博舍

适应人工智能驱动科研新范式 春晚人工智能

适应人工智能驱动科研新范式

  当前,随着新科技革命和产业变革深入发展,人工智能技术不断突破并向科研领域广泛渗透,为科研工作注入了新元素、新动能,对科研效率提升和范式变革形成显著催化作用,现代科研活动由此更加高效、精准,“人工智能驱动的科学研究”已成为全球人工智能新前沿,必将为未来科技发展开启全新局面。

  近年来,我国人工智能技术快速发展,科研数据和算力资源日益丰富,顺应新时代新趋势,利用新技术新优势,推动人工智能赋能科学研究恰逢其时、大有可为。

  应用场景是新范式的孕育土壤和实训基地,人工智能技术与科学研究互动互促需要在诸多应用场景中反复实践、不断完善,随着应用范围不断拓展延伸,科研能力持续实现智慧升级。为此,以需求为牵引谋划人工智能技术应用场景,基于促进科学研究更加紧密拥抱人工智能技术,拓展人工智能技术在数学、化学、地学、材料、生物和空间科学等重大科学领域的应用。充分发挥人工智能技术在文献数据获取、实验预测、结果分析等方面的作用,围绕具有典型代表意义和辐射带动性的基础科学、应用科学领域,创造更多实战式应用场景,融合人工智能模型算法和领域数据知识,不断探索重大科学问题研究突破的新路径、新范式,持续积累可复制可推广的经验做法。

  人工智能技术在科研活动应用中涉及多专业、多环节,离不开不同类型、不同链条主体机构的合理分工和有效协作。为此,要鼓励企业运用人工智能开展关键技术研发、新产品培育等科研活动,支持高校、科研院所、新型研发机构探索人工智能技术用于重大科学研究和技术开发的先进模式,培育壮大一批跨界技术转化和企业孵化机构、科研中介服务机构,探索多元主体合作协作新机制。面向重大科学问题的人工智能模型和算法创新,发展一批针对典型科研领域的“人工智能驱动的科学研究”专用平台,推动国家新一代人工智能公共算力开放创新平台建设,支持高性能计算中心与智算中心异构融合发展,鼓励各类科研主体按照分类分级原则开放科学数据。支持成立“人工智能驱动的科学研究”创新联合体,搭建国际学术交流平台。

  适应性人才是新范式突破和推广的根本源泉。提高人工智能技术在科学研究领域的应用水平,既需要人工智能和相应学科的专业人才,也离不开跨领域复合型人才为跨界沟通协作提供高效支撑,这需要多渠道构筑相关人力资源引育平台和机制。为此,要多渠道培养和汇聚跨越人工智能和专业领域的复合型人才。支持更多数学、物理等科学领域的科学家、研究人员投身相关研究,鼓励普通高校、职业院校在人工智能学科专业教学中设置科技创新类专业课程,提升人工智能专业学生科研专业素养。鼓励开展相关人才培训,通过开设研修班、开展实践交流、组织专题培训等多种形式,培养一批人工智能与专业科研能力兼顾的复合型人才。鼓励地方政府、央企、行业领军企业通过“揭榜挂帅”、联合创新等方式支持相关优秀人才和科研团队开展智慧赋能科研工作。(张璐璐)

人工智能是智慧农业新风口

可以预期,以AI为代表的新一代信息技术将深刻影响智慧农业发展,用人工智能赋能农业成为一大命题。农业机械化已经让大田的粮食生产从体力劳动中解放出来。未来,农业信息化会让农民成为更体面的职业。

当最前沿的技术与最古老的产业相遇,会激荡出怎样的变革?日前,国内首款农业AI对话机器人发布,诸如“土豆出现烂根怎么办”“某地西瓜行情怎么样”“帮我找个杨梅采购商”这些问题都将得到回答。可以预期,以AI为代表的新一代信息技术将深刻影响农业发展,抓住人工智能这个智慧农业新风口成为一大命题。

农业AI应用正加速铺开。本世纪初,其在国内已露端倪,既有耕、种、收等智能机器人,也有病虫害探测、土壤墒情测报智能系统。近年来,具有自主知识产权的传感器、无人机、农业机器人等日臻成熟,出现在越来越多的农业场景中。2020年,农业农村部、中央网信办印发《数字农业农村发展规划(2019—2025年)》,提出加快农业人工智能研发应用。自ChatGPT发布以来,认知大模型技术持续进化,国内类似产品不断推出。在此背景下,农业领域大模型产品的推出自然不足为奇。

人工智能的农业应用非常广泛,涉及感知、决策、控制、作业等,农业AI对话机器人只是其一。传统农业的特点是靠天吃饭,而我国的智慧农业发端于物联网设备和与其对应的农业信息化系统,通过监测和改善生长环境,使农业生产更稳定可控。如今,叠加新一代信息技术,农业数据要素将持续发挥作用。比如,借助猪脸识别,结合声学特征和红外线测温,从猪的体温、叫声等可及时判断猪是否患病,从而预警疫情,科学养殖。

智慧农业是用科技武装农业,并牵引资本、人力、土地等多种生产要素。很多国家都把智慧农业作为优先发展方向,全球智慧农业呈现出两大特征。一是高度集成。各种设备与技术高度集成,物联网、大数据、人工智能、云计算等叠加交融,形成了智能生产系统。国土面积只有4万多平方公里的荷兰,就是在设施农业中集成智慧农业,每公顷能产出54.4吨蔬菜,是我国的2.4倍。二是数据融通。不只应用在生产领域,而是打通生产、加工、流通、销售环节,建立大农业数据库,实现产销高效对接。有的国家在此基础上建立农业展望制度,直接影响期货市场走势,拥有了主导世界农产品市场的战略武器。

现阶段,人工智能可以成为农业生产强有力的辅助,但远不足以完全替代人和人的决策。这与其发展程度有关。一方面,有数据,缺智慧。行业数据、社会数据、企业数据难以有效融合,缺少针对农业大数据的深度挖掘和分析利用,预测预警和配置资源等核心功能还远未发挥。另一方面,有示范,缺规模。由于门槛高、价格高,目前应用局限在少数主体上,不少地方存在增量不增效、技术脱离实际等问题。此外,人工智能的核心是数据、算法和算力,但是农业生产对象具有生物特性,比较效益又低,数据采集难、算法要求高、算力资源缺,导致落地难度大。

人工智能赋能农业是好事,但也急不得。大国小农是我国的基本国情、农情。再高大上的技术,农民和农企都面临是否用得上、用得起、用得划算的问题。一方面,他们追求增产、提质、节本,需要导入智能装备;另一方面,又有求稳心态,对短期成本收益敏感,对新技术应用有迟疑。可见,新技术落地不是一蹴而就的,要不断迭代优化,从而突破盈亏平衡点。要从实际出发,积极探索应用场景,打造内容丰富、模式多样、载体多元的解决方案,降低用户成本,务求实效实用。

农业机械化已经让大田的粮食生产从体力劳动中解放出来。未来,农业信息化会让农民成为更体面的职业。推动智慧农业发展,政府应聚焦农业公共基础数字资源建设,通过政策引导数字技术的产业应用。科研院所要把工程科技与农业生产相结合,研发攻关更多接地气的产品。各类资本则要以长期投资的耐心支持经营主体。农民和农企则要抓住新一轮信息技术机遇,提升品质、做强品牌,实现增值。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇