博舍

人工智能赋能实体经济存在的问题与应对 人工智能由哪个科学家提出的问题

人工智能赋能实体经济存在的问题与应对

【摘要】面对人工智能的巨大发展潜力及其对未来社会的颠覆性影响,主要国家纷纷出台人工智能发展战略和政策,以期抢占未来产业制高点。但我们应客观看到,当前人工智能发展过程中,存在重复建设严重、核心技术缺乏、人工智能与实体经济融合困难等关键问题,其深层次的原因在于新兴产业的“潮涌现象”、企业投资行为的短期化以及产业知识薄弱的制约。推动人工智能产业更好更快发展,需要产业共性技术、信息基础设施、企业数字化水平和人才供给等多方面的有力支撑。

【关键词】人工智能;赋能;实体经济;产业化

【基金项目】本文系国家社科基金重点课题“‘互联网+’背景下的中国制造业转型升级研究”(项目编号:16AJY011)的阶段性成果。

 

2006年加拿大计算机科学家杰弗里·辛顿关于“深度信念网络”论文的发表清除了人工智能产业化道路上最后一道路障,互联网产业发展积累的海量数据、云计算提供的低成本算力,再加上以深度学习为代表的算法的革命,推动了人工智能产业驶入快速发展的轨道。面对人工智能的巨大发展潜力及其在产业、社会、国防等方面的颠覆性影响,主要国家纷纷出台人工智能发展战略和政策,以期抢占未来产业制高点。人工智能的巨大经济价值吸引了大量投资涌入,不但互联网公司纷纷向人工智能公司转型,而且初创公司不断涌现。但是也要看到,人工智能发展和赋能实体经济过程中也出现了一些问题,需要积极加以应对。

人工智能产业发展存在重复建设严重、硬技术创新少、实体经济智能化转型“叫好不叫座”等突出问题

作为产业的人工智能包括人工智能技术的产业化与人工智能技术在其他产业的应用即人工智能赋能两个方面。在高速发展和赋能实体经济的过程中,人工智能产业无论在国内还是在国外都出现了一些亟待解决的问题。

产业一哄而上,产品雷同,重复建设严重,真正有高技术开发能力的产业园较少。近年来我国人工智能产业呈现蓬勃发展态势,初创企业数量、融资数量和融资规模快速增长,产业整体规模居于世界前列,与美国一起形成两强鼎立的世界产业格局。随着技术的不断成熟,互联网大科技公司、人工智能新兴企业也在积极进入传统产业领域,推动人工智能技术对传统产业的赋能。但是另一方面也要看到,高端产业领域往往存在着一种发展困境,即当一项产业被国家确定为未来重点发展方向后,各地就会纷纷加大招商引资力度、上马新项目趋之若鹜,造成较短时间内该高端产业在全国“一哄而上”,同质化问题严重,甚至出现“挂羊头卖狗肉”的情况。人工智能产业同样也存在这类“一哄而上”的问题。许多地方政府将人工智能列入重点打造的产业,大力建设人工智能特色小镇、产业园、孵化器、双创基地。以机器人为例,截至2018年2月,全国共有65个机器人产业园在建或已建成,一些省份更是在多个城市建有机器人产业园,甚至一些县也着手布局机器人产业园建设。但从目前的情况看,真正有技术开发能力的机器人产业园很少,大部分机器人企业集中于技术水平不高的娱乐、服务机器人,工业机器人的核心部件仍然主要依赖进口。在新兴的以深度学习为特征的人工智能领域,由于行业整体性人才供应短缺、本地缺乏发展基础,不少园区处于空置状态。严重的重复建设还可能造成未来“高端产业的低端化”,使我国企业难以完成利润积累,进而严重制约研发投入和技术的升级,在与发达国家在技术前沿的竞争中缺乏后劲。

人工智能产业模式创新多、硬技术创新少。众多的人工智能发明专利中基础硬件和基础算法等硬科技占比少。虽然我国人工智能领域的投资多、企业数量多,但是多集中在模式创新领域。人工智能当前比较成熟的领域包括数据分析、计算机视觉和自然语言处理。我国人工智能企业也主要集中在计算机视觉、语音、自然语言处理领域,2017年市场份额分别为34.9%、24.8%和21.0%,而硬件、算法所占份额分别只有11.3%和8.0%。目前我国人工智能企业多是采取“拿来主义”,将国外经过验证的理论产业化,甚至不少企业直接使用国外的开源代码,利用“拿来”的技术进行商业模式创新,缺乏真正原创的技术、开发工具和开源平台。麦肯锡咨询公司对全球初创企业所处行业特点的分析发现,以中国为主要代表的亚洲国家的初创企业多集中在R&D强度较低的产业(R&D资源指的是从事科研与试验发展活动所必需的投入。R&D强度是衡量一国科技活动规模和科技投入水平的重要指标,也是反映一国自主创新能力和创新型国家建设进程的重要内容),如电子商务、教育和培训服务等领域,而B2B以及分析和执行软件、云计算、健康IT等R&D密集型产业则多由美国、英国和德国的企业所领导。具体到人工智能行业,中国人工智能专利申请量超过美国,居世界第一,1998—2018年,我国的人工智能论文达14.2万篇,略少于美国,但专利、论文质量与美国存在较大差距。2017年,中国人工智能论文质量(以FWCI指数衡量)约为1.3,而美国为2.5;中国人工智能发明专利中,基础硬件和基础算法等硬科技占比少。2017年,我国人工智能发明专利授权量中,基础算法、基础硬件、垂直应用的占比分别为21.0%、4.9%和74.1%。

智能化转型“叫好不叫座”。人工智能作为一个产业本身快速发展的同时,在其他领域的渗透、融合也在不断推进。从全球范围来看,早在2012年,美国通用电气就提出“工业互联网”的概念,并联合美国商业资讯(AT&T)、思科(Cisco)、IBM和英特尔(Intel)5家企业联合宣布成立工业互联网联盟(IndustrialInternetConsortium,IIC),2015年向所有企业开放其工业互联网操作系统Predix。作为德国工业4.0的主要推动者,西门子在2016年的汉诺威工业博览会上正式发布工业互联网操作系统MindSphere。2011年以来,蓝色巨人IBM加速向“认知商业”和智能服务转型,其代表性人工智能服务是人工智能系统——沃森在医疗诊断领域的应用。但是智能化转型“叫好不叫座”,人工智能系统的企业用户不积极,人工智能服务的开发者业绩因此受到很大影响。例如,2018年6月以来,通用电气(GE)先后经历从道琼斯工业平均指数中被剔除(GE在该指数中已有110年历史)、信用降级、股价暴跌、GEDigital(GE数字创新坊)寻求出售等重大事件,反映出GE所提出的工业互联网的现实发展远非白皮书设想的那样美好;西门子发布的2019财年三季度财报显示,数字化工业(DI)订单和收入双双下跌,利润大跌12%,拖累西门子整体利润下滑5.8%;IBM沃森因达不到预期效果,被德克萨斯大学MD安德森癌症中心终止合作。

探究人工智能赋能实体经济存在诸多问题的三个重要成因

人工智能自身发展和赋能实体经济中的问题有着多重原因,主要包括潮涌现象、企业行为短期化、产业知识薄弱等几个方面。

问题成因之一:“潮涌现象”造成重复建设严重。“潮涌现象”是指当一项新技术进入产业化阶段并呈现出巨大的增长潜力时,众多投资者同时看好这一相同的产业,投资就像浪潮般涌向这个产业。这里所说的投资者不仅包括企业,也包括政府,针对具有巨大发展潜力的战略性新兴产业,中央和地方政府会采取多方面的支持政策促进其发展。潮涌现象意味着在投资之前,政府和企业都看好该产业的前景,从而一哄而上。但是大量的投资可能会造成该产业出现过度投资,项目完成后出现严重的过剩,导致投资回报远远低于预期。与传统产业相比,新科技的发展存在巨大的不确定性,而且会出现曲折反复。美国咨询公司Garnter每年都会发布新兴技术成熟度曲线(HypeCycleforEmergingTechnologies),该曲线把新技术从发展到最终成熟划分为四个阶段:创新萌发期、期望膨胀期、幻灭低谷期、复苏期、成熟期。从该曲线可以看到,人们常常对技术的产业化存在盲目乐观的倾向,形成大量投资涌入实则过热的繁荣假象。数字经济是典型的网络效应产业,具有“赢家通吃”的市场结构。为了争夺用户成为最终的赢家,进一步强化了数字经济的“潮涌现象”,加剧了重复建设。

问题成因之二:行为短期化加剧行业泡沫。虽然新产业会存在大量企业涌入的“潮涌现象”,但是一些企业想的不是怎么把产业做好做实,而是渴望赶上“风口”,尽快扩大用户规模,以便能讲好故事、短期内在资本市场实现变现。为了快速变现,这些企业不是充分考虑应用场景、用户需求,扎实做好产品,而是通过大量烧钱,大量补贴、大打“价格战”等方式争夺用户。这种做法虽然在短期内营造了繁荣假象,但是一旦技术或商业模式进展不顺,就会刺破泡沫。新科技的成熟和新产业的发展往往需要经历一个逐步改进、完善和提高的过程,不可能一蹴而就。例如,在制造业智能化领域,制造过程或最终产品对安全性、稳定性、可靠性、精确度要求很高,不成熟的技术会给企业带来巨大损失,很难获得制造企业的接受和采用。作为追求利润最大化的经济主体,虽然不同企业的战略不同,对经济利润的考量会有短期或中长期的差异,但企业选择采用某项新技术的根本目的是实现经济利润的最大化。企业在决定是否采用人工智能技术时,会进行成本—收益分析。当他们评估发现人工智能技术并不能给他们带来实质性的利润提升时,就不会实施。市场开拓不利就可能使人工智能企业的大量投资形成行业性的泡沫。

问题成因之三:各方面的产业知识积累薄弱限制智能化发展。人工智能技术通过对传统行业数据的深度挖掘利用,可以发现以前未被发现的事物之间的相互联系,并利用数据分析的结果帮助传统产业加快产品创新、提高生产效率、加强产销互动、改善用户服务。但人工智能技术在传统行业领域发挥作用的基础是建立在这个传统行业现有技术条件之上的,它无法代替行业本身的基本原理、科学技术、工程经验。例如,人工智能技术的应用可以通过对生产线各种工艺参数和产出数据的分析,对工艺参数进行优化从而促进提高良品率,但良品率的根本性提升则要依赖行业本身科技水平的发展。但是,当前在我国存在对信息技术(InformationTechnologies)强调多,对产业技术(IndustrialTechnologies)强调少的倾向。

产业知识包括两个方面:一是产业自身科学技术规律的发明发现所形成的知识,即产业知识发展和提取;二是产业中企业生产经营活动中各种数据的积累。中国实体经济企业在这两个方面都存在差距。由于中国是在工业化尚未完成的时候就开始信息化、数字化的,虽然许多产业的规模已经世界领先,但是“知其然而不知其所以然”的问题普遍存在,在产业相关科学、工程技术知识的积累上与发达国家行业领先公司存在较大差距。同时由于中国企业发展水平参差不齐,既存在技术水平领先、数字化程度高的企业,也存在没有研发能力、尚处于机械化阶段的企业,因此人工智能与实体经济特别是制造业的深度融合存在巨大困难。

推动人工智能产业发展不仅需要人工智能技术本身的进步,还需要传统产业基础和新型基础设施的有力支撑

人工智能技术产业化,需要人工智能产业与传统产业的紧密互动,二者的发展都不可或缺。一方面,需要人工智能技术本身的不断进步,另一方面也需要传统产业的产业基础、科技水平、信息化程度的提高作为支撑。

第一,支持两个“IT”共性技术研究。人工智能与实体经济的深度融合既受制于人工智能技术本身,又受制于实体产业本身的知识积累,因此要兼顾信息技术(InformationTechnology)和产业技术(IndustrialTechnology)两个“IT”共性技术的研究。由于人工智能基于大数据的技术路线特点,除加强对大学、科研机构创新活动的支持外,还要鼓励大科技公司加大对人工智能基础理论、算法、芯片以及未来前沿技术等方面研究开发的投入,鼓励大学、科研机构与大科技公司人才的双向、可逆流动。加强对化工、冶金、机械、电子、运输设备、医药等基础产业和高科技行业的基础科学和产业共性技术研发,实现“知其然也知其所以然”,打好产业基础高级化、产业链现代化的攻坚战。

第二,加快信息网络等新型基础设施建设。在信息化时代,新一代信息技术相关基础设施的重要性已经成为传统产业转型升级和新兴产业加快发展的关键。特别是5G高速率、低时延、广连接的特点,使实体产业特别是制造业生产过程和产品的智能化成为可能。例如,制造业的智能化需要实现工厂中生产设备、零部件、供应链、产品之间的实时通信,只有5G低时延、广连接的特点才能够实现。因此,要将包括物联网、5G、数据中心等新一代信息基础设施作为“新基建”的重点,在关系国计民生的农业、交通、公共服务、金融以及重点制造业领域加快覆盖和普及。

第三,支持实体企业加快数字化改造。当前人工智能的主流技术路线是“算法+算力+数据”,因此实体企业的数字化水平决定了人工智能技术的应用范围和深度。加大对主要产业领域数字化转型产业共性技术研究的支持力度,鼓励大学与科研院所、互联网公司、实体企业密切合作,加快破解主要产业数字化转型的技术瓶颈。支持实体企业根据业务发展状况进行数字化改造,实施“机器人换人”、企业上云等,行业龙头企业积极进行物联网、5G的应用和智能制造转型。依托行业协会、科研院所等机构,加强对人工智能应用成功经验的总结、推广、示范。

第四,加强数据保护,推动数据连接。大力推进对数据安全的保护,一方面,支持数据安全相关技术的发展,为数据安全提供可靠的技术保障,另一方面,制定完善保护我国公共、企业和个人数据安全的法律法规和行业规范,加强数据安全的制度保障。设备、软件、系统、产品之间缺乏统一的标准是制约建立数字化连接、发展产业互联网的主要制约。由行业协会、学会牵头,组织各行业骨干企业、装备制造龙头企业以及大型通信、软件、互联网和自动控制企业一起,加快制定促进产业内部与产业之间建立数字化连接的设备标准、通信标准、软件标准和数据标准。推动产业之间、企业之间的数据开放,特别是推动政府掌握的不涉及公共安全、个人隐私的公共数据对企业开放,通过开放、共享让数据发挥更大的价值。

第五,加强人才培养,增加人才供给。互联网企业长于算法但是不具备实体产业的知识,实体企业熟悉本产业的know-how但是缺乏信息技术的人才和能力。因此,产业互联网的发展靠互联网企业与实体企业单打独斗都很难成功,必须通过合作发挥二者各自的优势。但是由于人工智能的突然爆发造成人才严重短缺,薪酬水平大幅度提高,拉高了人工智能应用的成本。而实体经济企业利润率低,养不起高薪的人工智能工程师,在与人工智能企业对接方面缺少合适的人才作为中介。国家需要支持研究型大学和科研机构、职业大学和学院设立人工智能学院和专业,加快人工智能人才的供给,早日解决人工智能人才供需失衡状况。

 

【参考文献】

①林毅夫:《潮涌现象与发展中国家宏观经济理论的重新构建》,《经济研究》,2007第1期。

②张鑫、王明辉:《中国人工智能发展态势及其促进策略》,《改革》,2019年第9期。.

 

李晓华.人工智能赋能实体经济存在的问题与应对[J].人民论坛,2020(28):94-97.

李开复AI五讲|人工智能的五个定义:哪个最不可取

编者按:从惊呼“人工智能来了”到察觉“人工智能无处不在”,人类社会才走过寥寥数年。在提出建设国家人工智能高地的上海,许多率先试水的应用在各行各业写下了“AI+”的故事。此时此刻,我们更加要冷静地思考自身与人工智能的关系。我们真的知道什么是人工智能吗?我们真的准备好与人工智能共同发展了吗?我们该如何规划人工智能时代的未来生活?

本月底,2019世界人工智能大会将在黄浦江畔揭开序幕。澎湃新闻特邀李开复、王咏刚将著作《人工智能》精编为系列短文,试析与AI相关的若干关键问题。

请抛开人工智能就是人形机器人的固有偏见,然后,打开你的手机。我们先来看一看,已经变成每个人生活的一部分的智能手机里,到底藏着多少人工智能的神奇魔术。

谷歌最资深的计算机科学家与软件架构师、谷歌大脑开发团队的带头人杰夫•迪恩(JeffDean)说:“很多时候(人工智能)都是藏在底下,因此人们并不知道有很多东西已经是机器学习的系统在驱动。”

到底什么是人工智能?为什么我们说智能搜索引擎、智能助理、机器翻译、机器写作、机器视觉、自动驾驶、机器人等技术属于人工智能,而诸如手机操作系统、浏览器、媒体播放器等通常不被归入人工智能的范畴?人工智能究竟有没有一个容易把握和界定的科学定义?

这里,简要列举几种历史上有影响的,或目前仍流行的人工智能的定义。对这些定义的分析、讨论是一件相当有趣的事,这有些类似于古代哲学家们围坐在一起探讨“人何以为人”,或者,类似于科幻迷们对阿西莫夫的“机器人三定律”展开辩论。其实,很多实用主义者反对形而上的讨论,他们会大声说:“啊,管它什么是人工智能呢?只要机器能帮助人解决问题不就行了?”

定义一:Al就是让人觉得不可思议的计算机程序

人工智能就是机器可以完成人们不认为机器能胜任的事——这个定义非常主观,但也非常有趣。一个计算机程序是不是人工智能,完全由这个程序的所作所为是不是能让人目瞪口呆来界定。

这种唯经验论的定义显然缺乏一致性,但这一定义往往反映的是一个时代里大多数的普通人对人工智能的认知方式:每当一个新的人工智能热点出现时,新闻媒体和大众总是用自己的经验来判定人工智能技术的价值高低,而不管这种技术在本质上究竟有没有“智能”。

计算机下棋的历史就非常清楚地揭示了这一定义的反讽之处。

早期,碍于运行速度和存储空间的限制,计算机只能用来解决相对简单的棋类博弈问题,例如西洋跳棋,但这毫不妨碍当时的人们将一台会下棋的计算机称作智能机器,因为那时,普通计算机在大多数人心目中不过是一台能用飞快的速度做算术题的机器罢了。

1962年,IBM的阿瑟•塞缪尔的程序战胜了一位盲人跳棋高手,一时间成了不小的新闻事件,绝大多数媒体和公众都认为类似的西洋跳棋程序是不折不扣的人工智能。

随着PC的普及,每台个人电脑都可以运行一个水平相当高的西洋跳棋程序,会下棋的计算机逐渐褪去了神秘的光环。

当国际象棋、中国象棋逐渐被计算机玩得滚瓜烂熟,公众找到了维护人类智慧尊严的最后阵地——围棋。直到2016年年初,除了一个叫樊麾的职业围棋选手和谷歌DeepMind的一支规模不大的研发团队外,几乎所有地球人都说:“下象棋有什么了不起?真有智能的话,来跟世界冠军下盘围棋试试?”

很不幸,人类的自以为是又一次被快速发展的人工智能算法无情嘲笑了。2016年3月9日,随着AlphaGo在五番棋中以四比一大胜围棋世界冠军李世石,有关人工智能的热情和恐慌情绪同时在全世界蔓延开来,也因此引发了一拨人工智能的宣传热潮。

今天,没有人怀疑AlphaGo的核心算法是人工智能。但想一想曾经的西洋跳棋和国际象棋,当时的人们不是一样对战胜了人类世界冠军的程序敬若神明吗?

定义二:Al就是与人类思考方式相似的计算机程序

这是人工智能发展早期非常流行的一种定义方式。从根本上讲,这是一种类似仿生学的直观思路。

但历史经验证明,仿生学的理路在科技发展中不一定可行。一个最好也最著名的例子就是飞机的发明。在几千年的时间里,人类一直梦想着按照鸟类扑打翅膀的方式飞上天空,但反讽的是,真正带着人类在长空朝翔,并打破了鸟类飞行速度、飞行高度纪录的,是飞行原理与鸟类差别极大的固定翼飞机。

人类思考方式?人究竟是怎样思考的?这本身就是一个复杂的技术和哲学问题。哲学家们试图通过反省与思辨,找到人类思维的逻辑法则,而科学家们则通过心理学和生物学实验,了解人类在思考时的身心变化规律。这两条道路都在人工智能的发展历史上起到过极为重要的作用。

世界上第一个专家系统程序Dendral是一个成功地用人类专家知识和逻辑推理规则解决一个特定领域问题的例子。这是一个由斯坦福大学的研究者用Lisp语言写成的,帮助有机化学家根据物质光谱推断未知有机分子结构的程序。

Dendral项目在20世纪60年代中期取得了令人瞩目的成功,带动了专家系统在人工智能各相关领域的广泛应用,从机器翻译到语音识别,从军事决策到资源勘探。一时间,专家系统似乎就是人工智能的代名词,其热度不亚于今天的深度学习。

但人们很快就发现了局限。一个解决特定的、狭小领域问题的专家系统很难被扩展到宽广一些的知识领域中,更别提扩展到基于世界知识的日常生活里了。

一个著名的例子是1957年苏联发射世界上第一颗人造卫星后,美国政府和军方急于使用机器翻译系统了解苏联的科技动态。但用语法规则和词汇对照表实现的俄语到英语的机器翻译系统笑话百出,曾把“心有余而力不足”(thespiritiswilingbutthefleshisweak)翻译为“伏特加不错而肉都烂掉了”(thevodkaisgoodbutthemeatisroten)。

另一方面,从心理学和生物学出发,科学家们试图弄清楚人的大脑到底是怎么工作的,并希望按照大脑的工作原理构建计算机程序,实现“真正”的人工智能。这条道路上同样布满荆棘。最跌宕起伏的例子,非神经网络莫属。

20世纪90年代开始,随着计算机运算能力的飞速发展,神经网络在人工智能领域重新变成研究热点。但直到2010年前后,支持深度神经网络的计算机集群才开始得到广泛应用,供深度学习系统训练使用的大规模数据集也越来越多。神经网络这一仿生学概念在人工智能的新一轮复兴中,真正扮演了至关重要的核心角色。

定义三:AI就是与人类行为相似的计算机程序

和仿生学派强调对人脑的研究与模仿不同,实用主义者从不觉得人工智能的实现必须遵循什么规则或理论框架。“黑猫白猫,逮住耗子的就是好猫。”在人工智能的语境下,这句话可以被改成:“简单程序,复杂程序,聪明管用的就是好程序。”

实用主义者推崇备至的一个例子是麻省理工学院于1964年到1966年开发的“智能”聊天程序ELIZA。这个程序看上去就像一个有无穷耐心的心理医生,可以和无聊的人或需要谈话治疗的精神病人你一句我一句永不停歇地脚下去。当年,ELIZA的聊天记录让许多人不敢相信自己的的眼睛。

可事实上,ELIZA所做的,不过是在用户输入的句子里,找到一些预先定义好的关键词,然后根据关键词从预定的回答中选择一句,或者简单将用户的输入做了人称替换后,再次输出,就像心理医生重复病人的话那样。ELIZA心里只有词表和映射规则,它才不懂用户说的话是什么意思呢。

这种实用主义的思想在今天仍有很强的现实意义。比如今天的深度学习模型在处理机器翻译、语音识别、主题抽取等自然语言相关的问题时,基本上都是将输入的文句看成由音素、音节、字或词组成的信号序列,然后将这些信号一股脑塞进深度神经网络里进行训练。

深度神经网络内部,每层神经元的输出信号可能相当复杂,复杂到编程者并不一定清楚这些中间信号在自然语言中的真实含义,但没有关系,只要整个模型的最终输出满足要求,这样的深度学习算法就可以工作得很好。

定义四:AI就是会学习的计算机程序

没有哪个完美主义者会喜欢这个定义。这一定义几乎将人工智能与机器学习等同了起来。但这的确是最近这拨人工智能热潮里,人工智能在许多人眼中的真实模样。谁让深度学习一枝独秀,几乎垄断了人工智能领域里所有流行的技术方向呢?

这一定义似乎也符合人类认知的特点一—没有哪个人是不需要学习,从小就懂得所有事情的。因此,今天最典型的人工智能系统通过学习大量数据训练经验模型的方法,其实可以被看成是模拟了人类学习和成长的全过程。

如果说人工智能未来可以突破到强人工智能甚至超人工智能的层次,那从逻辑上说,在所有人工智能技术中,机器学习最有可能扮演核心推动者的角色。

当然,机器目前的主流学习方法和人类的学习还存在很大的差别。举个最简单的例子:目前的计算机视觉系统在看过数百万张或更多自行车的照片后,很容易辨别出什么是自行车,什么不是自行车,这种需要大量训练照片的学习方式看上去还比较笨拙。反观人类,给一个三四岁的小孩子看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩子也十有八九能做出那是一辆自行车的判断。也就是说,人类的学习过程往往不需要大规模的训练数据。

最近,尽管研究者提出了迁移学习等新的解决方案,但从总体上说,计算机的学习水平还远远达不到人类的境界。

如果人工智能是一种会学习的机器,那未来需要着重提高的,就是让机器在学习时的抽象或归纳能力向人类看齐。

定义五:Al就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序

维基百科的人工智能词条采用的是斯图亚特•罗素(StuartRussell)与彼得•诺维格(PeterNorvig)在《人工智能:一种现代的方法》一书中的定义,他们认为:

人工智能是有关“智能主体(Intelligentagent)的研究与设计”的学问,而“智能主体是指一个可以观察周遭环境并做出行动以达致目标的系统”。

基本上,这个定义将前面几个实用主义的定义都涵盖了进去,既强调人工智能可以根据环境感知做出主动反应,又强调人工智能所做出的反应必须达致目标,同时,不再强调人工智能对人类思维方式或人类总结的思维法则的模仿。

以上,我们列举了五种常见的人工智能的定义。其中,第二种定义(与人类思考方式相似)特别不可取。人们对大脑工作机理的认识尚浅,而计算机走的是几乎完全不同的技术道路。

第一种定义(让人觉得不可思议)揭示的是大众看待人工智能的视角直观易懂,但主观性太强,不利于科学讨论。

第三种定义(与人类行为相似)是计算机科学界的主流观点,也是一种从实用主义出发,简洁、明了的定义,但缺乏周密的逻辑。

第四种定义(会学习)反映的是机器学习特别是深度学习流行后,人工智能世界的技术趋势,虽失之狭隘,但最有时代精神。第五种定义(维基百科使用的综合定义)是学术界的教科书式定义,全面均衡,偏重实证。

人工智能机器人的权利与义务

2016年人工智能呈现井喷式爆发并大放异彩,这距离人工智能概念的首次提出仅过去60年。英国科学家阿兰·图灵在1950年的《心智》杂志上发表了题为《计算机器和智能》的文章,提出了“图灵测试”:认为判断一台人造机器是否具有人类智能的充分条件,就是看其言语行为是否能够成功模拟人类的言语行为,若一台机器在人机对话中能够长时间地误导人类认定其为真人,那么这台机器就通过了图灵测试。进而我们需要探究人工智能的研究目的:一是在人造机器上模拟人类的智能行为,最终实现机器智能,而智能的实质是去重建一个简化的神经元网络,从而实现智能体在行为层面上与人类行为的相似。美国的肖恩·莱格和马库斯·胡特认为:“智能是主体在各种各样的纷繁复杂的环境中实现目标的能力。”如何测量和评价人工智能主体是否具有智能或者其智商如何,是一个很复杂的判断过程。如何通过智能模型进行测试是人类需要面对的问题,这个问题也实际上在回答“人何以为人”这个本质的问题。

人工智能机器人法律人格

如果考虑赋予人工智能的机器人以法律上拟制的法律人格,就要求其能够独立自主地做出相应的意思表示,具备独立的权利能力和行为能力,可以对自己的行为承担相应的法律责任。2016年,欧洲议会呼吁建立人工智能伦理准则时,提及要考虑赋予某些自主机器人(电子人,ElectronicPersons)法律地位。而如何界定监管对象(即智能自主机器人)是机器人立法的起点。对于智能自主机器人,欧盟的法律事务委员会提出了四大特征:(1)通过传感器和/或借助与其环境交换数据(互联性)获得自主性的能力,以及分析那些数据;(2)从经历和交互中学习的能力;(3)机器人的物质支撑形式;(4)因环境而调整其行为和行动的能力。在主体地位方面,机器人应当被界定为自然人、法人、动物还是物体?是否需要创造新的主体类型(电子人),以便复杂的高级机器人可以享有权利,承担义务,并对其造成的损害承担责任?这些都是欧盟未来在对机器人立法时需要重点考虑的问题。

随着未来技术的发展以及人类对脑科学和自我认知的加深,如何合理判定人工智能是否具备与人类相类似的“智能”,并以此来判断是否应赋予人工智能以独立的法律人格地位,是需要各学科、各领域的专家进行分工配合完成的课题。

机器权利

从人类的历史发展道路来看,一个群体对自身权利的争取,不但是漫长的历史进程,而且充满着战火和硝烟。法国启蒙运动大思想家让·雅各布·卢梭在其名著《社会契约论》中,曾经这样写道:“人人生而自由,但却又无往不在枷锁之中。自以为是其他一切人的主人,反比其他一切人更是奴隶。”

随着机器人和人工智能系统越来越像人(外在表现形式或者内在机理),一个不可回避的问题就是,人类到底该如何对待机器人和人工智能系统?机器人和人工智能系统,或者至少某些特定类型的机器人,是否可以享有一定的道德地位或法律地位?由此,机器权利日益受到关注,成为人类社会无法回避的一个问题。动物与机器人最大的不同之处在于动物具有天然的生命,有生物属性,但是机器人是人类制造出来的,没有天然的生命属性,但是其是否具有独立意识尚未达成共识。那么,未来是否需要承认机器人等人工智能系统也具有机器权利,同时机器的权利在何种情况下可以行使,是否应该与人类拥有相同的权利,例如选举和被选举权等政治权利以及民事权利等。

20世纪最有影响力的科幻作家之一伊萨克·阿西莫夫于1942年在他的科幻小说《环舞》中首次提出了著名的机器人三原则:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观。(2)机器人必须服从人类的命令,除非这条命令与第一条相矛盾。(3)机器人必须保护自己,除非这种保护与以上两条相矛盾。后来,阿西莫夫又加了第零条定律:机器人不得伤害人类整体,或因不作为而使人类整体受到伤害。根据这个原则,人类的利益是高于机器人的,机器人不能损害人类的利益。假设人类开发和设计了一种智能机器人用于制造军事产品,但是其通过自我学习设计和开发出了核武器或致命武器,此时人类是否可以基于人道主义和人类共同利益而消灭该机器人?机器人是否有能力决定其生存或是死亡或者说机器人是否有权利从事买卖活动呢?或者我们是否可以对机器人进行虐待以发泄不满?

谁来赋权于机器人?

启蒙运动为资产阶级的自由平等提供了新的理论基础,但是有时这种理论还不得不披着宗教神学的外衣。美国《独立宣言》写道:“人人生而平等,造物主赋予他们若干不可让与的权利,其中包括生存权、自由权和追求幸福的权利。”造物主,一种高高在上的万能的存在,赋予了每个人自由平等的权利。尽管达尔文的进化论,早已经证明了人类从来不是被创造出来的,而是不断进化的结果。不可否认,科学技术的发展破除了封建迷信,宗教再也无法主导人类社会。但是,科技技术的进步,让人类的能力被逐渐放大——我们创造出了机器人,而我们人类是否能够承担起一个“造物主”的角色,去赋予机器人权利呢?不同于地球上现存的任何物种,机器人毫无疑问是由人类创造出来的。在2016年的热播美剧《西部世界》中,西部世界里的机器人将人类作为上帝,任由人类消遣娱乐甚至杀戮,而等到机器人的意识觉醒,他们发现,人类远不是上帝。

是否应当由人类赋予机器人权利的问题,其实质在于是否承认机器人的主体地位问题。早在20世纪五六十年代,人工智能技术刚刚起步之时,就有哲学家提出:把机器人看作机器还是人造生命,主要取决于人们的决定而不是科学发现;而等到机器人技术足够成熟,机器人自身就会提出对权利的要求。1976年,阿西莫夫出版的科幻小说《机器管家》(ThePositronicMan)就讲述了一个自我意识觉醒的智能机器人安德鲁想要成为人类的故事。安德鲁作为一个家政智能机器人,在他两百年的生命历程中,一直要求人类把他作为人类看待,为此,他开设机器人公司,研发新的技术,使得在生命体征上他和普通的人类一模一样,甚至最后要通过手术让自己的生命只剩下一年(因为机器人在可预期的将来是永生的),才能获得法律的认可,最终获得人类的生命。

赋予机器人哪些权利?

尽管黑色人种和女性在历史上曾经遭受不公平待遇,他们被剥夺或者限制了作为人的基本权利,但是,随着人类社会的进步,肤色和性别不再是享受基本人权的障碍。机器人的种类非常多,它们存在各种各样的形态,主要可分为人形或者是非人形机器人。在机器人自我意识觉醒的前提下,讨论赋予哪些机器人权利,是一个非常复杂的问题。比如,类人形的陪伴型机器人享受权利,人类可能容易接受;而动物形状的陪伴机器人享受权利可能就难以接受了,但这确实是正在发生的事实,2010年11月7日,在日本,一个海豹宠物机器人帕罗(Paro)获得了户籍,而帕罗的发明人在户口簿上的身份是父亲。拥有户籍是拥有公民权利的前提,机器人在日本可能逐渐会被赋予一些法律权利。其实,现阶段的宠物机器人跟真实的宠物在享受的权利上并没有什么不同,因为普通的宠物也需要登记才能够饲养。还有一类非陪伴型的机器人,它们的外形迥异。例如,自动驾驶汽车是否可以被视为机器人而享有权利?任何存在着芯片和自我意识的实体是否都应当被认为是应当享受权利的机器人?

机器人可以拥有哪些权利?

人类具有的法律上的一些基本权利包括生存权、平等权和一些政治权利。在目前的技术水平之下,机器人的意识尚未觉醒,机器人的财产属性还十分强大,也就是目前对于人来说,机器人只是工具,而非另一种智能物种。目前机器人尚不可能被赋予跟人一样的权利,因此,在上文提及的欧盟的动议中,提出要把最先进的自动化机器人的身份定位为“电子人”,并赋予这些机器人依法享有著作权、劳动权等“特定的权利与义务”。动议中提出的赋予机器人著作权,是一个十分紧迫的现实问题。由于人工智能技术的进步,机器人或者人工智能系统目前已经不是简单地执行人类的指令,而是具有了创造性的思维,能够进行独创性的内容创作,而这些之前都是人类所独有的智能。

在欧盟法律事务委员会的提案中,还以护理机器人为例,提出了对机器人有生理依赖的人类会产生情感上的依恋。因此,机器人应该始终被视为机械产物,这有助于防止人类对其产生情感依恋。这种担忧不是空穴来风。在中国,2017年4月,一个浙江大学研究人工智能技术的硕士和自己研发的智能机器人莹莹结婚了。这种浪漫爱情故事,不仅只存在于人和机器人之间,机器人之间同样存在。2015年7月,明和电机就举办了一场机器人与机器人之间的婚礼。现在看来,这种事情仿佛闹剧一般,但是随着人工智能技术的进步,这些问题都将成为摆在人类面前亟待解决的问题。

机器人的权利与义务

赋予一个人(机器人)以权利,就要对另一人施加义务和限制。类比人类对于动物的保护,在动物保护立法比较完善的欧盟国家,都是赋予动物不受人类虐待的权利;其根本的中心点还是通过限制人的行为,来达到对动物权利的保护。未来的世界,人类面对机器人的存在,是否也要通过限制自身的某些行为来赋予机器人一定的权利呢?他们最基本的“生命权”是否可以由人类剥夺呢?例如2015年加拿大研究人员研发的机器人HitchBoT在成功地通过搭车的方式穿越多个国家后,在美国被人类残忍“杀害”,即便如此,HitchBOT在其留下的遗言中说道:“我对人类的爱不会消退。”我们是否可以以人类的名义任意剥夺机器人的生命权呢?当机器不再是一堆冰冷的金属堆砌成的物品,当其有了独立的“意识”和判断能力,我们是否也应该尊重他们的生命及权利呢?

除了法律权利之外,我们还应该给予机器人最低限度的道德权利。我们不能滥用机器人,不能利用人类的主导地位对其进行虐待。未来如果机器人拥有了自我意识,我们是否也应当尊重其意愿或者说照顾其喜怒哀乐,而不能强制其从事一些其不愿意从事的工作或劳动?那就是我们对其他与我们在地球上共存的主体的最低限度的尊重。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇