博舍

人工智能python课程总结1500字 人工智能导论课程报告1500字

人工智能python课程总结1500字

我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是ArtificialIntelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。我建了个“人工智能学习交流群”,群号是:892241936,以后会不发定期发AI的资料,让我们学习AI的路上一同进步!原标题:人工智能学习心得

我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是ArtificialIntelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。

人工智能怎么学习呢?

1.AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。

2.学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。

3.学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。

4.深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。

我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。

我建了个“人工智能学习交流群”,群号是:892241936,以后会不发定期发AI的资料,让我们学习AI的路上一同进步!请多多关注,请多多指教!返回搜狐,查看更多

责任编辑:

人工智能课程心得

        我第一次听说人工智能这个词源自初中的时候AlphaGo与李世石的围棋比赛,印象中的AlphaGo以大比分的优势击败了李世石,后来经过了解知道了在2016年比赛时的李世石是近十年来获得世界冠军最多的棋手。从表面上来看,李世石当时是和一台机器下棋,实际上也是与历史上所有的围棋高手下棋。在2017年AlphaGo再次挑战我国棋手柯洁,以3:0击败了柯洁,此时是AlphaGo2.0。在1.0时代并不是真正的人工智能,只是基于大数据是一些查询的检索,在他的棋路够熟,反应够快的前提下,是有机会能赢得。AlphaGo2.0就完全不同,它像人一样有学习能力和思考能力,能够通过一些基本规则,通过不断的学习,得到异于人类的能力。能够像人类一样去学习,思考和行动,才叫真正的人工智能。通过强大的算力和先进的算法,人工智能可以在短时间完成人类在几千年都不能完成的事情,所以,运用好人工智能,就可以让人类社会产生巨大的进步,这种进步在以前是无法想象的。

        通过一个学期的人工智能课程的学习,自己也只是浅浅的入门了,了解了人工智能这门学科的应用,一些知识的表示方法,真正人工智能的核心部分我还没有完全的接触到,一个是这门课程的安排仅仅靠这些课时学懂一人工智能这门学科显然是不可能的,另一方面自己在这方面花费的时间精力去深入了解也是完全不够的。

        人工智能是一门十分有发展前景的同时对我来说具有挑战性的科学,想要学好这门课程必须要懂得计算机知识以及基本的算法认识。人工智能研究的主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。虽然这个课程中上机题并不完全是自己独立完成的,在网上找到了一些代码,学习这些算法的每一个代码块的意义从而有了一定的理解和认识。可以说是反向学习的过程,从已有的代码学习其用法,再到对宽度优先搜索以及遗传算法有了自己的认识。即使网上相关的代码十分的多,但是在学习代码的过程中我也有自己的调试以及修改,使其更符合上机的要求。经过反复的调试,在期间不断的思考以及理解,才对一开始对上机要求中的文字的陌生到代码实现后对算法有了更加清晰的思路。

        十四五”规划建议列举出的几大前沿科技中,人工智能位列第一,预示着其未来的良好发展前景。图灵提出“机器可以具有智能”的观点受到了各种批判,其中有关“机器能否具有意识”的观点引起了学界讨论,塞尔通过“中文屋”思想实验与图灵测试进行类比,指出机器没有智能的原因在于缺少产生意向性的生物基础。计算机将会向网络化,智能化,并行化方向发展,人工智能的总趋势,通过理论联系实际,与其他学科交叉,逐步走向应用,在应用中体现人工智能的理念。

        在机器学习这一章节的学习中,我了解过基于人工智能与医学影像方面的交叉应用,科技从人民中来,又回到人民中去,个人觉得十分有意义并且有发展前景。二十一世纪的信息技术领域将会以智能信息处理为中心,基于人工智能在医学影像方面[1]突破了传统方法的技术壁垒,是近些年发展最快的领域之一。医学影像+AI目前已应用于临床,在病灶识别和诊断、疗效评估等方面辅助医师做出了出色的成果,大大提高了医师的诊断效率。本文对医学影像+AI的发展历程,现状和未来可能的发展方向进行综述,辅助相关人员进一步了解该领域。医学影像作为临床和科研的一种可视化手段,在医疗健康领域发挥着极为重要的作用。人工智能技术的发展有可能从根本上改变医学实践的方式,将会在很大程度上推动个性化医疗和精准医疗的发展。

【人工智能及其应用课程总结 2000字】范文118

人工智能心得体会400字人工智能总结(精华版)4500字人工智能期末总结8200字人工智能总结4800字职业技能培训20xx年工作总结2600字职业技能培训工作总结4000字

《人工智能及其应用》课程总结

20世纪40年代,计算机的发明揭开了人类发展的新篇章,使得人类追寻已久的脑力劳动机械化问题获得了解决的方法和途径。计算机能够代替人类大脑进行复杂的计算,并且能够根据计算对某些问题做出判断,从某种程度上代替了人脑的部分功能。而随着计算机计算机技术的发展,20世纪50年代人工智能(AI)这一新的学科门类的诞生,对人类的发展和进步有着重大的意义。

人工智能是指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可用某种智能化的机器来予以人工的实现。诸如机器编译、机器诊断、机器推理以及各种专家系统。随着人工智能技术的发展,引起了众多学科和不同专业背景学者们的日益重视,并且发展出了若干个研究子学科,如计算机科学、哲学、生理学、社会学、生物学、信息学和计算机数学等,人工智能成为一门广泛的交叉和前沿学科。因此,《人工智能及其应用》课程的学习,对于计算机应用研究技术、机械技术以及本人的专业――农业机械工程的学习和科研工作中,具有十分重要的作用。《人工智能及其应用》课程所讲授的知识涵盖面广、内容较多,其中许多章节所设计的知识都可以单独作为一门课程学习。因此,通过本学期对《人工智能及其应用》课程的学习,我重点总结一下主要学习和掌握的几方面知识:

1.人工智能的研究与应用领域。在人工智能这门学科中,包含有多个研究领域,每个研究领域都有其特有的感兴趣的研究课题、研究技术和术语,它们包括:自然语言处理、自动定理证明、智能数据检索系统、机器学习、模式识别、视觉系统、问题求解、人工智能方法和程序语言以及自动程序设计等。通过对这些研究领域的研究和应用介绍,我发现其中专家系统、机器学习、神经网络、模式识别、机器视觉和数据挖掘等方面的知识,是我所研究的专业领域和课题中,使用计算机软件进行数据处理和自动判别所需要的知识,对我课题的研究和完成将会有很大帮助。

2.知识表示与推理。本部分研究了传统人工智能的知识表示方法、搜索技术和知识推理。以符号和逻辑为基础的传统人工智能问题求解是通过知识表示和

知识推理来实现的。知识表示的方法有很多,包括图示法、公式法、结构化方法、陈述式表示、过程式表示、状态空间法和问题归约法等。表示问题是为了进一步求解问题,从问题表示到问题的解决有一个求解的过程,也就是搜索过程。因此,学习了图搜索策略和A*算法的方法和步骤。学习了消解原理这一用于一定的子句公式的重要推理规则,包括消解推理规则、含有变量的消解式、消解反演求解过程等。并且学习了规则演绎系统和产生式系统。它们是解决比较复杂的系统和问题的较为先进的推理技术和系统求解方法,能够解决搜索推理方法难以解决的一些问题。

3.计算智能。包括人工神经网络计算、模糊计算、粗糙集理论、遗传算法、进化策略、进化编程、人工生命、粒群优化、蚁群算法、自然计算和免疫计算。其中每一部分都可以作为单独的一门课程和知识进行深入的学习和研究。其中,我结合课程内容,重点学习和研究了人工神经网络。人工神经网络是模拟生物神经元的特性而产生的,是基于生物神经元特性的互联模型制造的算法及机器。包括有以下几个重要特性:并行分布处理、非线性映射、通过训练进行学习、适应与集成、硬件实现性。在本部分学习了神经网络是由基本处理单元――神经元及其互联方法构成的。其网络基本结构分为两类:递归网络和前馈网络。人工神经网络的主要学习算法有:有师学习、无师学习和强化学习三种。具体学习了自适应谐振理论网络、学习矢量量化网络、Kohonen网络、Hopfield网络,并且学习了基于神经网络的知识表示方法和推理方法。通过这部分的学习,了解了神经网络的应用方法和应用领域,由于其学习和适应、自组织、函数逼近和大规模并行处理等能力,因而在模式识别、信号处理、系统辨识和优化等方面有着广泛的应用。

4.机器学习。机器学习是一门研究机器获取新知识和新技能,并实现现有知识的学问。在此部分,主要学习了机器学习的主要策略、系统的基本结构和各种机器学习算法,包括:机械学习、归纳学习、类比学习、解释学习、神经学习和知识发现。而其中的一些学习方法又与以前学习章节中的内容有所交叉,如神经学习和人工神经网络。介绍了各种学习方法的定义、结构、基本计算方法和流程等知识。机器学习广泛的应用于图像处理、模式识别、机器人动力学与控制、自动控制、自然语言理解、语音识别、信号处理和专家系统等领域。

通过对《人工智能及其应用》课程的学习,使我学习了人工智能的各种基本算法和思想,了解了各种方法的应用领域和适用范围。由于我的研究课题中,也需要对采集的数据进行处理和做出判断,因此必然涉及人工智能的相关知识。课程包含内容很多,涵盖的领域非常广泛,虽然学习深度有限,但是正是对人工智能知识的广泛了解,才能扩展我的研究思路,选定方向和研究算法,进行更深层次的研究。

12345

第二篇:全课程总结700字

全课程总结

青岛启元学校毛晓燕什么是全课程?全课程教育是敢于打破现状、自找压力,寻找全面育人新路径,探索全新的“全课程”育人模式:没了传统的科任教师,两位教师“包班”,承担全部课程教学;没了传统课本,一本书容纳一年级全部课程……

“没有语文、数学教师,只有两位教师‘包班’,负责全班所有科目的教学。”课程变了,教材少了,连教室也在发生变化:讲台拆去了,书桌高度降低了,空白墙都成了孩子的笑脸展示墙,书架上整齐地摆放着各类装帧精美的儿童绘本,随处可见的可爱玩偶,使用方便的收纳盒……这样的教室不像是学习的场所,更像是一个温馨的小家……

教材按照主题单元分类,每个单元都依托1-2本绘本,贴近孩子的生活情景,融入各科内容,不仅符合儿童的年龄特点,即使记者这个成年人看来,也非常有趣……

“全课程”育人实验,受益的是孩子,辛苦的是老师。‘全课程’实验让教师更了解、更熟悉一年级的孩子。以前是科任教师来反映情况,才知道孩子哪里有了问题,现在不会了。你一看孩子表情就了解孩子的心思,可以说“比妈妈都了解孩子”。

晴空万里风和日丽,可爱的孩子们来到青岛市动物园,进行全课程实践活动。

这次的实践活动非常有趣好玩,孩子们走出校园视野开阔了,小脑筋想的问题多了转的也快了,让我记忆最深刻的便是,刚刚进到动物园时路两边有几朵小小的牵牛花,眼尖的孩子发现了,便说牵牛花牵牛花,说着自己背诵起全课程第一本书的《喇叭花》这一课,那小模样真是俨然一个小小诗人,。我想这便是将知识运用到了生活,让孩子在生活中学习吧!

我发现这样的课程培养更多的全科教师,从以教材为中心走向以孩子为中心。改变是一名教师一本教案教一个学科多年、教多个班级的现状,实行一名教师教一个班级的多个学科,使教师有更多时间研究学生,因材施教。

千里之行始于足下,让我们和孩子一起在实践中发现,在实践中学习,在实践中成长!

+更多类似范文┣ 人工智能观后感1100字┣ 人工智能未来发展前景展望9100字┣ 人工智能观后感1100字┣ 对人工智能学习的感想3800字┣ 更多人工智能总结

【《人工智能》学习报告 3500字】范文118

人工智能心得体会400字人工智能学习心得3300字对人工智能学习的感想3800字智能控制技术的发展现状及心得体会5000字计算智能学习心得体会3700字机器人学习心得体会5700字

深圳大学硕士研究生课程作业―人工智能

《人工智能》学习报告

深圳大学机电与控制工程学院彭建柳

学号:0943010210

1.引言

人工智能(ArtificialIntelligence,AI),曾经有一部电影,著名导演斯蒂文?斯皮尔伯格的科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。

一直以来,关于人工智能的理论,我一直认为是科学的前沿,理解起来较为飘渺。但是,从本学期《人工智能》课程的学习中,本人较系统的接触到了关于人工智能的理论,从有限的课程中,通过老师的详细介绍和查阅人工智能方面的书籍,学习了关于人工智能几个主要方面的知识,如模糊控制、专家系统、神经网络等。下面是本人关于人工智能理论的一些基本认识。

2.人工智能的形成与发展

说到人工智能,首先先认识下自动控制理论,自动控制理论从形成到发展至今,已经经历了六十多年的历程,其主要分为三个阶段:

第一阶段是40年代兴起的以调节原理为标志,称为经典控制理论阶段;

第二阶段是以60年代兴起的以状态空间为标志,称为现代控制理论阶段;

第三阶段是80年代兴起的智能控制理论阶段

智能控制是在控制论人工智能系统论和信息论等多学科的高度综合与集成,是一门新兴的交叉前沿学科。智能控制技术,即是在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任

深圳大学硕士研究生课程作业―人工智能

务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。

随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。19xx年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。19xx年,在美国首次召开了智能控制学术讨论会。19xx年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

3.模糊控制

在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。通过课堂中,导师生动的讲解,以及引用到生活当中鲜活的例子,如冰箱温度的模糊控制,智能汽车的行驶路线控制等等,充分的认识到,模糊控制在当今社会的应用已经很广泛,只是理论知识的缺乏而感觉不到它们的存在。

一般控制架构包括:定义变量、模糊化、知识库、逻辑判断及反模糊化,详细如下:

(1)定义变量:也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差之变化率CE,而控制变量

深圳大学硕士研究生课程作业―人工智能

则为下一个状态之输入U。其中E、CE、U统称为模糊变量。

(2)模糊化(fuzzify):将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(linguisitcvalue)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzysubsets)。

(3)知识库:包括数据库(database)与规则库(rulebase)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

(4)逻辑判断:模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。

(5)解模糊化(defuzzify):将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。

模糊控制很重要的一点就是模糊规则的制定,其规则制定的来源主要由专家的经验和知识、操作员的操作模式、自学习提供。模糊规则的形式则分为状态评估和目标评估两种。但都是以模糊控制为基础,达到自动控制的目的。

4.专家系统

专家系统(expertsystem)是人工智能应用研究最活跃和最广泛的课题之

一。运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。

专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和

深圳大学硕士研究生课程作业―人工智能

环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。

对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。

简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

5.神经网络

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”

人工神经网络是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

6.小结

关于人工智能的学习,我现在所学习到的仅仅是皮毛。但对于一个刚刚接触人工智能学习的学生,了解如模糊控制、专家系统、神经网络等人工智能的知识入门尤为重要,为将来进一步学习人工智能的理论打下基础,并将理论应用于生活和工作当中,这才是学习的最终目的。

参考文献:

《人工智能控制》作者:蔡自兴,出版社:化学工业出版社,2005-7-1

1234

第二篇:人工智能学习3600字

人工智能学习-知识要点总结[Nirvana发表于2005-1-213:32:24]

人工智能是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等多种学科研究的基础上发展起来的,是一门综合性边缘学科,延伸人脑的功能,实现了脑力劳动的自动化。

1、认知科学认为智能的核心是思维,知识阙值理论认为智能行为取决于知识的数量及其一般化程度,智能就是在巨大搜索空间中迅速找到一个满意解的能力;进化理论的核心是用控制取代表示,取消概念、模型及显示表示知识,否定抽象对于智能及智能模拟的必要性,强调分结构对于智能进化的可能性与必要性。综合上述观点,认为智能是知识与智力的总和,具有如下特征:

(1)记忆与思维能力,(2)学习能力及自适应能力,(3)行为能力。

人工智能是人造智能,是一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。通过图灵测试可以判断一个系统是否具有智能和智能的水平。

人工智能研究内容:

(1)机器感知(2)机器思维(3)机器学习(4)机器行为(5)智能系统构造技术

人工智能研究途径:

(1)符号处理(2)网络连接机制(3)系统集成

2、知识是智能的基础,对人工智能的研究必须以知识为中心来进行,由于对知识的表示、利用、获取等的研究取得较大进展,特别是不确定性知识表示与推理取得的突破,建立了主观Bayes理论、确定性理论、证据理论、可能性理论,对人工智能其他领域(如模式识别,自然语言理解等)的发展提供了支持。数据是信息的载体和表示,信息是数据在特定场合的具体含义,信息是数据的语义;把有关信息关联在一起所形成的信息结构叫知识。具有:相对正确性,不确定性,可表示性,可利用性等特征;按作用范围分为常识性知识,领域性知识;按作用及表示分为事实性知识,过程性知识,控制性知识。按确定性分为确定性知识,不确定性知识;按结构及表现形式分为逻辑性知识,形象性知识;从抽象的,整体的观点来划分可分为零级知识,一级知识,二级知识。知识表示方法总体上分为符号表示法,连接机制表示法;目前用得较多的知识表示方法主要有:一阶谓词逻辑表示,产生式,框架,语义网络,脚本,过程,Petrio网,面向对象表示法。选择知识表示法时,要注意以下几个方面:

(1)充分表示领域知识(2)有利于对知识的利用(3)便于对知识的组织、维护与管理(4)便于理解和实现

3、产生式系统构成:规则库,控制系统,综合数据库。综合数据库中已知事实表示:(特性对象值可信度因子)控制系统的求解过程是一个不断地从规则库中选取可用规则与综合数据库中已知事实进行匹配的过程。产生式系统分类:按推理方向分为前向、后向和双向产生式系统;按表示知识的确定性可分为确定性及不确定性产生式系统;按数据库性质及结构特征进行分类为可交换的产生式系统,可分解的产生式系统,可恢复的产生式系统。框架是一种描述所论对象属性的数据结构,由槽结构组成,槽分为若干侧面。问题求解主要通过匹配和填槽实现的;产生式表示法主要用于描述事物间的因果关系,框架表示法主要用于描述事物内部结构及事物间的类属关系。语义网络是通过概念及其语义关系来表达知识的一种网络图。一个过程规则包括激发条件,演绎操作,状态转换及返回四个部分。

4、推理就是按某种策略由已知判断推出另一判断的思维过程。按从新判断推出的途径来划分,推理可分为演绎推理、归纳推理和默认推理;按所用知识确定性分为确定性推理,不确定性推理;按推出的结论是否单调地增加来划分为单调推理,非单调推理;按是否运用与问题有关的启发性知识分为启发式推理,非启发式推理;按基于方法的分为基于知识的推理,统计推理,直觉推理。推理的控制策略:推理方向,搜索策略,冲突消解策略,求解策略和限制策略。推理方向可确定推理的驱动方式:正向推理,逆向推理,混合推理及双向推理。

从一组已知为真的事实出发,直接运用经典逻辑的推理规则推出结论的过程称为自然演绎推理,基本推理规则是P规则,T规则,假言推理,拒绝式推理等:

P规则:任何步骤可引入前提A

T规则:前面步骤有一个或多个公式永真蕴涵公式S,可引入S

假言推理:P,P―>Q=>Q

拒绝式推理:P―>Q,非Q=>非P

归结演绎推理中,空字句是不满足的,因此归结的目标是通过归结使字句集中包含空字句,从而证明原命题的不可满足性。归结式是亲本字句的逻辑结论。

不确定性推理是从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的理论的思维过程。

不确定推理的基本问题:推理方向,推理方法,控制策略,不确定性的表示和度量,不确定性匹配,不确定性传递算法,不确定性的合成。

知识的不确定性称为知识的静态强度;证据的不确定性称为动态强度

5、组合证据的不确定性算法:

最大最小方法

概率方法

有界方法

不确定性传递算法:

结论不确定性的合成:

6、主观Bayes方法:

(1)知识不确定性表示(产生式规则):

(2)证据不确定性表示:

(3)组合证据不确定性的算法:

(4)不确定性传递算法:

(5)结论不确定性的合成算法:

7、可信度方法:(C-F模型是基于可信度表示的不确定性推理的基本方法)

在可信度推理方法中的C-F模型里,可信度CF(H,E)的含义是:CF(H,E)>0表示E的出现增加了H的可信度;CF(H,E)=0表示E的出现与H可信度无关;CF(H,E)=Bel(A),Bel(A)表示对A为真的信任程度,Pl(A)表示对A为非假的信任程度。Pl(A)-Bel(A)表示对A不知道的程度,即既非对A信任又不信任的那部分。

知识的不确定表示:IFETHENH={h1,h2,…,hn}CF={c1,c2,…,cn}CF是可信度因子

含有模糊概念、模糊数据或带有确信程度的语句称为模糊命题。一般表示形式为:

xisA(CF)x是论域上的变量,A是模糊数,CF是该模糊命题的确信程度或

相应事件发生的可能性程度。

10、人工智能解决的问题:结构不良,非结构化;盲目搜索按预定的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略;启发式搜索加入了与问题有关的启发性信息,用以指导搜索朝着最有希望的方向前进,加速问题的求解过程并找到最优解。

状态空间表示法:(S,F,G)

11、专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统,它能运用领域专家多年积累的经验与专门知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。

特征:专家知识,有效推理,获取知识能力,灵活性,透明性,交互性,复杂性

专家系统与常规计算机程序比较:*

(1)常规程序=数据结构+算法,专家系统=知识+推理

(2)常规程序分为数据级+程序级,专家系统数据级+知识库级+控制级

(3)常规程序面向数值计算和数据处理,专家系统本质上是面向符号处理的

(4)常规程序处理的数据多是精确的,专家系统处理不精确,模糊知识

(5)解释功能

(6)都是程序系统

12、机器学习是要使计算机能模拟人的学习行为,自动地通过学习获取知识和技能,不断改善性能,实现自我完善:

三个方面的研究内容:(1)学习机理研究(2)学习方法研究(3)面向任务研究

学习系统是指能够在一定程度上实现机器学习的系统,能够从某个过程或环境的未知特征中学到有关信息,并且能把学到的信息用于未来的估计、分类、决策或控制,以便改进系统的性能。在结构上主要包括:学习环境,学习机构,执行与评估机构和知识库四个部分;各种符号学习方法中推理能力最强的学习方法是机械式学习,推理能力最弱的方法是观察和发现,神经网络学习获得的知识被存储在神经元之间的连接中。

学习系统具有的条件能力:

(1)具有适当的学习环境

(2)具有一定学习能力

(3)能应用学到的知识求解问题

(4)能提高系统的性能

+更多类似范文┣ 人工智能总结(精华版)4500字┣ 人工智能期末总结4300字┣ 人工智能知识点总结12700字┣ 人工智能总结4700字┣ 更多人工智能学习心得

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇