博舍

2023年度全球人工智能治理趋势盘点 (完整版) 人工智能未来趋势的研制

2023年度全球人工智能治理趋势盘点 (完整版)

自2017年以来,加拿大、美国、中国、英国、新加坡、韩国、加拿大、欧盟、经合组织等国家或地区已陆续发布人工智能发展原则和治理准则。在2021年度,全球范围内关于人工智能治理的准则和战略进一步深化和具体,各国和地区不再仅局限于制定宏观层面的指导战略,而是日益细化至各个具体层面。美国为了确保其在人工智能领域的全球领导地位,在2021年度出台的与人工智能相关的立法和研究政策显著增加。不仅通过了国家层面的人工智能战略——2021年国家人工智能倡议法案,还正式成立了国家人工智能倡议办公室,该办公室旨在负责实施美国的人工智能国家战略,并监督和协调联邦政府与私营部门之间的研究工作。美国国家人工智能安全委员会(NSCAI)还发布了《人工智能国家安全委员会最终报告》,该报告是NSCAI为美国赢得人工智能时代的竞争而提出的战略。此外,于2021年6月8日投票《美国创新与竞争法》明确指出要通过投资来提高美国在技术领域应对中国带来的竞争的能力,并且将人工智能、机器学习等列为重点关注的关键技术。在白宫科学技术政策办公室(OSTP)和国家科学基金会(NSF)牵头之下,美国还宣布成立了国家人工智能研究资源工作组,该小组将帮助创建一个共享的国家人工智能研究基础设施,提供可访问的计算资源、高质量数据、教育工具和用户支持。而针对具体的治理领域,美国也陆续推出了一系列举措。例如,在算法治理方面,美国政府问责局(GAO)在2021年6月发布了一份确保联邦机构和其他参与人工智能系统设计、开发、部署和持续监控的实体可以负责任地使用人工智能的报告。OSTP则在2021年11月10日表示,将举办一系列活动让美国公众参与到制定与算法治理有关的法案的过程。美国国家人工智能倡议办公室主任LynneParker表示,美国在人工智能算法监管方面的愿景以欧盟的《通用数据保护条例》(GDPR)为蓝本。为了解决算法透明度和公平性方面的问题,美国联邦贸易委员会(FTC)在2021年4月发布了指南,该指南强调了FTC计划在影响消费者的算法决策方面执行透明度和公平原则的决心。在国家安全方面,美国国防部国防创新部门于2021年11月14日发布了“负责任的AI指南”,为第三方开发人员构建军用AI提供了指导。在保障劳动力就业方面,美国平等就业机会委员会(EEOC)表示该机构计划审查人工智能工具和技术如何应用于就业决策,以及旨在指导雇主公平使用人工智能技术,遵守联邦平等就业机会法。在面部识别和个人隐私方面,部分民主党参议员在2021年6月提出了暂停面部识别和生物识别技术的法案。在技术发展方面,美国国土安全部科学技术局发布了《人工智能与机器学习战略计划》,该计划提出了未来三大战略目标,即推动用于跨领域国土安全能力的下一代人工智能和机器学习技术发展;促进在国土安全任务中使用经过验证的人工智能与机器学习能力;以及建立经人工智能与机器学习技术培训的跨学科员工队伍。

人工智能产业发展现状与四大趋势

随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。

一人工智能的内涵与产业链

(一)人工智能的内涵

人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。

图1:人工智能内涵示意图

来源:火石创造根据公开资料绘制

(二)人工智能的发展历程

从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。

第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。

第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。

第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。

图2:人工智能的三次发展浪潮

来源:火石创造根据公开资料绘制

(三)人工智能的产业链

人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。

图3:人工智能产业链

来源:火石创造根据公开资料绘制

二全球人工智能产业发展现状

(一)人工智能产业规模保持快速增长

近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。

图4:2017-2025年全球人工智能产业规模(单位:亿美元)

数据来源:火石创造根据公开资料整理

(二)全球主要经济体争相布局,中美两国占据领先位置

人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。

图5:全球人工智能企业数量分布

数据来源:中国信通院,火石创造整理

(三)公共数据集不断丰富,关键平台逐步形成

全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。

(四)人工智能技术飞速发展,应用持续深入

近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。

三全球人工智能产业发展趋势

(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎

算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。

(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点

随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。

(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临

在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。

(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识

随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。

       原文标题 : 全球视野下人工智能产业发展现状与四大趋势

讲解人工智能在现代科技中的应用和未来发展趋势

人工智能(ArtificialIntelligence,AI)是指模拟人类智能的一种计算机科学技术。它可以通过学习、理解、推理和自主决策等方式,模拟人类的思维和行为。人工智能在现代科技中的应用越来越广泛,未来的发展前景也比较广阔。

一、人工智能的应用

1.语音识别和自然语言处理

语音识别和自然语言处理是人工智能的重要应用之一。语音识别技术可以通过声音识别,转换为文本,将人们的语音转化为可处理和分析的数据。自然语言处理技术则可以对文本进行语法分析,信息提取和主题分析等等。

2.机器视觉

机器视觉是指计算机系统通过摄像头和图像传感器等设备,对图像进行分析和处理。机器视觉技术可以应用于人脸识别、物体识别、安防监控等领域。

3.智能对话和智能客服

智能对话和智能客服是人工智能的又一重要应用。人们可以通过智能对话系统和智能客服系统与计算机进行人机交互和沟通。

4.自动驾驶汽车

自动驾驶汽车可以通过激光雷达等传感器设备,对道路、交通信号、行人和其他车辆等环境进行感知和理解,从而实现自主驾驶。自动驾驶汽车的普及可以降低交通事故率,提高道路交通效率。

5.智能家居

智能家居系统可以通过人工智能技术,实现家居设备的自动化控制。例如,通过智能音响,可以控制灯光的开关、播放音乐和进行语音交互。

二、人工智能的未来发展趋势

1.多模态机器学习

多模态机器学习是指通过多种数据源的融合,使得机器学习模型可以更加准确地进行预测和决策。

2.深度学习的发展

深度学习是指通过多层神经网络对大量数据进行训练,从而提高模型的准确率和泛化能力。未来,深度学习技术还可以结合自然语言处理和机器视觉等领域,实现更加智能的人工智能应用。

3.边缘智能计算

边缘智能计算是指通过智能设备的本地计算能力,实现对数据的实时处理和决策。边缘智能计算可以缩短数据的传输时间和降低数据存储的成本,使得人工智能的应用更加普及和便捷。

4.人工智能的可解释性

人工智能的可解释性是指模型的输出结果对人类来说可以被理解和解释。未来,人工智能技术需要更加注重模型的可解释性,以便更好地满足人类的需求。

总之,人工智能技术的应用领域和未来发展前景非常广阔。我们需要积极研究和开发人工智能技术,将其运用到更多的领域,实现技术的创新和社会的进步。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇