博舍

自动语音识别技术基本指南 人工智能中的语音识别技术

自动语音识别技术基本指南

对语音识别技术感兴趣?报名参加NVIDIA语音AI通讯.

在过去十年中,人工智能支持的语音识别系统逐渐成为我们日常生活的一部分,从语音搜索到联络中心、汽车、医院和餐馆的虚拟助手。这些语音识别的发展得益于深度学习的进步。

许多行业的开发人员现在使用自动语音识别(ASR)来提高业务生产率、应用程序效率,甚至数字访问能力。继续阅读,了解更多关于ASR的信息,它是如何工作的,用例,进步等等。

什么是自动语音识别

语音识别技术能够将口语(音频信号)转换为通常用作命令的书面文本。

当今最先进的软件可以准确地处理各种语言方言和口音。例如,ASR通常出现在面向用户的应用程序中,如虚拟代理、实时字幕和临床笔记。准确的语音转录对于这些用例至关重要。

语音AI领域的开发者也使用替代术语描述语音识别,如ASR、语音到文本(STT)和语音识别。

ASR是系统的关键组成部分语音AI,这是一套旨在帮助人类通过语音与计算机对话的技术。

为什么在语音识别中使用自然语言处理

开发人员通常不清楚自然语言处理(NLP)模型在ASR管道中的作用。除了应用于语言模型之外,NLP还用于在ASR管道的末尾添加标点和大写字母来增强生成的转录本。

在用NLP对转录本进行后处理后,文本用于下游语言建模任务,包括:

情绪分析文本分析文本摘要问答语音识别算法

语音识别算法可以通过使用统计算法的传统方式实现,或者通过使用深度学习技术(如神经网络)将语音转换为文本。

传统的ASR算法

隐马尔可夫模型(HMM)和动态时间扭曲(DTW)是用于执行语音识别的传统统计技术的两个示例。

使用一组转录的音频样本,通过改变模型参数来训练HMM以预测单词序列,从而最大化观察到的音频序列的可能性。

DTW是一种动态规划算法,通过计算时间序列之间的距离来寻找最佳可能的单词序列:一个代表未知语音,另一个代表已知单词。

深度学习ASR算法

在过去几年中,开发人员一直对语音识别的深度学习感兴趣,因为统计算法不太准确。事实上,深度学习算法能更好地理解方言、口音、上下文和多种语言,即使在嘈杂的环境中也能准确地转录。

一些最流行的最先进的语音识别声学模型有: Quartznet, Citrinet和Conformer在典型的语音识别管道中,您可以根据您的用例和性能选择和切换任何声学模型。

深度学习模型的实现工具

有几种工具可用于开发深度学习语音识别模型和管道,包括: KaldiMozillaDeepSpeech,NVIDIANeMo, Riva, TAOToolkit ,以及来自谷歌、亚马逊和微软的服务。

Kaldi、DeepSpeech和NeMo是帮助您构建语音识别模型的开源工具包。TAO工具包和Riva是封闭源代码SDK,可帮助您开发可在生产中部署的可定制管道。

谷歌、AWS和微软等云服务提供商提供通用服务,您可以轻松地即插即用。

深度学习语音识别流水线

如图1所示,ASR管道由以下组件组成:将原始音频转换为频谱图的频谱图生成器、将频谱图作为输入并输出随时间变化的字符概率矩阵的声学模型、从概率矩阵生成可能句子的解码器(可选地与语言模型耦合),最后,一种标点符号和大写模式,用于格式化生成的文本,以便于人类使用。

用于语音识别的典型深度学习管道包括:

数据预处理神经声学模型解码器(可选地与n-gram语言模型耦合)标点和大写模式。

图1显示了深度学习语音识别管道的示例:

图1.深度学习语音识别管道的示例

数据集在任何深度学习应用中都是必不可少的。神经网络的功能类似于人脑。你用来教授模型的数据越多,它学习的越多。语音识别管道也是如此。

一些流行的语音识别数据集是LibriSpeech,Fisher英语培训演讲,Mozilla通用语音(MCV)、VoxPopuli、2000HUB5英语评估演讲、AN4(包括人们拼写地址和姓名的录音)和Aisell-1/Aisell-2汉语语音语料库。除了您自己的专有数据集之外,还可以使用一些开源数据集。

数据处理是第一步。它包括数据预处理/增强技术,如速度/时间/噪声/脉冲扰动和时间拉伸增强、使用窗口的快速傅立叶变换(FFT)和归一化技术。

例如,在下图2中,使用加窗技术应用FFT后,从原始音频波形生成mel谱图。

图2.音频记录原始音频波形(左)和mel频谱图(右)

我们还可以使用扰动技术来扩充训练数据集。图3和图4显示了噪声扰动和掩蔽等技术,用于增加训练数据集的大小,以避免过拟合等问题。

图3.噪声增强音频波形到噪声增强mel频谱图图像图4.噪声增强的mel频谱图到噪声增强的掩蔽mel频谱图像

数据预处理阶段的输出是频谱图/mel频谱图,它是音频信号强度随时间变化的视觉表示。

然后将Mel光谱图送入下一阶段:神经声学模型QuartzNet、CitriNet、ContextNet、ConformerCTC和Conformer-Transducer是尖端神经声学模型的示例。存在多个ASR模型有几个原因,例如需要实时性能、更高的精度、内存大小和用例的计算成本。

然而,基于构象的模型由于其提高的准确性和理解能力而变得越来越流行。声学模型返回每个时间戳的字符/单词概率。

图5显示了声学模型的输出,带有时间戳。

图5.声学模型的输出包括每个时间步词汇字符的概率分布

声学模型的输出与语言模型一起输入解码器。解码器包括波束搜索和贪婪解码器,语言模型包括n-gram语言、KenLM和神经评分。当涉及到解码器时,它有助于生成顶部单词,然后将其传递给语言模型以预测正确的句子。

在下图中,解码器根据概率得分选择下一个最佳单词。根据最终的最高分数,选择正确的单词或句子,并将其发送到标点符号和大小写模型。

图6.解码器工作流程示例

ASR管道生成没有标点或大写的文本。

最后,使用标点符号和大写字母模型来提高文本质量,以提高可读性。来自变换器(BERT)模型的双向编码器表示通常用于生成标点文本。

图7展示了标点符号前后和大小写模型的一个简单示例:

图7.标点符号和大小写模型的示例输出语音识别行业影响

语音识别可以帮助金融、电信和统一通信即服务(UCaaS)等行业改善客户体验、运营效率和投资回报率(ROI)。

视频1.语音AI如何改变客户参与度

金融

语音识别应用于金融行业,例如:呼叫中心代理协助和交易记录。ASR用于转录客户与呼叫中心代理/交易大厅代理之间的对话。然后可以分析生成的转录,并将其用于向代理提供实时建议。这将使通话后时间减少80%。

此外,生成的转录本用于下游任务,包括:

情绪分析文本摘要问答意图和实体识别电信

联络中心是电信行业的重要组成部分。通过呼叫中心技术,您可以重新想象电信客户中心,语音识别可以帮助您实现这一点。正如前面在财务呼叫中心用例中所讨论的,ASR用于电信联络中心转录客户和联络中心代理之间的对话,以便实时分析客户和推荐呼叫中心代理。T-Mobile使用ASR快速解决客户问题例如

统一通信及时服务(UCaaS)

新冠肺炎增加了对统一通信即服务(UCaaS)解决方案的需求,该领域的供应商开始专注于使用语音人工智能技术,如ASR,以创造更具吸引力的会议体验。

例如,ASR可用于生成视频会议中的实时字幕。然后,生成的标题可用于后续任务,如会议摘要和识别笔记中的行动项目。

ASR技术的未来

语音识别并不像听起来那么容易。开发语音识别充满了挑战,从准确性到用例定制,再到实时性能。另一方面,企业和学术机构正在竞相克服其中一些挑战,并推进语音识别能力的使用。

ASR挑战

在生产中开发和部署语音识别管道的一些挑战包括:

由于缺乏提供最先进(SOTA)ASR模型的工具和SDK,开发人员很难利用最好的语音识别技术。有限的自定义功能,使开发人员能够微调特定于域和上下文的行话、多种语言、方言和口音,以便让您的应用程序像您一样理解和说话限制部署支持;例如,根据用例的不同,软件应该能够部署在任何云中、prem、edge和嵌入式上。实时语音识别流水线;例如,在呼叫中心代理辅助用例中,在使用会话授权代理之前,我们不能等待几秒钟才能转录会话。ASR进展

语音识别在研究和软件开发方面都取得了许多进展。首先,研究结果开发了几种新的尖端ASR体系结构、E2E语音识别模型和自监督或无监督训练技术。

在软件方面,有一些工具可以快速访问SOTA模型,还有一些不同的工具可以将模型部署为生产中的服务。

关键要点

由于语音识别在基于深度学习的算法方面的进步,语音识别的采用率持续增长,这使得语音识别与人类识别一样准确。此外,多语言ASR等突破有助于公司在全球范围内提供应用程序,将算法从云端移动到设备上可以节省资金、保护隐私并加快推理速度。

NVIDIA提供Riva,一个语音AISDK,以解决上面讨论的几个挑战。通过Riva,您可以快速访问为生产目的量身定制的最新SOTA研究模型。您可以根据您的领域和用例自定义这些模型,在任何云上、prem上、edge上或嵌入式上部署,并实时运行它们以进行自然交互。

通过免费电子书了解您的组织如何从语音识别技能中受益,构建语音AI应用程序。

 

一文看懂语音识别

语音识别是计算语言学的跨学科子领域,其开发方法和技术,使得能够通过计算机识别和翻译口语。它也被称为自动语音识别(ASR),计算机语音识别或语音到文本(STT)。它融合了语言学,计算机科学和电气工程领域的知识和研究。

一些语音识别系统需要“训练”(也称为“登记”),其中个体说话者将文本或孤立的词汇读入系统。系统分析人的特定声音并使用它来微调对该人的语音的识别,从而提高准确性。不使用训练的系统称为“说话者无关” 系统。使用训练的系统称为“说话者依赖”。

查看详情

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能在图像处理、语音识别和自然语言处理中的应用有哪些

当谈到人工智能在图像处理、语音识别和自然语言处理领域的应用时,我们可以看到它们正发挥着重要的作用。人工智能技术利用计算机科学和机器学习算法,使得计算机能够模仿人类的智能行为和决策过程。

 人工智能在图像处理、语音识别和自然语言处理领域有广泛的应用。以下是这些领域中人工智能的一些常见应用:

图像处理:图像分类和识别:利用深度学习和卷积神经网络等技术,实现图像的分类和识别任务,例如物体识别、人脸识别等。目标检测和跟踪:通过训练神经网络模型,实现对图像中特定目标的检测和跟踪,例如行人检测、车辆跟踪等。图像生成和增强:利用生成对抗网络(GAN)等技术,生成逼真的图像,并进行图像增强,例如超分辨率图像生成、图像修复等。语音识别:语音转文本:利用深度学习模型,将语音信号转化为文字,实现语音识别任务,例如语音助手、语音转写等。语音情感分析:通过分析语音信号的声调、语速等特征,实现对语音中情感的识别和分析。自然语言处理:文本生成和翻译:通过神经网络模型,实现文本的生成和翻译任务,例如文本摘要生成、多语言翻译等。问答系统和对话机器人:利用自然语言处理和知识图谱等技术,实现智能问答系统和对话机器人,能够回答用户的问题和进行自然对话。整理了有关人工智能的籽料,有图像处理opencv自然语言处理、机器学习、数学基础等人工智能资料,深度学习神经网络+CV计算机视觉学习(两大框架pytorch/tensorflow+源码课件笔记)关注公众H:AI技术星球 回复 123这些只是人工智能在图像处理、语音识别和自然语言处理领域中的一些应用示例,随着技术的发展和创新,还会出现更多新的应用和突破。人工智能的应用不仅限于这些领域,还延伸到医疗诊断、智能交通、金融风控等多个行业。随着技术的进步和数据的丰富,人工智能在各个领域的应用将会更加广泛和深入。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇