博舍

人工智能时代学生如何学习 学人工智能怎么学的好呢女生图片

人工智能时代学生如何学习

韩国围棋世界冠军李世石被人工智能打败后,很多人开始担心,人类如何抗衡人工智能。诺贝尔文学奖获得者莫言在回答高中生的提问“人工智能对世界的影响”时,幽默地说:“你们要好好学习,未来还是你们的,不是机器人的。”

“学习”的确是人们面对人工智能首先要采取的姿态。

人工智能等数字科技重塑人脑

“在计算机擅长的领域中,人类绞尽脑汁来战胜人工智能是不明智的。与其在这个领域中和机器较劲,不如把精力放在自己擅长的领域,比如创造与想象。充分发挥自己的专长,并且利用好机器的专长,岂不是更加美好?”华东师范大学教授祝智庭说。

德国波鸿市鲁尔大学的一项研究表明,大脑在学习新东西以后的3个小时内便会改变结构。人工智能支持的个性学习、协同学习、体验学习和探究学习等学习方式,对脑结构的改变会更加明显。特别是人工智能支持的深度体验与探究学习,会多方面深度激活不同脑神经区域,也就是说人类的大脑正不断地被智能科技重新塑造。

“当人工智能帮助人类处理规则确定性、动作机械性、过程重复性的日常事务后,人们将会有更多的时间和精力去处理富有情感性和创造性的活动。”祝智庭说。

那么,被人工智能重塑的大脑应该学习什么以迎接新生活呢?

“在人工智能时代,在更‘黑’的‘黑科技’时代,人怎么活着、为什么学习、怎样学习等,才是更本质的问题。”北京景山学校计算机教师吴俊杰说。新的时代,又重复起古老的命题,认识你自己,认识个人与社会的关系,即认识群体。

清华大学数学系教授、清华大学附中校长王殿军认为,在学校引入人工智能,让孩子通过研究机器人更好地理解智能和人类自身,让孩子学会如何和机器人打交道。

“从‘认识你自己’出发,学生要学会提高自我效能感。否则,在人工智能时代,你很容易被机器‘饲养’起来。所以要把自己的天赋发挥出来,在不断的正反馈中,创新成瘾。”吴俊杰说,“从‘认识群体’出发,学生要学会适应和热爱群体化创新。在人工智能时代,特别需要通过群体化方式去共同解决一些问题。”

人工智能时代需转换学习方式

我国“863超脑计划”在开发高考机器人,期望到2020年能够达到清华、北大考生的水平。在祝智庭看来,这是随着人工智能深度学习技术的发展,教育技术正在出现的第六种范式——机器自主学习。其他5种范式包括计算机辅助教学、智能教学系统、Logo-as-Latin(让儿童用LOGO语言来教计算机,以此发展儿童思维能力)、计算机支持的协作学习(CSCL)和新出现的个性化适性学习。

“到了那时,人们才会清醒地意识到,既然基于算法的机器人能够轻易超越人的逻辑思维能力,教育为什么不让学生转向审辩思维、创造思维发展呢?高考为什么不多用一些面向本真问题解决的综合能力测试题呢?这是技术促进教育变革的真正意义所在。”祝智庭说。

清华大学附小五年级的穆子雯最近在老师指导下完成了一项北京地铁空间中PM2.5及PM10的调查研究,起因是重度雾霾使她连续3天都要戴口罩。2017年7月至10月,她选择西直门、西单等7个典型车站,测试晴天、雾霾、大风和下雨等典型天气下的PM2.5和PM10的数值,积累了数百组、上千个数据,对地铁公司提出了绿色出行的建议。像穆子雯这样的学习方式,正是在人工智能背景下比较典型的学习方式。

吴俊杰认为,按照现代学习理论,根据学习中智能匹配的不同方式,可以分为基于问题的学习、基于项目的学习和基于产品的学习三种形式。

“基于问题的学习,倾向于产生知识。它适合所有学校已知的科目,主要是在校园里解决的。基于项目的学习产生的是一个方案,一定要有甲方、乙方,可以超越校园,更加接近真实生活。还有一种新的学习模式叫基于产品的学习,这种学习更倾向于真实的环境,从使用产品到设计产品,甚至将产品转化成全人类的共同财富。基于产品的学习在现在流行的创客教育中慢慢流行开来,教育不仅引导大家适应现在的生活,而且号召我们主动构建未来的生活。”

人工智能创造新的学习文化

在北京景山学校初一年级的计算机课上,学生李雨嘉演示了自己编程设计的爱心卡,按下爱心卡的一个按键,可以显示自己的名字;按两下,可以显示好朋友的名字;按三下,可以显示一颗爱心。

这样的编程看似简单,却是未来社会常见的甚至是必需的技能,编程语言可能成为人类必须掌握的新语言。“人工智能时代,需要掀起一场‘新识字运动’,所有人都要学会重新学会‘写字’,这场运动的主角是编程、创客、机器人。”吴俊杰说。只有这样,人工智能才会为人类开创一种新的文明形态。

这是迥异于传统语言文字的“语言”,代表着学习形态的变化,代表着一种新的学习文化。

南京大学教授桑新民自20世纪90年代就开始在课堂教学中研究信息时代学习理论与技术,他认为人工智能对教育的价值,正在于不断替代师生的低水平重复性教学活动,让课堂充满生命活力。这种对教育的挑战,恰恰是教育的福音和教育的未来。

这种新的学习文化,具有丰富的内涵。在祝智庭看来,人工智能使得学习者可以在任何时间、任何地点通过多种渠道接入学习,获取知识不再局限于学校教育阶段。此外,人工智能使得认知不仅发生在头脑中,还发生在人与智能工具的交互过程中。在教育关系方面,人工智能打破了教育的知识传播平衡,加强了“以学生为中心”的关系。而虚拟导师、虚拟学伴、虚拟团队、虚拟教练、虚拟班友等,是对人脑智能的延伸、强化和补充,改变了以往学习主体之间、学习主体与环境之间的交互作用,改变了学习生态。“但是无论如何变化,教育发展的总趋向是让学生从学会到会学与会创。”祝智庭说。

在这种新的学习文化中,教师也变了一个样。未来,教师不可能被人工智能所取代。但祝智庭认为,教师角色必须转变,从知识传播者变为学习促进者;教师的能力结构也必须改变,不懂技术的教师将被懂技术的教师所替代;人与机器之间必须合理分工、协同工作。

“君子不器。不要把自己变成一个物品,变成一个工具,变成一个只有一样功能的人。人工智能时代帮助教师变成智者。”吴俊杰说。

学生也同样如此。(本报记者杨桂青)

人工智能适合女生学吗女生学AI

人们对于IT、程序员、人工智能这类词的固有印象是男生的行业,近年来人工智能AI逐渐成为国家未来发展的一个重要战略,许多人也纷纷开始投身进入这个行业,人工智能适合女生学吗?女生学AI怎么样?其实这几年进入人工智能行业的就有很多女生。

人工智能适合女生学吗?

不是说女生适不适合学,而是看个人有没有这方面的兴趣、天赋,女生性格天生比男生仔细细腻,有忍耐性,(这些品质更能够学好人工智能,)要从女生理科思维差的偏见里走出来,也有好多厉害的女科学家,女数学家。

女生学AI怎么样?

在我看来女生选择人工智能行业其实是很合适的,也好就业。没有大众想象的那种“编程开发只偏向男性”,在IT行业技术是第一位,男女平等。这个问题我在优就业官网见到过,借用来科普下。

首先,市场对Python开发者的需求呈爆发性增长趋势,Python+人工智能人才缺口高达80万,供不应求。不管是男生还是女生,在如此大的市场需求之下,就业还是比较容易的。

其次就是薪资待遇相对是可观的,人工智能现在在逐步替代或者说是降低人力成本,行业需求量也对等了待遇水平,可以说是IT行业中比较高的薪资水平,女生同样也可以是高工资,最后就是人工智能的编程语言Python,语法简单,适合女生学习,没有特别多的语法逻辑,语言本身关键字少,对女生来说,再合适不过了。

人工智能专业就业前景人工智能前景很好,中国正在产业升级,工业机器人和人工智能方面都会是热点,而且正好是在3~5年以后的时间。但是,也有一个问题大家要注意:

学习的难度比较高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用最广泛的语言:C/C++)必须好,微电子(数字电路、低频高频模拟电路、最主要的是嵌入式的编程能力)得学得好,还要有一定的机械设计能力(空间思维能力也重要)。

免费分享一些我整理的人工智能资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,文末附免费下载方式。

一、人工智能课程及项目【含课件源码】

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料。

人工智能需要学习哪些专业知识怎么样学才能更好的掌握专业知识呢

当前学习人工智能是不错的选择,随着人工智能技术的不断发展和应用,整个行业领域会释放出大量的相关人才需求。中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。到今年,中国人工智能产业规模超过1500亿元,带动相关产业规模超过1万亿元。全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。

 

全球共有超过360所具有人工智能研究方向的高校,其中美国拥有近170所,中国仅30多所。虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。那么,学习人工智能需要学习哪些课程呢?怎么样学才能更好的掌握专业知识呢?

 

人工智能产业应用型人才的摇篮

学习人工智能需要学习认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程相关专业知识。

 

1、认知与神经科学课程群

 

具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程

 

2、人工智能伦理课程群

 

具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》

 

3、科学和工程课程群

 

新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。

 

4、先进机器人学课程群

 

具体课程:《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》

 

5、人工智能平台与工具课程群

 

具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》……

 

6、人工智能核心课程群

 

具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》……

人工智能,开启新世界

 

怎么样的方法才能更好地掌握专业知识?

 

学习人工智能技术通常要根据自身的知识基础来选择一个学习切入点,对于初学者来说,可以按照三个阶段来学习人工智能技术,分别是基础知识阶段、人工智能平台阶段和实践阶段。

想学好人工智能,这些一定要学好

1.机器学习

首先要学习机器学习算法,这是人工智能的核心,也是重中之重。

在学习机器学习算法理论同时,建议大家使用scikit-learn这个python机器学习的库,试着完成一些小项目。同时关注一下能否各种算法结合使用来提高预测结果准确率。在学习的过程中不必强求自己能够完全掌握各种算法推导,抓住重点理解算法,然后把算法用起来才是王道。

掌握一种编程工具,比如说PyCharm或者JupyterNotebook,当然工具掌握不难,大约只需要30分钟。

2.深度学习

深度学习是当今非常热门的一个领域,是机器学习算法神经网络的延申,是把机器学习的拟人更加发扬光大的领域。深度学习工程师也是各大公司需要的人才。

学习深度学习可以从Google开源的tensorflow框架开始学习如何完成DNN(深度神经网络)的构建以及应用。然后还是使用tensorflow框架来学习如何完成CNN(卷积神经网络)的构建以及应用。最后来使用tensorflow框架来学习如何完成RNN(循环神经网络)的构建以及应用。

3.Python数据分析模块

Python当今作为数据科学的第一语言,熟练掌握numpy、scipy、pandas、matplotlib等数据分析的模块不光是作为数据分析师必须的,也是作为人工智能工程师所必须的,如果大家认为自己的python语言掌握的不够熟练,可以从学习这些基础的模块开始,来锻炼自己。因为scikit-learn机器学习算法库是基于numpy、scipy、matplotlib开发的,所以大家掌握好了这些基础库,对于分析别人封装的算法源代码,甚至日后自己开发一些算法也有了可能性。

4.SparkMLlib机器学习库

如果说当今有什么是算法工程师的加分项,那么分布式计算框架Spark中算法库MLlib就是一个,如果想掌握SparkMLlib首先需要会使用spark计算框架,建议大家还是使用python语言通过pyspark来学习,在掌握了前面的机器学习部分后,这里再来学习里面的算法使用将变得异常容易。

5.做一个人工智能项目

学了这么多,也做了一些小项目,最后一定要做一些个大项目整合一下自己的知识。做一些个人工智能领域的譬如医疗图像识别、人脸识别、自动聊天机器人、推荐系统、用户画像等的大项目才是企业很需要的经验。可以将理论结合实际的运用也是成为高手的必经之路,也是在企业工作所需要的能力。

6.数学

数学是一个误区,很多人说自己的数学不够好,是不是做不了算法工程师?面对这样的问题,公司里面的算法工程师谁又敢说自己的数学真的好?数学是在学习机器学习阶段算法推导用的到的,但是这里的推导你又不需要非要一步步扣数学计算过程,举个例子,2+2=4,那么数据基础是1+1=2,但是咱们需要证明1+1=2吗?不需要,对吧,所以在机器学习阶段算法推导这里更重要的还是理解算法证明的思想,能够把讲的算法推导理清楚足够了,而这在讲的过程中如何有好的引导,又何须非自己没头绪的补数学然后走那个弯路呢?

 

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

python自学路线——人工智能方向

☞☞☞点击查看更多优秀Python博客☜☜☜

人工智能方向阶段一、Python基础入门、进阶、高级阶段二、人工智能基础阶段三、机器深度学习什么是机器学习?什么是深度学习?阶段四、神经网络算法

 Hello大家好,我是你们的朋友JamesBin上篇文章Python自学我们分析了自学python到底有没有用,那么下面这几篇文章我们就来看看自学python的路线应该如何规划我们的学习路线呢?下面让我们首先看一下人工智能方向的路线吧!

 人工智能的学习大致可以分为以下几个阶段

阶段一、Python基础入门、进阶、高级

 学习Python基础是学习所有方向的基础,没有这个基础其他的都是扯淡,所以在初期我们一定要把基础打好,如果打不好基础后期我们遇到的问题就会越多,所以前期我们的基础要打牢,世界上有600多种语言,每种语言都有自己的规则,所以我们学习基础也就是学习他们之间的规则。python基础的学习可以参考我们python基础专栏:Python基础篇

阶段二、人工智能基础

 数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。这一阶段,包含数学、深度学习、机器学习、数据挖掘、基础算法等。所以这一阶段主要是学习算法和模型。这一阶段的学习也是为下一阶段深度学习做准备和打基础的。

 人工智能基础在要有:cpp自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学,这些内容都有一个重要的基础就是算法设计,可以说算法设计是研究人工智能的关键所在。学习算法设计可以从基础算法开始,包括递归、概率分析和随机算法、堆排序、快速排序、线性时间排序、二叉树搜索、图算法等内容。 人工智能基础内容的学习是打开人工智能大门的钥匙,人工智能基础内容包括人工智能发展史、智能体、问题求解、推理与规划、不确定知识与推理、机器学习、感知与行动等几个大的组成部分。

阶段三、机器深度学习

 深度学习作为人工智能的核心技术,它囊括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。

什么是机器学习?

 机械学习是指符号所代表的新知识与学习者认知结构中已有的知识建立非实质性的和人为的联系。机械学习的形成有三个方面的原因,在教学实践中应采取一些方法尽力避免机械学习。机械学习由美国著名心理学家奥苏伯尔提出,是与有意义学习相对的概念,是指符号所代表的新知识与学习者认知结构中已有的知识建立非实质性的和人为的联系,即对任意的(或人为的)和字面的联系获得的过程。 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

什么是深度学习?

 人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定,这就形成了深度学习。 现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。深度学习,给人工智能以璀璨的未来,深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。更多参考:人工智能、机器学习和深度学习之间的区别与联系(图文详解)

阶段四、神经网络算法

 人工神经网络(ArtificialNeuralNetwork,即ANN),是20世纪80年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络,如果学到这个阶段那么你就是大神级的人物。

以上就是全部内容,希望对你的学习有所帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇