博舍

人工智能在计算机领域的应用论文,人工智能应用领域论文 关于人工智能领域的大学论文 计算机在人工智能的典型应用有哪些方面的应用

人工智能在计算机领域的应用论文,人工智能应用领域论文 关于人工智能领域的大学论文

近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域以下是小编精心整理的关于人工智能领域的大学论文的相关资料,希望对你有帮助!

关于人工智能领域的大学论文篇一

计算机在人工智能中的应用研究

摘要:近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。本文针对计算机在人工智能中的应用进行研究,阐述了人工智能的理论概念,分析当前其应用于人工智能所存在的问题,并介绍人工智能在部分领域中的应用。

关键词:计算机;人工智能;应用研究

一、前言

人工智能又称机器智能,来自于1956年的Dartmouth学会,在这学会上人们最初提出了“人工智能”这一词。人工智能作为一门综合性的学科,其是在计算机科学、信息论、心理学、神经生理学以及语言学等多种学科的互相渗透下发展而成。在计算机的应用系统方面,人工智能是专门研究如何制造智能系统或智能机器来模仿人类进行智能活动的能力,从而延伸人们的科学化智能。人工智能是一门富有挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学与哲学。人工智能是处于思维科学的技术应用层次,是其应用分支之一。数学常被认为是多种学科的基础科学,数学也进入语言及思维领域,人工智能学科须借用数学工具。数学在标准逻辑及模糊数学等范围发挥作用,其进入人工智能学科,两者将互相促进且快速发展。

二、人工智能应用于计算机中存在的问题

(一)计算机语言理解的弱点。当前,计算机尚未能确切的理解语言的复杂性。然而,正处于初步研制阶段的计算机语言翻译器,对于算法上的规范句子,已能显示出极高

人工智能产业的应用场景和发展模式

1、基础层面:主要有AI芯片、传感器、云计算、减速器等四类核心产品

(1)AI芯片——主要包括GPUFPGA等加速硬件与神经网络芯片、为深度学习提供计算硬件,是重点底层硬件。

(2)传感器——主要对环境、动作、图像等内容进行智能感知,是人工智能的重要数据输入和人机交互硬件。

(3)云计算/大数据——主要为人工智能开发提供云端计算资源和服务,以分布式网络为基础,提高计算效率,包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务。

(4)减速器——作为一种相对精密的机械,主要为人工智能产品降低转速,增加转矩,以满足不同场合下的工作需要,是重要的底层硬件。

2、技术层面:主要有计算机视觉、自然语言处理、语音识别、机器学习等四类核心技术

(1)计算机视觉——包括静动态图像识别与处理等,对目标进行识别、测量及计算。主要应用在智能家居、语音视觉交互、ARVR、电商搜图购物、标签分类检索、美颜特效、智能安防、直播监管、视频平台营销、三维分析等场景。

(2)自然语言处理——基于数据化和框架化,研究语言的收集、识别理解、处理等内容。主要应用在知识图谱、深度问答、推荐引导、机器翻译、预料处理、模型处理等场景。

(3)机器学习——主要以深度学习、增强学习等算法研究为主、赋予机器自主学习并提高性能的能力。主要应用在压缩技术、安防、数据中心、智能家居、公共安全等场景。

(4)语音识别——通过信号处理和识别技术让机器自动识别和理解人类口述的语言,并转换成文本和命令。主要应用在智能电视、智能车载、电话呼叫中心、语音助手、智能移动终端、智能家电等场景。

3、应用层面:主要分为智慧城市、智慧生产、智慧生活三大类应用场景

(1)智慧城市:智慧城市涉及到交通、教育、医疗、零售等与用户生活息息相关的场景,把这些场景集合在同一平台上,增强用户使用习惯将会增强,粘性就会提升。各类场景互联互通,最终达到提升城市运维效率、提升资源管理效率、提升居民生活品质的目的。

典型智慧城市应用场景

(2)智慧生产:形成产品生产导向向需求生产导向转变的智慧生产流程体系

(3)智慧生活:涵盖智慧居住、饮食、健康监护管理、家庭管理等应用场景

人工智能属于面向未来的新事物,应用场景是人工智能发展的主要驱动力。下面简要分析医疗、交通、教育、金融、生活、零售、安防、园区、环保、政务等10个细分领域的人工智能应用场景及商业模式。

典型应用1:AI+医疗——中国医疗人工智能处于风口期,医学影像和疾病风险管理为热点

智能医疗,从技术细分角度看,主要包括使用机器学习技术实现药物性能、晶型预测、基因测序预测等;使用智能语音与自然语言处理技术实现电子病历、智能问诊、导诊等;使用机器视觉技术实现医学图像识别、病灶识别、皮肤病自检等。从应用场景来看,主要有虚拟助理、医学影像、辅助诊疗、疾病风险预测、药物挖掘、健康管理、医院管理、辅助医学研究平台等八大AI+医疗市场应用场景,其中医学影像和疾病风险管理为热门领域。

典型应用2:AI+交通——中国市场规模庞大,形成四类无人驾驶主流商业产品

智能驾驶其涉及的领域包括芯片、软件算法、高清地图、安全控制等。目前主要商业产品有无人驾驶出租车、无人驾驶卡车、无人巴士和无人驾驶送货车;无人驾驶车辆将设计拥有更高的安全性且能极大地降低人力成本,成为诸多相关企业的关注的焦点。

(1)无人驾驶出租车:人驾驶出租车因为其安全性更高,因此被很多汽车服务业关注,目前,无人驾驶出租车已经处于测试阶段。2015年软件公司NuTonomy在新加坡开始无人驾驶出租车测试,计划2018年完成整个无人驾驶服务的商业化

(2)无人驾驶卡车:无人驾驶卡车能有效降低司机因长时间、长距离运输而疲惫导致的安全事故。2016年11月,中国福田汽车联合百度在上海发布了国内首款无人驾驶卡车。

(3)无人巴士:固定的行驶路径、固定的停靠车站,使得无人驾驶巴士成为解决公众出行的新办法。2017年10月,百度联合金龙客车合作生产无人公交车,预计在2018年实现整车量产。

(4)无人驾驶送货车:货物运输最后一公里为运输行业的瓶颈,无人送货车能够全天候工作,加大增加工作效率。2017年7月,英国杂货电商公司Ocado在伦敦东部测试了无人送货车。

典型应用3:AI+生活——以IoT为基础的家居生态圈,主要有八大市场热点领域

智慧生活是一个以IoT为基础的家居生态圈,其主要包括智能照明系统、智能能源管理系统、智能视听系统、智能安防系统等。市场热点集中在硬件支持、智慧场景应用、产品、平台等方面,主要有机器学习、无线模块、智能家庭平台、智能家居娱乐系统、家居安防、健康家庭医疗系统等智能家居市场八大热点。

典型应用4:AI+金融——智能金融变革金融业务全流程

AI技术赋能金融领域,主要包括智能风控、智能投顾、智能投研、智能支付、智能营销和智能客服等。从金融角度来讲,智能的发展依附产业链涉及资金获取、资金生成、资金对接到场景深入的资金流动全流程,主要应用于银行、证券、保险、p2p、众筹等领域。

典型应用5:AI+教育——千亿庞大市场规模,三大应用主体与十三大应用场景

智能教育可分为学习管理、学习评测、教学辅导、教学认知思考四个环节,全面覆盖“教、学、考、评、管”产业链条,并已在幼教、K12、高等教育、职业教育、在线教育等各类细分赛道加速落地。围绕教育机构、教师、学生等三大主体,智能教育产品主要应用于教育评测、拍照答题、智能教学、智能教育、智能阅卷等十三大场景。

典型应用6:AI+零售——实现零售购物的无人化、定制化、智能化,提升购物体验

AI+零售将实现零售购物的全面无人化、定制化、智能化,实现消费者购物体验的全面升级。典型的应用场景主要有智能提车和找车、室内定位及营销、客流统计、智能穿衣镜、机器人导购、自助支付、库存盘点等场景。

(1)智能停车和找车。为智能停车模块,帮助用户解决“快速停车及找车”的痛点。如阿里巴巴推出的喵街App中包含智能停车及找车模块,目前已经应用于几十家购物中心。

(2)室内定位及营销。在用户购物及浏览过程中快速根据用户需求、物品位置实现精准匹配。如北京大悦城等商场已经实现了室内导航及定位营销,iBeacon的技术解决方案颇受青睐。

(3)客流统计。实时统计客流、输出特定人群预警、定向营销及服务建议。如图普科技,利用开发客流统计解决方案,为天佑城的活动策划和招商部门提供客观数据佐证。

(4)智能穿衣镜。为用户提供个性化的定制服务,增加用户实际购物体验。智能虚拟穿衣镜已经在Lily、马克华菲等诸多品牌门店中部署。

(5)机器人导购。增加用户购物过程的趣味性,从而提升销售。如零售机器人“豹小贩”实现从“人找货”到“货找人”的转变,自动走到人流量大的地方,主动推荐商品。

(6)自助支付。收银服务机提供屏幕视频、文字、语音三种指引方式,引导自助支付。如国内阿里的刷脸支付尝试。

(7)库存盘点。库存盘点机器人替代仓库管理员,提升工作效率。如德国MetraLabs推出机器人Tory,为德国服装零售商AdlerModemrkte提供库存盘点服务。

典型应用7:AI+安防——平安城市、园区、校园、家居、金融等一体化智能安防建设

智能安防是人工智能最先大规模应用,并持续产生商业价值的领域,主要依托低速无人驾驶、环境感知、目标检测、物体识别、多模态交互等技术,实现目标跟踪检测与异常行为分析,视频质量诊断与摘要分析,人脸识别与特征提取分析,车辆识别与特征提取分析等,实现平安城市、园区智能安防、校园智能安防、家居智能安防、金融智能安防等一体化智能建设。

(1)平安城市——开展城市监控报警联网系统建设,公安机关建监控系统,省级监控平台,地市级平台,实现城市智能公安联网监测检查。

(2)园区智能安防——工业园区安防系统由视频监控系统、入侵报警系统、门禁管理系统、电子巡更系统、停车管理系和综合管理平台等构成。

(3)校园智能安防——主要构建透明食堂监控、校园车辆卡口系统、手机移动监控等系统,实现技防各子系统高度集成联动、海量数据智能化分析并自动导出,实现安保工作基础平台信息化。

(4)家居智能安防——家居安防系统主要包括报警控制主机、无线传感器网络节点两大模块,负责对采集的信号进行分析和处理,以及安防情况进行远程监控。

(5)金融智能安防——金融安防系统包括技术防范系统和实体防护设施,技术防范系统主要包括视频安防监控系统、出入口控制系统、入侵报警系统和监听对讲系统等,实体防护设施主要包括专用门体、防弹复合玻璃、提款箱、运钞车、保管箱和ATM自动柜员机等。

典型应用8:AI+园区——实现物业硬件互联信息化、服务智慧化、产业智能化

在智慧园区场景下,从硬件设施到系统软件,从智慧物业到智慧服务,实现物业硬件信息化互联,服务智慧化、产业智能化。园区形成微型智慧生态,物业信息化互联,并为园区企业提供智慧化办公生产相关服务,吸引智慧产业入驻发展。

(1)园区互联信息化。园区安防、管网、能源等硬件设施互联互通,信息化自动化。场景构建主要打造智能化信息系统、智能门禁系统,集成园区智能硬件系统。

(2)园区服务智慧化。为园区企业提供智慧化科技创新、办公智慧化、园区生活智慧化相关服务。商务办公智慧化场景构建主要依托智能会议系统、智能客服系统、办公场景语音系统实现;科创孵化智慧化场景构建主要打造智慧产业孵化器。

(3)产业发展智能化。集聚信息技术、智能制造企业,推动产业化升级和智慧城市发展。场景构建主要依托导入相关产业资源,形成产业集聚。

典型应用9:AI+环保——实现环境监测实时动态化、环保装备智能化、管理智慧化

智慧环保场景下,从监测到管理,从环保硬件到服务平台软件,实现环保装备智能化、环保管理智慧化,并融合机器学习、机器人、人机交互、智能语音、大数据等技术,在智能环保机器人、环保服务平台领域发力,构建场景新生态。

典型应用10:AI+政务——打造政务部门数据集成共享,实现政务决策IT化

(1)城市全景精细呈现。打造GIS地理信息技术平台,依托智能化城市基础设施建设,展现城市数据。

(2)部门数据融合互通。引入信息技术集成服务商,集成市政、警务、交通、电力、等部门数据库系统,开辟数据接口,实现数据融合互通。

(3)智能化统计分析。构建城市政务管理云服务平台,实现智能化数据分析,为城市智慧化精细化管理提供决策依据和建议。

(4)对话数据,交互查询。建设统一查询系统,引入系统开发服务商,设计实现交互查询的查询系统,非隐私数据可民用开放。

(5)可视化部署、指挥调度。通过数据可视化云平台打造,实现突发事件应急联动,有效结合各部门数据资源,达到高效决策、部门联动、信息共享的指挥调度系统。

根据东滩产业内参《人工智能产业投资趋势及发展模式》的研究,中国人工智能产业空间集聚模式主要呈现智慧城市、产业集聚区/创新区、产业小镇/产业园区等三种形式。智慧城市建设、产业集聚区/创新区、产业小镇/产业园区三个层面互为促进,成为推动人工智能产业发展的主要路径。

(1)智慧城市

通过打造人工智能创新应用示范区/产业集聚区/小镇/园区等形式,形成深度应用场景,建设应用示范项目;促进人工智能在智慧政务、智慧交通、智能医疗、智能健康和养老等领域深化应用。典型的案例有上海、杭州、北京、深圳等智慧城市的建设。

(2)产业集聚区/创新区

依托区域较好的智能制造基础及信息技术优势,集聚人工智能、大数据、云计算、区块链、VR/AR等数字产业项目,将技术和应用扩散至周边区域,与其他产业交叉融合发展。典型的案例有上海张江人工智能岛、杭州高新区(人工智能)优势产业集聚地等。

(3)产业小镇/产业园区

作为大型经济开发区里的专业园区,或是以人工智能产业为特色的产业小镇,与周边科技、制造、新一代信息技术等产业协同发展。典型案例有苏州工业园人工智能产业园、杭州人工智能产业园、沧州高新技术产业开发区人工智能科技产业园等。

案例链接1:智慧上海

打造六大人工智能创新示范区

上海将着力打造6个人工智能创新应用示范区,形成60个深度应用场景,建设100个以上应用示范项目。构建“一带一区多点联动”的产业空间布局,包括“徐汇滨江-漕河泾-闵行紫竹”人工智能创新带、“张江-临港”人工智能创新承载区、华泾北杨人工智能特色小镇、上海松江洞泾人工智能特色产业基地。

上海人工智能产业空间格局

专业园区——上海张江人工智能岛

项目概况:上海张江人工智能岛位于张江科学城中区,占地面积6.6万平方米,建筑面积10万平方米,由张江集团负责开发运营的人工智能产业新标杆。产业方向以语音识别、视觉识别技术世界领先,信息处理、智能监控、生物特征识别、工业机器人、无人驾驶为主。目前吸引了包括微软、阿里巴巴、同济大学、云从科技在内的跨国巨头、BAT龙头、科研院所和独角兽企业入驻园区。成为上海市首批人工智能应用场景,并成为唯一的“AI+园区”实施载体。

产业发展策略:

(1)基金政企合作,打造开放创新平台。与龙头企业共建孵化器、共设投资基金,并搭建集创新转型工坊、创新实验室、项目实战空间、应用演进与运营四维一体的人工智能“能力开放工场”,塑造产业垂直生态。

(2)集聚世界创新大脑,引领高端发展。加强前瞻性研究,集聚世界一流科学家、学者开展人工智能基础理论、核心算法以及脑科学、基础系统等方面的基础研究,实现高端引领发展。

(3)技术与场景联合试验,助推远期产品落地。围绕智能安防、语音识别、机器视觉、深度学习等人工智能新技术,与应用场景进行深度融合,并在岛上进行联合试验和交互体验,并将技术和应用扩展至整个张江科学城。

典型案例2:智慧杭州

打造十大人工智能应用示范区

杭州人工智能产业发展规划建设10个人工智能应用示范园区和特色小镇,构建数据驱动、人机协同、跨界融合、共创分享的智能经济生态圈。构建“一廊一区多点联动”的产业空间布局。打造杭州城西科创大走廊,构筑杭州高新区(滨江)优势产业集聚地,人工智能产业基地多点布局。

专业园区——杭州人工智能产业园

项目概况:位于杭州高新技术开发区滨江区江虹路,与阿里巴巴、浙江大学等比邻而居,规划面积3.43平方公里,总建筑面积8万平方米,由四幢主体建筑合围而成。项目定位于打造集专业化服务功能、创新型孵化功能、多资源聚合功能、产学研转化功能于一体的人工智能产业新平台,成为省级人工智能技术研发、应用、产业化的示范基地,重点打造产业资源交换、孵化研发、传媒、生活等四大中心。以人工智能为特色,覆盖大数据、云计算、物联网等业态,集中力量招引机器人、智能可穿戴设备、无人机、虚拟/增强现实、新一代芯片涉及研发等领域。

产业发展策略:打造全球创客中心人工智能集聚区,广泛集聚以人工智能为代表的智慧产业创客极客,发挥创业创新集聚效应,在引领区域创新上发挥重要的作用与市场影响力,着力构建“一主三化五平台”产业发展服务体系及综合运营管理服务体系。

(1)一大生态——打造有利于人工智能产业快速发展的生态系统;

(2)三化产业载体——人工智能技术成果化(孵化器)、人工智能成果产业化(加速器)、人工智能产业资本化(倍增器);

(3)五大发展平台——产业产学研合作平台、产业技术成果交易平台、产业公共服务平台、产业企业家交流平台、产业投资发展平台;

(4)运营管理体系——建立人工智能产业联盟,与投资行业协会、国内知名投资机构、金融服务机构、投融资服务组织等建立紧密的合作关系,为创新创业者提供全面专业的资本服务。

总的看来,中国人工智能产业集聚创新发展主要体现在四方面,即集中展示AI在特点场景下的纵向应用,如:学校、医院、工厂、家庭等,整合各类AI技术,打造整体式的解决方案;体现AI在特定行业中的创新应用,如:交通、政务、安防、环保、教育、金融等行业,推动人工智能对行业产生显著的带动作用;通过AI跨领域跨行业的集中应用,如:园区、社区等,实现人工智能对区域的全面赋能;通过龙头企业的带动,搭建AI产业发展开放平台,集聚产业链上下游资源,实现区域人工智能产业的协同创新发展。

▌说明:东滩顾问·廖义桃原创文章,转载请注明出处!

▌编辑:波波

▌关注:请搜索“东滩顾问”公众号关注我们哦!返回搜狐,查看更多

人工智能的应用实例(人工智能应用在哪10个方面)

释放双眼,带上耳机,听听看~!

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。

01无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请提交工单举报,一经查实,本站将立刻删除。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇