适应人工智能驱动科研新范式
当前,随着新科技革命和产业变革深入发展,人工智能技术不断突破并向科研领域广泛渗透,为科研工作注入了新元素、新动能,对科研效率提升和范式变革形成显著催化作用,现代科研活动由此更加高效、精准,“人工智能驱动的科学研究”已成为全球人工智能新前沿,必将为未来科技发展开启全新局面。
近年来,我国人工智能技术快速发展,科研数据和算力资源日益丰富,顺应新时代新趋势,利用新技术新优势,推动人工智能赋能科学研究恰逢其时、大有可为。
应用场景是新范式的孕育土壤和实训基地,人工智能技术与科学研究互动互促需要在诸多应用场景中反复实践、不断完善,随着应用范围不断拓展延伸,科研能力持续实现智慧升级。为此,以需求为牵引谋划人工智能技术应用场景,基于促进科学研究更加紧密拥抱人工智能技术,拓展人工智能技术在数学、化学、地学、材料、生物和空间科学等重大科学领域的应用。充分发挥人工智能技术在文献数据获取、实验预测、结果分析等方面的作用,围绕具有典型代表意义和辐射带动性的基础科学、应用科学领域,创造更多实战式应用场景,融合人工智能模型算法和领域数据知识,不断探索重大科学问题研究突破的新路径、新范式,持续积累可复制可推广的经验做法。
人工智能技术在科研活动应用中涉及多专业、多环节,离不开不同类型、不同链条主体机构的合理分工和有效协作。为此,要鼓励企业运用人工智能开展关键技术研发、新产品培育等科研活动,支持高校、科研院所、新型研发机构探索人工智能技术用于重大科学研究和技术开发的先进模式,培育壮大一批跨界技术转化和企业孵化机构、科研中介服务机构,探索多元主体合作协作新机制。面向重大科学问题的人工智能模型和算法创新,发展一批针对典型科研领域的“人工智能驱动的科学研究”专用平台,推动国家新一代人工智能公共算力开放创新平台建设,支持高性能计算中心与智算中心异构融合发展,鼓励各类科研主体按照分类分级原则开放科学数据。支持成立“人工智能驱动的科学研究”创新联合体,搭建国际学术交流平台。
适应性人才是新范式突破和推广的根本源泉。提高人工智能技术在科学研究领域的应用水平,既需要人工智能和相应学科的专业人才,也离不开跨领域复合型人才为跨界沟通协作提供高效支撑,这需要多渠道构筑相关人力资源引育平台和机制。为此,要多渠道培养和汇聚跨越人工智能和专业领域的复合型人才。支持更多数学、物理等科学领域的科学家、研究人员投身相关研究,鼓励普通高校、职业院校在人工智能学科专业教学中设置科技创新类专业课程,提升人工智能专业学生科研专业素养。鼓励开展相关人才培训,通过开设研修班、开展实践交流、组织专题培训等多种形式,培养一批人工智能与专业科研能力兼顾的复合型人才。鼓励地方政府、央企、行业领军企业通过“揭榜挂帅”、联合创新等方式支持相关优秀人才和科研团队开展智慧赋能科研工作。(作者:张璐璐来源:经济日报)
人工智能——数据挖掘2
2、数据挖掘工具目前,世界上比较有影响的典型数据挖掘系统包括EnterpriseMiner(SAS公司)、IelienMiner(IBM公司)SeMiner(SGl公司2Cnentine(SPSS公司)、warehouseSudicSyhhe公同)SuauQuetResarce公司CvesoayEXPL.RA.KoDiscoveryWorkbench、DBMiner、、Quest等。
数据挖掘工具的选择可以考虑如下几点:
(1)商用数据挖掘系统各不相同。
(2)不同的数据挖掘工具的功能和使用方法不同。
(3)数据集的类型可能完全不同。例如:
数据类型——是关系型的、事务型的、文本的、时间序列的还是空间的?
系统问题——支持一种还是多种操作系统?是否采用C/S架构?是否提供Web接口且允许输人输出XML数据?
数据源是ASCII文件、文本文件还是多个关系型数据源?是否支持ODBC连接(OLEDB、JDBC)?
本节介绍两种典型的数据挖掘工具Amdocs和PredictiveCRM。
1.Amdocs在多年前电信行业已经开始利用数据挖掘技术进行网络出错预测等方面的工作.而近年来随着CRM理念的盛行.数据挖掘技术开始在市场分析和决策支持等方面得到广泛应用。市场上更出现了针对电信行业的包含数据挖掘功能的软件产品。比较典型的有Amdocs和PredictiveCRM。
Amdocs提供了整个电信运营企业的软件支撑平台。在其ClarifyCRM产品组件中,利用数据挖掘技术支持以下应用:客户流失管理(churnmanagement)、终身价值分析(lifetimevalueanalysis)、产品分析(productanalysis)、欺诈甄别(frauddetection)。
Amdocs产品中的数据分析和数据分析应用曾获得3届KDD杯奖。
2.PredictiveCRMSIpInfoware开发的PredictiveCRM软件是一个面向电信行业的CRM平台软件,其中应用了大量的数据挖掘和统计学技术。其数据挖掘部分实际上是把SASInstitute、SPSS和UNICA等公司的数据挖掘产品加以二次开发,以适应电信行业的需要。数据挖掘在P-CRM中的应用包括客户保持、交叉销售、客户流失管理、欺诈甄别等方面。
利用SAS软件技术进行数据挖掘可以有3种方式:
(1)使用SAS软件模块组合进行数据挖掘。
(2)将若干SAS软件模块连接成-个适合需求的综合应用软件。
(3)使用SAS数据挖掘的集成软件工具SAS/EM。
SAS/EM是一个图形化界面、菜单驱动、对用户非常友好且功能强大的数据挖掘集成软件,集成了数据获取工具、数据取样工具、数据筛选工具、数据变量转换工具、数据挖掘数据库、数据挖掘过程、多种形式的回归工具、建立决策树的数据剖分工具、决策树测览工具、人工神经元网络、数据挖掘的评价工具。
目前,虽然已经有了许多成熟的商业数据挖掘工具,但这些工具般都是一个独立的系统,不容易与电信企业现有的业务支撑系统集成。而且由于数据挖掘技术本身的特点,一个通用的数据挖掘系统可能并不适用于电信企业。
切实可行的办法是借鉴成熟的经验,结合自身特点开发专用的数据挖掘系统。
3、现状与未来数据挖掘本质上是一种深层次的数据分析方法。
数据分析本身已有多年的历史,只不过在过去数据收集和分析的一般目的是用于科学研究;另外,由于当时计算能力的限制,很难实现大量数据的复杂分析。
现在,由于各行业业务自动化的实现,商业领域产生了大量的业务数据,这些数据并不是为了分析的目的而收集的,而是在商业运作过程中由于业务需要而自然产生的。
IEEE的会刊KnorwledgeandDataEngineering率先在1993年出版了KDD技术专刊。并行计算、计算机网络和信息工程等其他领域的国际学会、学刊也把数据挖掘和知识发现列为专题和专刊讨论。数据挖掘已经成为国际学术研究的重要热点之一。
此外,在Internet上还有不少KDD电子出版物,其中以半月刊KnorwledgeDiscoveryNuggets最为权威。在网上还有许多自由论坛,如DMEmailClub等。
自1989年KDD术语出现以来,由美国人工智能协会主办的KDD国际研讨会已经召开了10次以上,规模由原来的专题讨论会发展到国际学术大会。而亚太地区也从1997年开始举行PAKDD年会。
与国外相比,国内对数据挖掘的研究起步稍晚但发展势头强劲。1993年,国家自然科学基金首次资助复日大学在该领域的研究项目。目前,国内的许多科研单位和高等院校竞相开展数据挖掘的基础理论及其应用研究。
近年来.数据挖掘的研究重点逐渐从发现方法转向系统应用,注重多种发现策略和技术的集成以及多学科之间的相互渗透。