博舍

让人工智能成为“智慧动能”(人民时评) 人工智能技术及应用场景描述

让人工智能成为“智慧动能”(人民时评)

从人脸识别的逐步应用,到方兴未艾的自动驾驶,人工智能正在越来越多领域发挥作用。科技部、教育部、工信部等6部门联合发布《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》,统筹人工智能场景创新;科技部发布《关于支持建设新一代人工智能示范应用场景的通知》,支持建设包括智慧农场、智能港口在内的10个人工智能示范应用场景……近段时间,助力培育人工智能应用场景的政策措施接连出台,为牵引推动人工智能落地营造了良好的政策环境。

习近平总书记强调:“人工智能是引领这一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的‘头雁’效应。”作为赋能手段,人工智能与实体经济融合,能够引领产业转型,孕育新产业新模式新业态;作为服务人们美好生活的工具,人工智能的应用有助于提升生活品质,满足人们消费升级需求。无论是促进传统产业提质增效,还是培育新的经济增长点,人们对以互联网、大数据、人工智能为代表的新一代信息技术寄予厚望。

应用需求是技术进步的重要推动力。为推动人工智能应用落地,2017年国务院印发《新一代人工智能发展规划》,截至2021年12月,国家新一代人工智能创新发展试验区已达17个。据测算,我国人工智能核心产业规模超过4000亿元,企业数量超过3000家。得益于海量数据处理带来的旺盛需求,丰富应用场景提供的试验土壤,我国在计算机视觉、语音识别等领域走在世界前列。在应用实践中锤炼、迭代和改进的技术,反过来又促进应用更加深化,从而形成技术进步与应用推广相互推进的良性循环。这是我国发展新技术的重要优势,过去人工智能产业发展受益于此,推动人工智能应用迈向更高水平,依然需要用好这一长处。

随着我国数字基础设施建设提速,更多潜在应用场景将会不断涌现。智能制造、智慧城市、智能矿山、智能供应链等,为拓展人工智能应用提供了广阔的舞台。就此而言,应当加快拓展应用场景,进行规模化市场探索,打造形成一批可复制、可推广的标杆型示范应用场景。加速新技术落地,有助于保持我国人工智能发展的优势。挖掘更多应用场景,着力打通落地环节,推动人工智能与相关行业深度融合,人工智能应用必将发挥更大效用。

需要注意的是,发展人工智能产业是一项系统工程。比如,支撑自动驾驶升级,除了“聪明”的车,更要有“智慧”的路,这离不开营造包括技术研发、基础设施、数据流通在内的良好产业生态。此外,发挥应用场景的优势,也需及时补上底层技术的短板。推进人工智能应用走深走实的同时,加强软硬件、底层技术攻关,两者齐头并进,才能增强产业发展后劲,掌握发展的主动权。

犹记北京冬奥会开幕式上,小朋友在舞台上自由跑动,脚下踩出一片片“雪花”。它们时而散开,时而汇聚,星光也跟着孩子们的脚步流动,这是“人工智能实时视频特效”带来的神奇效果。未来几年是人工智能技术跃迁的重要窗口期,随着应用场景资源的持续开放,场景创新能力的不断提升,人工智能与产业的融合必将更加紧密,人工智能的应用也必将迈向更高水平,为促进经济社会高质量发展注入源源不断的智慧动能。

《人民日报》(2022年09月14日09版)

(责编:袁勃、仝宗莉)

分享让更多人看到

6大人工智能应用关键技术,终于有人讲明白了

导读:我国《人工智能标准化白皮书(2018年)》中也给出了人工智能的定义:“人工智能是利用数字计算机或者由数字计算机控制的机器,模拟、延伸和扩展人类的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术和应用系统。”

人工智能的核心思想在于构造智能的人工系统。人工智能是一项知识工程,利用机器模仿人类完成一系列的动作。根据是否能够实现理解、思考、推理、解决问题等高级行为。

在未来,人工智能应用主要会体现如下几大核心技术特点。

作者:达观数据

来源:大数据DT(ID:hzdashuju)

01机器人流程自动化(RoboticProcessAutomation,RPA)

RPA(RoboticProcessAutomation,机器人流程自动化)的定义:通过特定的、可模拟人类在计算机界面上进行操作的技术,按规则自动执行相应的流程任务,代替或辅助人类完成相关的计算机操作。

与大家通常所认为的具备机械实体的“机器人”不同,RPA本质上是一种能按特定指令完成工作的软件,这种软件安装在个人计算机或大型服务器上,通过模拟键盘、鼠标等人工操作来实现办公操作的自动化。

▲图1-1RPA是未来办公创新和发展的趋势

RPA也被形象地称为数字化劳动力(DigitalLabor),是因为其综合运用了大数据、人工智能、云计算等技术,通过操纵用户图形界面(GUI)中的元素,模拟并增强人与计算机的交互过程,从而能够辅助执行以往只有人类才能完成的工作,或者作为人类高强度工作的劳动力补充。

自2015年以来,人工智能技术和RPA在同一时间大幅度发展和进步,恰好相辅相成,汇合在了一起。自然而然地,RPA和AI两者的结合运用,带来了一股非常独特的智能化应用的发展潮流,我们称之为智能RPA技术,或者IPA技术(IntelligentProcessingAutomation),即智能流程自动化技术(如图1-2所示)。

▲图1-2智能RPA的构成:RPA+AI=IPA

换句话说就是,RPA是基础,需要与其他技术手段整合在一起,方能实现IPA及其优势。

商业社会对流程自动化的功能的期望将与日俱增,将机器学习等AI技术运用到RPA中,将人工智能功能集成到产品套件中,以提供更多类型的自动化功能,已经成为未来RPA发展的主流趋势。

02光学字符识别(OpticalCharacterRecognition,OCR)

OCR技术是指利用电子设备(例如扫描仪或数码相机)将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。通俗地说就是,对文本资料进行扫描,然后对图像文件进行分析处理,以获取文字及版面信息的技术。

OCR技术一般可分为如图3-1所示的5个阶段。

▲图3-1OCR技术的5个阶段

下面具体说明OCR的识别流程。

1.图像处理

针对图像的成像问题进行修正。常见的图像预处理过程包括:几何变换(透视、扭曲、旋转等)、畸变校正、去除模糊、图像增强和光线校正、二值化处理等。

2.文字检测

检测文本所在位置、范围及其布局,通常还包括版面分析和文字行检测等。文字检测解决的主要问题是哪里有文字,文字的范围有多大。

文字检测采用的处理算法一般包括:Faster-RCNN、Mask-RCNN、FPN、PANet、Unet、IoUNet、YOLO、SSD。

3.文字识别

在文本检测的基础上,对文本内容进行识别,将图像中的文本信息转化为计算机可识别和处理的文本信息。文字识别主要解决的问题是每个文字是什么。

文字识别常采用的处理算法包括:CRNN、AttentionOCR、RNNLM、BERT。

4.文本抽取

从文字识别结果中抽取出需要的字段或要素。

文本抽取常采用的处理算法包括:CRF、HMM、HAN、DPCNN、BiLSTM+CRF、BERT+CRF、Regex。

5.输出

输出最终的文字识别结果或者文本抽取结果。

03机器学习/大数据分析

机器学习/大数据分析是一种用于设计复杂模型和算法并以此实现预测功能的方法,即计算机有能力去学习,而不是依靠预先编写的代码。它能够基于对现有结构化数据的观察,自行识别结构化数据中的模型,并以此来输出对未来结果的预测。

机器学习是一种通过“监督”和“无监督”学习来识别结构化数据中的模式(例如日常性能数据)的算法。监督算法是指在根据自己的输入做出预测之前,会从输入和输出的结构化数据集来进行学习。无监督算法是指观察结构化数据,并对已识别的模式提供相关见解。

机器学习和高级分析可能会改变保险公司的游戏规则,例如,在提高合规性、降低成本结构,以及从新的见解中获得竞争优势。高级分析已经在领先的人力资源部门中得到了广泛应用,主要用于确定和评估领导者和管理者的核心品质,以便更好地预测行为、规划职业发展道路和下一任领导岗位归属。

04自然语言生成(NaturalLanguageGeneration,NLG)

计算机具有与人一样的表达能力和写作能力,它遵循某种规则,将从数据中观察到的信息转换成高质量的自然语言文本。例如,自动识别会议邮件中的主题、数字地名、人名地址并生成行程表备忘录,或者识别出合同条款的关键内容并将摘要的重点生成列表。

关于自然语言生成及自然语言处理的详细介绍,请阅读《详解自然语言处理5大语义分析技术及14类应用(建议收藏)》

05智能工作流(SmartWorkflow)

智能工作流是一种用于流程管理的软件工具,其中集成了由人和机器共同执行的工作,允许用户实时启动和跟踪端到端流程的状态,以便于管理不同组之间的切换,包括机器人与人类用户之间的切换,同时还能提供瓶颈阶段的统计数据。

随着社会和科技的不断进步,各个领域都开始逐步朝着自动化、智能化的方向快速发展。工作流相关技术的研究也越来越受重视,并广泛地应用于制造业、软件开发、银行金融、生物医学等不同领域。

工作流不但能够自动化地处理相关的活动和任务,减少人机交互处理过程中带来的潜在错误,而且能够精确化每一个处理步骤,最大化地提高生成效率,并且将工作流应用到动态、可变且灵活的应用场景当中。

近年来,在大数据、人工智能的背景下,工作流中的业务流程日趋复杂,所面临的环境和数据也日趋复杂,由需求分析引起的业务过程重新建模或由维护升级引起的过程模式变更和改进也变得越来越频繁。

在这种动态多变的复杂环境下,如何快速识别出任务,然后快速高效并有针对性地处理工作流问题,已成为目前工作流任务研究的关键问题。

RPA软件机器人在工作过程中,也会遇到很多类似的情况。工作流的复杂多变,会导致RPA作业流程的复杂多变,使其无法做到自适应,这将会大大影响RPA软件机器人的作业效率。

因此,需要通过智能工作流的技术,实现动态地调整RPA里的任务设定,以及RPA业务流程的自动变更和自动升级,在智能工作流的指导下实现自适应作业模式。

实现智能工作流的方法有很多,比如,美国J.H.Holland教授提出的基于遗传算法的工作流调度,PandeyS等提出的基于粒子群优化算法的启发式算法(PSO)可用于不同资源的智能调度。除此之外,还有很多基于自然界和仿生学的智能算法,比如,混合蛙跳算法、布谷鸟搜索算法、蝙蝠算法、人工蜂群算法等。

目前比较常见的方法是实现一种基于智能规划的工作流处理模式,该模式不再是单纯地将不同的活动当作对彼此没有影响的单独事件,而是有针对性地考虑多个事件的共同影响。

该模式充分考虑了工作流和智能规划之间的相似之处,通过智能规划推导出不同工作流任务之间的内在逻辑关系,并从其他的渠道和外部信息中充分挖掘潜在的关系。

逐步改进传统工作流中的问题,使用全新的智能规划的手段,从表面动作中挖掘出潜在的信息,过滤噪声数据,进而实现流程的自动修正,最后,通过前面得出的结论,有针对性地修改之前的RPA作业流程,实现自适应性的作业模式和作业过程。

06认知智能体(CognitiveAgent)

认知智能体是一种结合了机器学习和自然语言生成的技术,并在此基础上加入情感检测功能以做出判断和分析,使其能够执行任务,交流沟通,从数据集中学习,甚至根据情感检测结果作出决策。换句话说,机器会像人一样产生“情感共鸣、精神共振”,真正成为一个完全虚拟的劳动力(或者智能体)。

在客服领域,英国某汽车保险公司通过使用认知智能体技术,将客户转化率提高了22%,验证错误率降低了40%,整体投资回报率达到了330%。

当然,德勤、安永等咨询公司也坦然表示,就现阶段许多企业的流程管理与系统的基础能力来看,仍存在着大量的基础建设工作有待开展。而打造智能流程自动化所需的部分核心技术(例如认知智能体等)也还停留在雏形阶段。

智能包含三个方面,分别是计算智能、感知智能和认知智能。

在计算智能方面,计算机的速度早已远远超过人工的效率。

在感知智能方面,随着OCR、NLP等技术的发展,目前也已经能够实现很多的效果。

但是在认知智能方面,即使在某些特定领域,自然语言的处理也已经可以得到比人工更好的成绩,但是在某些领域,特别是知识理解、知识推理、知识判断等方面,还有很多需要逐步积累、逐步完善的地方。

按照机器能否产生自我认知和机器人的适用范围,人工智能分为弱人工智能和强人工智能,其中弱人工智能里的机器没有自我意识,不具备真正的推理和独立解决问题的能力,通常只适用于解决特定条件下的某种问题。当前人工智能的研究主要在弱人工智能领域。

而在强人工智能方面,机器具有一定的自我意识,能够通过学习拓展功能。对于当前不具备的功能或者当前不了解的知识,能通过自行学习获得。

当前条件下,全面的强人工智能还面临技术能力、社会伦理等多方面的挑战,但是在某些领域的特定场景下,具备认知智能能力和学习能力的人工智能软件,不仅能够优化作业流程、快速响应、覆盖更多不同的情况,同时还能够最大限度地避免技术风险和应用风险,是一个非常有价值的研究方向。

认知智能有很多种定义,其中,复旦大学肖仰华教授曾经提到过,所谓让机器具备认知智能是指让机器能够像人一样思考,而这种思考能力具体体现在如下几个方面。

第一,机器具备能够理解数据、理解语言进而理解现实世界的能力。

第二,机器具备能够解释数据、解释过程进而解释现象的能力。

第三,机器具备推理、规划等一系列人类所独有的认知能力,也就是说认知智能需要解决推理、规划、联想、创作等一系列复杂任务。

智能体是指驻留在某一环境下,能够持续自主地发挥作用,具备驻留性、反应性、社会性、主动性特征的计算实体。根据著名人工智能学者,美国斯坦福大学Hayes-Roth教授的理论“智能体能够持续执行三项功能:感知环境中的动态条件、执行动作影响环境、进行推理以解释感知信息、求解问题和决定动作”。

从前面的定义我们可以看出,认知智能体能够感知到环境中的动态条件,然后根据这些条件执行相应的动作来影响现有的环境,同时其还能够用推理来解释感知信息,求解相关问题,决定后续动作。

将认知智能体与RPA相结合,我们能够得到一个具备认知智能的机器人,它可以根据所涉及的应用系统和其他环境的变化动态感知下一步需要做的事情,同时执行相应的动作来影响对应的环境信息,实现智能录入、智能监控、智能文档处理和辅助判定。

与此同时,认知智能体通过RPA技术在处理业务的同时,还能够学习到相关的经验和知识,逐步掌握识别重点的能力。

认知智能体的研究包含了多种不同的方法,近年来,随着分布式人工智能、信息科学和网络科学的不断发展,面向动态环境下的分布式协同决策已经成为认知智能体的一个重要的研究方式。这种方式在以多无人机系统、多机器人系统为代表的典型无中心式多智能体系统中得到了广泛的应用。

与此同时,受限于自身设计,智能体对所在环境和系统常呈现出信息的部分可观测特征,而有限的智能体之间的交互和外部的约束也使得获得全局信息需要付出极高的代价。

同时,无中心式的多智能体系统在应用中呈现出了与社会网络相类似的自组结构和相应的复杂网络特征,即网络中单个智能体通常仅能连接/交互所在局部网络中的小部分智能体,传统的集中式协同模型则不再适用。

此外,类似于社会网络中人与人之间的有限信息交换便可大大提升个体的决策效率,同样的方法能否应用到相应的研究当中,也处于不断的尝试过程中。

关于作者:达观数据,中国智能RPA领域的龙头企业,独立开发了全套“RPA+AI”系统,拥有核心知识产权。达观智能RPA产品是业界不依赖微软底层开发框架、未使用第三方开源框架的RPA产品。

本文摘编自《智能RPA实战》,经出版方授权发布。

延伸阅读《智能RPA实战》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:这是一部从实战角度讲解“AI+RPA”如何为企业数字化转型赋能的著作,从基础知识、平台构成、相关技术、建设指南、项目实施、落地方法论、案例分析、发展趋势8个维度对智能RPA做了系统解读,为企业认知和实践智能RPA提供全面指导。

划重点????

干货直达????

西安交大送大一新生这本书,你读过吗?12本有趣有料的科普书盘点

终于有人把AI、BI、大数据、数据科学讲明白了

监督学习、非监督学习、强化学习都是什么?终于有人讲明白了

一条SQL引发的“血案”:与SQL优化相关的4个案例

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生

据统计,99%的大咖都完成了这个神操作

????

人工智能的主要算法与应用

MongoDB用户管理操作

隔壁de老樊:文章不错,nice

scrapy爬虫爬取完整小说

shiyi123_:为什么我的只能爬取第一章的调试发现不能自动点击下一章循环求大佬分析

代理服务器搭建

wuyuer1027:新的云都有限制了不行了,6核以上才能绑定3个公网10个要tmd48核

代理服务器搭建

为谁攀登:我能用啊,你自己水平不行怪谁???

scrapy爬虫爬取完整小说

Rookie23:如果我从第一页开始爬取,那么下一章的标签不是a[3]

人工智能的8个有用的日常例子

如果你在谷歌上搜索“人工智能”这个词,然后不知怎的就打开了这篇文章,或者用优步(Uber)打车上班,那么你就利用了人工智能。

人工智能影响我们生活的例子不胜枚举。虽然有人将其称为“机器人以邪恶的天才统治世界”的现象,但我们无法否认人工智能通过节省时间、金钱和精力使生活变得轻松。

[[330378]]

术语

人工智能是指机器通过专门设计的算法来理解、分析和学习数据,从而充当人类思维蓝图的现象。人工智能机器能够记住人类的行为模式并根据他们的喜好进行调整。

在我们的讨论过程中,您将遇到与AI密切相关的主要概念是机器学习、深度学习和自然语言处理(NLP)。在继续之前,让我们先了解这些。

机器学习(ML)涉及通过大数据为例向机器教学有关重要概念的知识,大数据需要被构造(以机器语言)以便机器理解。这些都是通过向他们提供正确的算法来完成的。

深度学习(DeepLearning)比ML领先一步,这意味着它通过表示进行学习,但不需要对数据进行结构化以使其有意义。这是由于受人类神经结构启发的人工神经网络。

自然语言处理(NLP)是计算机科学中的一种语言工具。它使机器能够阅读和解释人类语言。NLP允许自动翻译人类语言数据,并使两个使用不同语言的实体(计算机和人类)进行交互。

现在您已经掌握了术语,让我们深入研究人工智能的示例及其工作方式。

8个人工智能的例子

以下列出了您每天可能会遇到的八个人工智能示例,但您可能没有意识到它们的AI方面。

1.谷歌地图和打车应用

地图应用程序如何知道确切的方向、最佳路线,甚至是道路障碍和交通堵塞呢?不久以前,只有GPS(基于卫星的导航系统)被用作出行的导航。但是现在,人工智能被纳入其中,让用户在特定的环境中获得更好的体验。

通过机器学习,app算法会记住建筑的边缘,在工作人员手动识别之后,这些边缘会被输入系统。这允许在地图上添加清晰的建筑视觉效果。另一个特点是识别和理解手写的门牌号的能力,这可以帮助通勤者找到他们想要的房子。没有正式街道标志的地方也可以用它们的轮廓或手写的标签来识别。

该应用程序已被教会理解和识别流量。因此,它推荐了避免路障和拥堵的最佳路线。基于AI的算法还告诉用户到达目的地的确切距离和时间,因为它被教导可以根据交通状况进行计算。用户还可以在到达目的地之前查看其位置的图片。

因此,通过采用类似的AI技术,各种乘车应用也已出现。因此,每当您通过在地图上定位您的位置来从应用程序预订出租车时,它都是这样工作的。

2.人脸检测与识别

当我们拍照时在脸上使用虚拟滤镜和使用人脸识别码解锁手机是人工智能的两个应用,现在已经成为我们日常生活的一部分。前者包含人脸检测,即识别任何人脸。后者使用人脸识别来识别特定的人脸。

这是如何运作的?

智能机器经常匹配,有时甚至超越的能力。人类婴儿开始识别面部特征,如眼睛、鼻子、嘴唇和脸型。但这并不是一张脸的全部。有太多的因素使人的脸与众不同。智能机器被教导识别面部坐标(x、y、w和h,它们在面部周围形成一个正方形作为感兴趣的区域)、地标(眼睛、鼻子等)和对齐(几何结构)。

人脸识别还被政府机构或机场用于监视和安全。例如,伦敦盖特威克机场(GatwickAirport)在允许乘客登机之前使用面部识别摄像头作为ID检查。

3.文本编辑器或自动更正

当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。

在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。

语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。

下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。

4.搜索和推荐算法

当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。

这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。

同样,优化的搜索引擎体验是人工智能的另一个示例。通常,我们的热门搜索结果会找到我们想要的答案。怎么发生的?

向质量控制算法提供数据,以识别超越SEO垃圾内容的高质量内容。这有助于根据质量对搜索结果进行升序排列,以获得最佳用户体验。

由于搜索引擎由代码组成,因此自然语言处理技术可以帮助这些应用程序理解人类。实际上,他们还可以通过汇编排名靠前的搜索并预测他们开始键入的查询来预测人们要问的问题。

诸如语音搜索和图像搜索之类的新功能也不断被编程到机器中。如果要查找在商场播放的歌曲,只需将手机放在旁边,音乐识别应用程序就会在几秒钟内告诉您歌曲的内容。在丰富的歌曲数据库中进行筛选后,机器还将告诉您与该歌曲有关的所有详细信息。

5.聊天机器人

作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。

聊天机器人被教导通过自然语言处理(NLP)来模仿客户代表的对话风格。高级聊天机器人不再需要特定的输入格式(例如,是/否问题)。他们可以回答需要详细答复的复杂问题。实际上,它们只是人工智能的另一个例子,它们给人的印象是客户代表。

如果您对收到的答复的评价不佳,则机器人会识别出所犯的错误并在下次进行纠正,以确保最大的客户满意度。

6.数字助理

当我们全力以赴时,我们常常求助于数字助理来代表我们执行任务。当您单手开车喝咖啡时,您可能会要求助手给您的妈妈打电话。助理(例如Siri)将访问您的联系人,识别单词“Mom”并拨打电话。

Siri是一个较低层模型的示例,该模型只能在说话时做出响应,而不能给出复杂的答案。最新的数字助理精通人类语言,并集成了高级NLP和ML。他们了解复杂的命令输入并给出令人满意的输出。他们具有自适应能力,可以分析您的喜好、时间表和习惯。这使他们能够以提醒、提示和时间表的形式为您系统化、组织和计划事务。

7.社交媒体

社交媒体的出现为世界提供了一种新的叙事方式,提供了过度的言论自由。然而,这也带来了一些社会弊端,如网络犯罪、网络欺凌和仇恨言论。各种社交媒体应用程序都在使用人工智能的支持来控制这些问题,并为用户提供其他有趣的功能。

AI算法可以发现并迅速删除包含仇恨言论的帖子,速度远比人类快。通过他们以不同语言识别仇恨关键字,短语和符号的能力,这成为可能。这些已被输入到系统中,该系统具有向其词典添加新词的附加功能。深度学习的神经网络架构是该过程的重要组成部分。

表情符号已成为代表各种情感的最佳方式。AI技术也可以理解这种数字语言,因为它可以理解特定文本的含义并提示正确的表情符号作为预测文本的一部分。

社交媒体是人工智能的一个很好的例子,它也能够理解用户产生共鸣的内容并向他们建议相似的内容。面部识别功能还用于社交媒体帐户中,可帮助人们通过自动建议为朋友加标签。智能过滤器可以识别并自动清除垃圾邮件或不需要的邮件。智能回复是用户可以享受的另一个功能。

社交媒体行业的一些未来计划包括使用人工智能通过分析发布和消费的内容来识别心理健康问题,例如自杀倾向。这可以转发给心理健康医生。

8.电子支付

银行现在正在利用人工智能通过简化支付流程来便利客户。

通过观察用户的信用卡支出模式来检测欺诈的方式也是人工智能的一个示例。例如,算法知道用户X购买哪种产品,何时何地购买产品以及价格落在什么价格区间。当有一些不正常的活动不适合用户个人资料时,系统会立即提醒用户X。

总结

人工智能算法超越了人类的能力,可以节省时间,从而使科学家们可以将精力投入到其他更重要的发现中。

我们已经讨论过的人工智能示例不仅可以作为娱乐的来源,而且还提供了我们已变得如此依赖的无数实用程序。人工智能领域仍处于新生阶段,还有更多的发明将更精确地复制人类的能力。

 

 

人工智能应用领域的研究与展望

引言

20世纪的科技成就中,人工智能占据着重要的位置,它的研发使用是将智能机器人的技术、信息化技术、自动化技术和关于人类自身智能探索与研究融为一体的必然结果。随着人工智能的系列化研究与发展,如今,人工智能已经被广泛地应用于很多领域。但是关于人工智能的应用领域的综述并不多,本文就人工智能在不同领域应用发展趋势进行展望。

1人工智能的由来

人工智能是研究、开发模拟应用、延伸和拓展人的智能领域的理论、方法、技术以及应用系统的一门新的学科。相比于其他学科,人工智能的研究和发展历史是很短暂的,但是它的研究发展与应用却为人类生活带来了翻天覆地的变化,是人类发展历史的一个里程碑,将人类从繁重的体力劳动和脑力劳动中解放出来,同时帮助人类探索拓展了更多的未知领域。

1956年,麦卡赛和明斯基等科学家就提出了“人工智能”的理念,认为在未来机器将会以其独有的人工智能特点更好地服务于人类,代替人类来完成许多高难度、高强度和高危险系数类的工作。这一理念的提出引来了许多优秀科学家的青睐,随即对此展开了更深入的研究、探索、发展和应用[1]。

在计算机的应用普及之前,几乎没有什么机器设备可以分担人类的脑力劳动,特别是依据人脑的思维去对数据进行收集、处理、运算、判定、存储、积累、分析和选择决断。当计算机有了一定程度的发展和应用之后,能够代替人脑工作的软件才逐步被开发并应用到研究和生活中。由早期的各种复杂数据分析运算,一维、二维、三维和立体的测绘,继而发明并应用二维码的识别、无人机作业、月球车等各种模拟人类思维模式的应用,到后来人工智能云处理、对比、处理和建议等人脑无法准确、无误且快速处理大数据的运用。如今,人工智能的应用已经遍布人类生活的许多领域。

2人工智能的应用领域

现在人工智能在计算机领域的应用比较广泛,在其他领域的发展应用也是频见报道。随着人工智能“深、广、精”的研究、发展与应用,不久,必将迎来在更多领域的应用,未来的人工智能将更加智能,更加的人性化,更像个“人”一样进入人类生活,为人类社会的发展服务。

2.1人工智能在工业领域的应用

人工智能的应用在工业发展方面起着举足轻重的作用,它具有效率高、稳定可靠、重复精度好,可承担劳动强度大、危险系数高的作业等优势,已被广泛应用到了工业生产领域,如机器人焊接、机器人搬运、机器人装配、机器热打磨抛光和机器人喷涂电镀等。2018年,林远长等人研究得到焊接机器人在每米长度方向上焊接轨迹跟踪仿真误差为0.18mm,而实际跟踪误差为0.2mm,由此验证利用人工智能仿真误差与实际误差基本一致,完全满足工业生产需求[2]。赵猛研发发动机挠性飞轮盘螺纹装配工业机器人项目[3],提高装配的自动化和柔性化程度,保证装配质量和生产效率。用人工智能的机器人来代替普通工人去完成许多对人体有不良影响及人体生理条件限制而不能承受的工作,是20世纪工业发展的一个质的飞跃,是工业发展史的一个标志性的里程碑。

2.2人工智能在金融领域的应用

近来,随着人工智能的开发及应用,互联网金融更是取得了极其辉煌迅猛的发展。二维码支付、手机银行、网络借贷、P2P平台、淘宝、京东等逐渐成为人们茶余饭后议论的热点词汇。通过大数据库、云计算、计算机网络应用、区块数据链等最新IT技术,即可获取大量、精确的信息,更加个性化、定向化的风险定位模型,更科学、严谨的投资决策过程,更透明、公正的信用中介角色等,从而能大大地提高金融业务效率和服务水平,特别是一些技术应用,如大数据征信、供需信息、供应链金融等[4]。

2.3人工智能在信息安全领域的应用

数字密码安保模式伴随着互联网技术的不断发展,其弊端也逐步显露,一方面容易被破解,导致信息泄露,另一方面,对于越来越多的信息安保需求,对人脑的记忆力要求也越来越高。由此产生的各种困扰也越来越多,如忘记密码后,自动取款机无法取现、打不开文件、登录不了系统等问题层出不穷,因此信息安全问题越来越被人们所关注。但当人工智能和生物识别技术结合并深入发展之后,信息安全领域得到了一个全新的发展和提高。指纹解锁速度可达0.2s,支持多个指纹同时录入,且被广泛应用;iPhoneX的人脸识别解锁,支付宝的刷脸登录和考勤机器上的刷脸打卡等正渐渐步入人们的日常生活之中;人的虹膜具有惟一性,为实现信息认证、保障信息安全提供了理论基础。现实中也已经有电子厂商将这一技术运用到了实际产品当中,比如三星S系列的手机,就配备了虹膜识别技术,但是虹膜识别目前对环境的要求比较高,尤其是在暗光环境下识别效果还有待提升。相比于指纹识别,虹膜识别在完成产业化的道路上还有很长的路要走[5]。

2.4人工智能在医疗领域的应用

医疗领域的人工智能应用更加普遍,它正在成为改善人们身心健康的主力军,可为病人提供就诊前健康状况初步分析和评估、协同医师处理病人信息和改善服务质量、在医院精准地指导病人就医、节约医疗资源、缓解就医难的紧张局面等。医学领域,精准是非常重要的,因为任何偏差或者误判都会危及人体的健康乃至生命。2015年,杨宇面对心脏手术医疗机器人的异构式主从控制研究,充分运用人工智能[6],简化了手术操作,降低了操作风险。人工智能芯片能够存入大量的信息,并对这些信息进行高速地运算处理和判断,做出最准确的决策,这是目前人脑没有办法做到的[7]。人工智

能还可以根据患者的实际情况,收集所需要的数据,结合过去的数据进行计算和决策,从而得出最有效的治疗方案,以此减少医务人员的脑力劳动强度,合理利用医疗资源[8]。

3人工智能应用领域的展望

随着人工智能在数字理论技术、自动化控制、机器人应用等方面不断地研究发展,将来,机器必定会无限地接近人的各种行为,通过智能“视觉”“听觉”“触觉”“味觉”“嗅觉”来接收信息,传递信息;通过“电脑”来处理信息,选择和决策;通过智能输出端的“说”和“做”来传递信息发布需求和指令;通过智能肢体“行为”来响应与实施。在人类的日常工作、学习、医疗、安全和可持续发展等领域,人工智能都将尽最大的可能去为人类提供服务。然而无论人工智能发展到哪一步,依然无法在思维、精神、感触和情绪方面全盘取代人脑,仍旧不够人性化和智能化,只能跟随人类对自身智能的开发和研究而尽量接近人类[9]。与此同时,随着大数据类的人工智能的研究与开发,信息安全问题将会凸显,并且成为科学家以后很长一段时间的困扰和研究热点[10]。

4结语

总之,人工智能技术的发展是日新月异的,为将来在更多领域、更广泛的应用人工智能技术提供了更多的可能,但是,这一切都是基于人类对自身智能的充分了解和掌握。为此,还需要很多的知识和技术积累,针对人工智能更大量的应用,科研人员还需要做更多的工作。一方面是开发更多的未知智能,另一方面是完美地将人的智能转化成机器人的智能来为人类生存与发展服务。

人工智能如何在物流领域应用我们梳理了14个环节的案例

资料图

从行业作业性质看,人工智能在物流行业应用前景可观,首先有丰富的场景,其次有大量重复的劳动,再次物流作业的高效离不开数据规划与决策,而这些因素正是和人工智能应用相匹配的。而今,我们也不断看到领先企业在人工智能方面的研发与应用。随着国家发力推进新基建,人工智能的爆发前景可期。那么,具体到物流领域,人工智能究竟有哪些落地场景?本文从仓(园区管理、仓储管理)-干(无人驾驶、车辆管理)-配(分单、调度、配送),以及其中涉及的装卸、搬运、盘点、客服等环节梳理如下:

01

表单处理

物流行业有许多表单、文档数据,人工智能技术中的计算机视觉和深度学习就可以在这一场景中应用。

比如腾讯云的OCR技术:通过计算机视觉结构化识别表单内容,能够快速便捷地完成纸质报表单据的电子化,大幅避免人工输单;对文档扫描件或者图片中的印章进行位置检测,内容提取,实现自动化一致性比对;独有的手写文字识别技术可以精准识别出手写文字、数字、证件号码、日期等,实现带有手写文字的扫描件或图片数字化处理。

目前,中外运、顺丰等均有与腾讯云合作应用该技术。以中外运的北京奔驰进口报关业务为例。因为零部件的单据非常复杂,一个零部件涉及的单据可能100多页,以往一页一页的录,四个人要花一周时间,如今应用了人工智能技术,一个人40分钟就可以解决,且准确率极高。

02

园区管理

表单处理完,货物进入园区。随着IOT、5G等技术的应用,人工智能在园区管理上同样可以发挥重要作用,比如监测、采集场院内车辆信息,提供车辆装载率、车辆调度、运力监测和场地人员能效等基础数据,优化运力成本;再比如对人员工作情况进行管理,规避员工不规范甚至危险的操作。

2018年,菜鸟网络曾宣布全面启动物流IoT(物联网)战略,并向全行业发布了全球首个基于物流IoT的“未来园区”。这是IoT、边缘计算和人工智能等前沿技术第一次在物流领域的大规模应用,“未来园区”可以识别每一个烟头、监控每一个井盖,实时保障园区安全、高效运转。

2019年,京东物流披露,其已建成的5G智能园区,通过5G+高清摄像头,不仅可以实现人员的定位管理,还可以实时感知仓内生产区拥挤程度,及时进行资源优化调度;5G与IIoT的结合,帮助对园区内的人员、资源、设备进行管理与协同;5G还帮助园区智能识别车辆,并智能导引货车前往系统推荐的月台进行作业,让园区内的车辆更加高效有序。这中间同样是以人工智能技术为底层依托。

03

搬运

从园区进入仓内,其中必然要发生的一个动作就是装卸。货物识别+机器人与自动化分拣则可大大降低人类的劳动量。举例来说,AMR(AutomaticMobileRobot)即自主移动机器人,是目前发展和应用较快的技术。与传统AGV不同的是,AMR的运行不需要地面二维码、磁条等预设装置,SLAM系统定位导航为其装上了“一双眼睛”,让其可以实现高效的搬运和拣货作业。

以AMR商业化项目落地领先的灵动科技为例,其率先将计算机视觉技术与多传感器输入相结合,让其机器人实现了真正的视觉自主导航。据介绍,灵动视觉AMR能够帮助企业实现人效提升2倍以上、拣货成本下降超过30%的“降本增效”成果。

04

装卸

2019年,顺丰对外发布的“慧眼神瞳”一度备受关注,这也是顺丰科技人工智能计算机视觉成果在业务场景的落地突破。其实简单地说,“慧眼神瞳”就是利用各种视频和图像进行自动化分析的人工智能系统。比如中转场的装卸口环节,将摄像机部署在装卸口,通过分析车辆到离卡行为、车牌识别、车辆装载率、人员工作能效等基础数据,就可以刻画出装卸口作业场景的完整生产要素,将所有作业数据线上化,持续优化各项运营成本,优化运转效率。

同样,与华为云合作的德邦快递,也有类似技术应用。比如,可以通过AI来监控快递分拣的场地、场景,抓取对货物搬运不规范的情况,从而让业务员或者理货员操作的规范程度大大提高。

如果说上述场景的应用是在“助人”,无人叉车的应用则是在“替人”。2018年,物流指闻曾见证:德邦快递与智久共同宣布,作为德邦快递无人智慧物流的发展探索,首款无人叉车将应用于德邦快递浦东分拨中心。当时,智久机器人相关负责人介绍说,改进后的无人叉车采用“无人叉车+智能托盘+多层货架+JDS(调度系统)+LMS(库位管理系统)”的形式进行实地操作、多机调度、多车协同,同时通过RFID及传感器等进行智能路径规划。经测试新解决方案可使仓内成本下降30%,total毛利润增加7%。

05

盘点

库存盘点也是仓储管理的重要一环。如何保证盘点的准确高效?人工智能同样可以提供助力。

一汽物流就与百度云合作,运用无人机航拍取代人工盘点。简单来说,所谓无人机取代人工,就是无人机通过获取图像数据,基于视觉识别技术模型进行自动分析,并快速识别子库区,及库内汽车数量、车辆所在的车位号、与库存系统进行实时比对,如果实际数量与库存数量不吻合,将对异常数据进行警示,实现库存自动盘点。经过多次的数据训练,可将无人机准确识别率提升至100%。

此外,无人机还有报警、提示等功能,当实拍图与从LVCS获取车辆位置信息形成的图示有差异时,将会第一时间提示工作人员,查漏补缺,避免产生重大损失。

06

仓储系统

在仓内投入大量的机器人等设备,就需要一个系统进行管理,就像身体需要大脑。

旷视科技就曾发布AIoT操作系统——河图(HETU)。据介绍,河图是旷视科技推出的首个智能机器人网络协同大脑是一套致力于机器人与物流、制造业务快速集成,一站式解决规划、仿真、实施、运营全流程的操作系统。旷视河图与机器人硬件设备相结合,不仅体现了河图对整个作业节奏的控制、连接运维等能力,实现了人、设备、订单、空间、货的高效协同。

2019年,极智嘉(Geek+)也曾宣布,推出实体智慧物流版的aPaaS(applicationplatformasaservice)系统——“极智云脑”。极智云脑能够让客户轻松重构其解决方案,并在云端高效部署,自由调度机器人和各种设备,实现高度灵活的智能化系统,极大降低了智慧物流的部署门槛,让AI触手可得。

而针对无人仓内容物流机器人数量多、设备模型、接口、技术特点驳杂繁多,设备巡检和及时维护工作量大,京东物流也推出了X仓储大脑。据介绍,X仓储大脑自2018年8月投入应用,在人工智能等技术的助力下,提升规划、运营监控及维保效率高达80%,降低人力成本高达50%。

07

无人驾驶

运输是物流的重要一环,人工智能在该环节的应用也表现在多个方面,比如无人驾驶、车队管理、智能副驾等等。以最熟知的无人驾驶为例,要实现无人驾驶,要依靠三个环节感知、处理以及执行,这均离不开人工智能。

此前不久,自动驾驶货运初创企业图森未来(TuSimple)宣布,获得美国卡车制造商Navistar(纳威斯达)投资,双方将共同研发L4级无人驾驶卡车。图森未来表示,争取在2024年前量产无人驾驶卡车。目前,图森未来拥有一支超过50台卡车的无人驾驶车队,并服务于包括UPS(美国联合包裹)、McLane(麦克莱恩)在内的18位客户。2017年6月,图森未来获准在加州展开自动驾驶汽车路测。

而除了图森未来,赢彻、智加、驭势等均在研发相关技术,包括亚马逊、京东等多家企业也尝试提出了各种解决方案,并已经有一些商用测试。

当然,相比于公路运输,封闭的港口园区落地或更快速。2018年4月3日,图森未来就对外发布全球首个无人集卡车队港区内测试视频,宣布进入港内集装箱卡车无人驾驶运输市场。

08

智能副驾

看完“无人”,再说“有人”。驾驶从来不是一份安全的工作,对于长时间驾驶的司机尤甚,而计算机视觉则给了车辆发现危险的“眼睛”。

物流指闻曾见证过中寰卫星导航通信有限公司发布智能副驾产品。其智能副驾依托车载智能硬件T-Box、ADAS和DMS设备,通过传感器数据融合和智能算法,结合ADAS地图等位置服务,从“人、车、路”三方面建立协同的安全管理机制,及时感知道路运输过程中的不安全因素,并通过监控管理平台实时呈现、预警,以安全共管云平台方案为商用车安全管理提供工具、手段和依据,降低风险、减少隐患,以实时在线的虚拟“副驾驶”。当司机有风险系数不大的行为时,设备将启动报警,并上报平台,形成日报月报,提供给车主甚至保险公司。如果出现重大风险,立即启动本地报警,如果本地报警没有引起司机重视,则引入管理者介入;如果管理者依然还没有解决,则会启动亲情电话,让司机的妻子或者儿子在线提醒。

09

装载

除了安全,运输另外一个关注点在于装载率,如何能装更多的货?基于大数据积累和AI深度学习算法,G7数字货舱就可以实时感知货物量方,自动记录量方变化曲线,时刻知晓装载率。通过AI摄像头和高精度传感器对厢内货物进行图像三维建模,保证货物运输状态全程可视化,并智能管控装车过程和装车进度。

其发布智能挂车“数字货舱”V9版,还搭载了业界首创的“量方”功能。“量方”功能,采用了传感器+AI算法,对舱内货物进行高精度扫描+三维图像建模,最终自动计算出货舱容积占用百分比,实现精准装载。不仅如此,货舱在装载过程中“哪里空”、“哪里满”,都将以全3D方式呈现。通过对货舱空间更合理地利用,时刻保证车辆的真正满载。

除上述应用外,资料显示,在货车、轮船和飞机上安装与AI程序相连的传感器,也可以大大改善车队管理。这些程序可以监控油耗,针对减少石油和天然气的使用提供方法建议,以及在昂贵且耗时的重大故障发生之前主动提供维修意见。

10

无人机配送

配送是货物流动过程的最后环节,也是物流链条上人力资源投入最重的环节。目前,在这一环节,常见的科技创新是无人机与无人车配送。

亚马逊于2013年提出的PrimeAir业务,将无人机引入物流领域。国内顺丰、京东、中通等企业也纷纷跟进。2019年5月,中外运敦豪与亿航智能签署战略合作协议,并发布了国内首个全自动智能无人机物流解决方案。当时,物流指闻在现场也见识了无人机+智能包裹柜的创新应用。

当时应用的是亿航天鹰(Falcon)物流无人机进行派送。该机型采用4轴8桨多旋翼结构、全备份多冗余设计、智能安全飞控算法,可实现垂直起降、视觉识别精准定位、智能规划航线、全自动飞行、实时联网调度,最大载重5公斤的快递包裹,可将单程派送时间从40分钟大幅缩短至8分钟。作为此次发布的全自动智能无人机物流解决方案的一部分,专门开发的DHL智能柜能够与无人机高度自动协作、无缝接驳,并可以实现无人机的自动起飞、降落,挂仓的自动装卸载,快件的自动分类和基于身份比对以及实名认证的快件存取等一系列智能功能。

11

无人车配送

无人配送车是应用在快递快运配送与即时物流配送中低速自动驾驶无人车,其核心技术架构与汽车自动驾驶系统基本一致。在新闻当中,我们也时常听说京东、菜鸟、美团、苏宁等无人配送车在小区校园等封闭区域配送、快递员接驳等多种场景中应用和测试。

比如,2016年就有一款名为菜鸟小G的自动送包裹的机器人在阿里西溪园区亮相。2019年8月,苏宁物流对外公开5G无人配送车的路测实况,这也是5G技术应用从实验阶段走向商业化应用。

研发方面,代表企业如九号机器人。2018年,其与美团进行了合作,并联合发布了Segway配送机器人S1。这是九号机器人在智能服务机器人领域的“试水”。在一年的时间里,S1代产品已经运行了5000+公里,积累了大量的运营数据。而后,九号机器人又新发布了Segway配送机器人S2与Segway室外配送机器人X1。

12

调度

文章开头说,数据是提高物流效率的重要工具,一个体现就是以运筹学等为代表的工具进行调度与规划。而这方面,算力+算法+数据“喂养”的人工智能也能大展身手:借助人工智能技术,实现物流运配环节车辆、人员、设备等作业资源的协调统一,使作业效率最大化。

以外卖为例,资料显示:美团实时智能配送系统是全球最大规模、高复杂度的多人多点实时智能配送调度系统。能够基于海量数据和人工智能算法,在消费者、骑手、商家三者中实现最优匹配,同时需要考虑是否顺路、天气如何、路况如何、消费者预计送达时间、商家出餐时间等复杂因素,实现30分钟左右准时送达。

而,饿了么的智能调度系统方舟,通过使用深层次神经网络与多场景智能适配分担,引入“大商圈”概念,为平高峰不同场景建立了不同的适配模型。得益于深度学习与多场景人工智能适配分单,该系统能实时感知供需、天气等压力变化,对预计送达时间,商户出餐时间、商圈未来订单负载等做出精准预测,用户的订单将会在最优决策下被匹配最佳路径,保证配送效率和体验。

13

分单

看完外卖的例子,再看一个快递的例子。分单是快递的重要一个环节。人工智能的应用,使其实现了从人工分单到人工智能分单的转变。

以送往北京的包裹为例,过去包裹到达北京的转运中心之后,需要专门的人工对包裹进行区分,哪些去往海淀区,哪些去往东城区,会被写上不同的编号。到达网点之后要经过再次分拨,到达配送站之后,快递员之间需要第三次分拨。这些分单工作人员,要达到熟练至少要经过半年的训练,一个转运中心大则100多号人三班倒工作,小的也需要几十人,还会经常发生错误,出现类似去往北京的包裹意外来到了深圳这样的问题,严重影响派送效率和消费者体验。

菜鸟网络通过人工智能技术,大规模的机器学习,处理海量数据,实现智能分单。包裹发出时,就会对包裹要去往的网点以及快递员做出精准的对应,并在面单上标识出编号,无需再由人工手写分单。包裹到达转运中心、网点以及配送站之后,工作人员根据编号即可判断包裹的分配,分单准确率达到99.99%,效率也得到提高。

14

客服

以言语理解为核心的认知智能研究也是人工智能领域的核心研究之一,目标是让机器具备处理海量语音内容和认识理解自然口语的能力,并在此基础上实现自然的人机交互。在日常生活中,小度、小爱等都是代表案例。而在物流快递业当中,其可以应用的场景之一是客服。客服不容易,人员流失率也高,有报道称客服岗每年离职率高达50%,为此巨头都在打造智能客服系统。“三通一达”、顺丰和美团、饿了么为主的头部公司均已上线了语音和文字智能客服,其服务半径辐射80%以上终端消费者。菜鸟也曾发布语音助手这一产品。

以圆通速递为例,圆通速递在2017年开始相继在官网、微信等渠道上线国内版智能在线机器人客服,代替或协助人工在线客服完成客户服务工作,一定程度上解决了客服用工成本高、服务时间难以满足客户需求的问题。相关资料显示,圆通速递高峰期每日电话呼入量超200万通,需要5000人工坐席处理,在配备智能语音客服机器人后,高峰期90%以上电话呼入可通过语音机器人处理,日均服务量超30万,每秒可处理并发呼入量超1万次,在控制成本的前提下,极大程度上释放了人工效率。

……

除了上述案例,人工智能在路径规划、智能选址、智能路由、商品布局等等方面均可以应用,篇幅所限不再详述。另外值得一提的是,此前科技部公布的最新一批国家人工智能开放创新平台名单,宣布依托京东集团建设国家新一代智能供应链人工智能开放创新平台,领衔智能供应链国家战略发展。可见国家层面的重视。

当然,技术应用要考虑包括投入与产出等等方方面面的问题。当下,人工智能在物流行业应用也不一定成熟。然而未来的物流一定是科技的物流,下一个时代一定是人工智能的时代,当下我们可以不应用,却不可以不看到这样的趋势。

来源/物流指闻(ID:wuliuzhiwen)

作者/叶帅返回搜狐,查看更多

智能家居常见的10个应用场景

智能家居的口号已经喊了多年,终于随着科技的逐渐发展,智能家居功能已经越来越完善,也获得了众多用户的追捧。不过,你知道智能家居功能主要有哪些吗?这里为大家介绍关于智能家居功能的10个方面。

1.智能灯光控制

用智能开关直接替换传统开关,实现对家里的灯光进行一对一的开和关、全开和全关以及组合的形式,可采用电力载波和总线技术两种方式组成系统,控制种类分遥控控制、电话手机控制、电脑远程控制、定时控制和场景等多种控制,采用这套系统可以让您的生活更具有品位、节能(调光)、时尚方便等优点。

2.智能电器控制

电器控制主要针对传统的电器进行智能控制,对于电器没有要求,比如家用的空调、热水器、饮水机、电视以及电动窗帘等设备进行控制,可以融合灯光系统成为更全的智能家居系统,控制种类分遥控控制、电话手机控制、电脑远程控制、定时控制和场景等多种控制,采用这套系统可以让您的生活更具有品位、节能环保、安全方便等优点。

3.智能安防报警

主要作用有防盗、防火以及防煤气泄露功能,可以设离家报警与在家报警,当离家报警时,所有设备都在工作,无论是室内还是室外只要发生情况都可以让主机本地报警、电话或者手机报警,在家报警的情况下,主人是可以在室内活动的,终端设备带有方向识别功能,可以分辨出人体是进还是出,以防止小偷有可乘之机,当家里出现火灾或者煤气泄露时,主机会自动联系主人,并且通过传感器自动将煤气总阀门关闭。

4.智能背景音乐

对于音乐发烧友来说这套系统是最合适不过了,特别适合现代的年轻人,这套系统最大优点是不光能够输出悦耳的音乐最关键的是它能够实现音源共享,并且可以将音源输出给多个播放器,每个播放器可以单独控制,并且通过遥控器控制播放器切换不同的音源(比如DVD、FM、电脑等);另外还可实现定时打开的功能,比如当你早上8点钟要起床上班,它可以及时的用音乐将您唤醒;另外它还可以融入灯光控制系统里面,可以在各种场景模式下自动切换你想要播放的音乐。

5.智能视频共享

对于喜欢看电视的朋友来说,如果有套系统能够让您通过遥控器就能够切换有线电视信号、卫星电视信号、DVD、数字电话的话,那是件多么美的事情啊!这套系统就能够满足您的这种特殊需求,并且可以将每种视频信号(也称AV信号)最多可输出到8台电视上;另外如果加负责设备的话,还可以通过电视机来共享电脑主机,最多可以让四太电视机同时上网,加上键盘和鼠标就可以通过电视机上网以及玩游戏了。

6.智能门锁控制

典众为广大用户选择了多种锁系列,具体分为电插锁、磁力锁、电控锁、指纹锁、酒店锁以及遥控锁等系列,可以实现各种场所的需求;电插锁、磁力锁、电控锁主要配合楼宇产品的使用,只要用于住宅小区、办公室、银行和学校等;酒店锁只要用于宾馆酒店场所;而指纹锁和遥控锁主要偏向于高端别墅住宅,其他地方也可用。

7.可视对讲系统

可视对讲目前产品比较成熟,目前成熟案例随处可见,这其中有大型联网对讲系统,也有单独的对讲系统,比如别墅用的,其中有分一拖一、二、三等;一般实现的功能是可以呼叫、可视、对讲等功能,但是目前通过“品奇居”的整合部已经将很多不同平台的产品实现了统一,增强了整套系统控制部分的优势,让室内主机也可以控制家里的灯光和电器了。

8.远程监控系统

这套系统实现的原理是通过基础的布线加上宽带的组合才能实现远程监控的控制,实现的方式有通过IE或者手机来进行监控,对于银行、小区等公共场所的大型监控系列都配有硬盘录象机,一般监控的画面可以保存一个月以上;另外还有比较简单独立型的网络摄像机比较适合家用,安装简单,也可实现画面保存以及远程IE和手机查看的现场的环境。

9.中央吸尘系统

这套系统与传统的家用吸尘器最大的区别在于强而有力的吸力、不用拿着主机到处跑、而且再也没有噪音的烦恼了;本套系统采用大功率主机固定在地下室或者偏僻的地方,避免了主机的噪音;吸尘的管道预埋在墙体里面从而有效的减少了工作带来的麻烦。

10.系统整合控制

有效提高产品的实用率、尽量减少成本让功能最大化,从实用的角度让很多功能实现尽量简洁有效的控制,让用户仅需要在系统整合产品里面就可以做到灯光控制、电器控制、安防报警、背景音乐、视频共享等功能。

智能家居为居住者提供了绝对的便利,方便快捷是智能家居最为显著的一个特点。拥有这些基础功能的家居系统,才可以称为智能家居,你get到了吗?

本文内容为网络转载内容,如涉及版权,请及时与我们联系

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇