不过,最关键的是,一旦机器提炼出属于自己的概念和观念之后,这些抽象的概念和观念将会成为机器自身的思考方式的基础,这些机器自己抽象出来的概念就会形成一种不依赖于人的思考模式网络。当我们讨论打败李世石的阿尔法狗时,我们已经看到了这种机器式思维的凌厉之处,这种机器学习的思维已经让通常意义上的围棋定势丧失了威力,从而让习惯于人类思维的棋手瞬间崩溃。一个不再像人一样思维的机器,或许对于人类来说,会带来更大的恐慌。毕竟,模拟人类大脑和思维的人工智能,尚具有一定的可控性,但基于机器思维的人工智能,我们显然不能作出上述简单的结论,因为,根据与人工智能对弈之后的棋手来说,甚至在多次复盘之后,他们仍然无法理解像阿尔法狗这样的人工智能如何走出下一步棋。
不过,说智能增强技术是对人类的取代,似乎也言之尚早,至少第一个提出“智能增强”的工程师恩格尔巴特并不这么认为。对于恩格尔巴特来说,麦卡锡和明斯基的方向旨在建立机器和人类的同质性,这种同质性思维模式的建立,反而与人类处于一种竞争关系之中,这就像《西部世界》中那些总是将自己当成人类的机器人一样,他们谋求与人类平起平坐的关系。智能增强技术的目的则完全不是这样,它更关心的是人与智能机器之间的互补性,如何利用智能机器来弥补人类思维上的不足。比如自动驾驶技术就是一种典型的智能增强技术,自动驾驶技术的实现,不仅是在汽车上安装了自动驾驶的程序,更关键地还需要采集大量的地图地貌信息,还需要自动驾驶的程序能够在影像资料上判断一些移动的偶然性因素,如突然穿过马路的人。自动驾驶技术能够取代容易疲劳和分心的驾驶员,让人类从繁重的驾驶任务中解放出来。同样,在分拣快递、在汽车工厂里自动组装的机器人也属于智能增强类性质的智能,它们不关心如何更像人类,而是关心如何用自己的方式来解决问题。
三
这样,由于智能增强技术带来了两种平面,一方面是人类思维的平面,另一方面是机器的平面,所以,两个平面之间也需要一个接口技术。接口技术让人与智能机器的沟通成为可能。当接口技术的主要开创者费尔森斯丁来到伯克利大学时,距离恩格尔巴特在那里讨论智能增强技术已经有10年之久。费尔森斯丁用犹太神话中的一个形象――土傀儡――来形容今天的接口技术下人与智能机器的关系,与其说今天的人工智能在奇点临近时,旨在超越和取代人类,不如说今天的人工智能技术越来越倾向于以人类为中心的傀儡学,在这种观念的指引下,今天的人工智能的发展目标并不是产生一种独立的意识,而是如何形成与人类交流的接口技术。在这个意义上,我们可以从费尔森斯丁的傀儡学角度来重新理解人工智能与人的关系的伦理学,也就是说,人类与智能机器的关系,既不是纯粹的利用关系,因为人工智能已经不再是机器或软件,也不是对人的取代,成为人类的主人,而是一种共生性的伙伴关系。当苹果公司开发与人类交流的智能软件Siri时,乔布斯就提出Siri是人类与机器合作的一个最朴实、最优雅的模型。以后,我们或许会看到,当一些国家逐渐陷入老龄化社会之后,无论是一线的生产,还是对这些因衰老而无法行动的老人的照料,或许都会面对这样的人与智能机器的接口技术问题,这是一种人与人工智能之间的新伦理学,他们将构成一种跨人类主义,或许,我们在这种景象中看到的不一定是伦理的灾难,而是一种新的希望。
(作者:蓝江,系南京大学哲学系教授)
人工智能的发展,需要遵守的四个AI伦理原则
https://www.toutiao.com/a6646160057195037197/
2019-01-1409:35:23
人们享受着AI智能生活的同时也开始对此感到担心。人们开始担心人工智能是不是一种仿生学,它会不会最终威胁到人类的安全。
人工智能的发展,需要遵守的四个AI伦理原则:
第一个原则是安全可控是最高原则;
第二个是促进人类平等地获得技术和能力是创新愿景;
第三个则是人工智能的存在价值不是超越人、代替人,而是教人学习和成长;
第四个是人工智能的终极理想应该是带给我们更多的自由和可能。
世界上不只有大公司需要AI的技术和能力,几千万的组织都需要。防止技术的不平等,导致人们在生活、工作上的不平等,这是我们需要思考的。
AI技术的使命,就是要通过学习人、从而去忠诚服务于人,让人类生活得更美好,但AI的技术发展也需要价值观的指引,在AI伦理价值的新“红绿灯”指引下,才能迎来“一个更美好的AI时代”。