人工智能论文(精选范文5篇)
人工智能论文一
论文题目:人工智能时代媒体转型路径的思考
摘要:当前,世界媒体格局、舆论生态、传播形态正在经历深刻变革,移动传播渐成主流,社交平台迅猛发展,智能媒体方兴未艾,媒体融合向纵深推进
文章分析人工智能技术给媒体带来的机遇和挑战,并就媒体如何顺应时代发展大势,抓住机遇主动应用新兴技术展开分析,探索媒体进行融合发展和转型升级的新路径
关键词: 人工智能;用户思维;智能分发;大数据
人工智能技术(AI)深入渗透在信息生产和传播的整个流程中,对新闻传播带来了深刻改变,在人民网舆情数据中心等发布的《网络正能量传播蓝皮书》中,“人工智能”位列创新中国热词榜第一
人工智能技术开始在新闻传播领域广泛应用,并日益成为各大新闻媒体在激烈的新闻大战中出奇制胜的法宝
1 人工智能给媒体带来变革发展的机遇
人工智能在媒体的应用范围不断扩大,“中央厨房”创建升级加速;整合资源的共享平台开始出现;VR、AR不断创造视觉奇观;技术为用户内容生产赋能,定制化内容可“一键”生成;智能语音互动受到青睐,H5增强互动体验
1)人工智能提高了新闻传播效率,提升了用户体验
人工智能极大地丰富了传播手段和方式,让用户随时随地获取新闻,给新闻内容生产发布、媒体运营方式、新闻传播形态带来了全新改变
网络视频直播、VR、AR技术在新闻传播中广泛应用,让用户借助高科技直达现场,360度沉浸现场,提升了用户体验
人工智能催生的传播新技术作为推动媒体发展的强大动力,受到媒体的广泛重视
2018年,新华社发布《AR看两会|政府工作报告中的民生福利》,用户点击新华社客户端首页下方的“小新机器人”,使用AR功能扫描身份证背面,便可用更具科技感的方式浏览政府工作报告,领取民生福利
2017年,《人民日报》推出《快看呐!这是我的军装照》H5产品,用户只要上传照片,就可生成自己不同年代的军装照,实现了普通人的军旅梦,这款H5上线两天浏览量破2亿
澎湃新闻推出《中国,你来写》H5产品,参与者轻点屏幕,“中国”两字就会出现在屏幕上,一幅展现5年来成就的水墨画卷会自动生成
该H5产品仅发布24小时,上传图片数量已达464万张,峰值时每秒点击量达2.4万,最高同时在线60万人
2)人工智能丰富了传播手段,传播边界消失
人工智能将人、物、音频、视频等信息链接起来,传统意义上的传播边界消失,万物皆媒体时代来临
当前机器人在媒体领域可实现写稿、写诗、交互、播报等功能,对于地震、爆炸、极端天气、火灾、交通事故等突发事件,通过摄像头、无人机、行车记录仪等快速采集信息,实时捕捉新闻事件的发展进程,智能生成数据新闻,在第一时间发给媒体和记者
2017年4月,作为新华社特约记者,中国智能机器人“佳佳”采访美国科技观察家、《连线》杂志创始人凯文·凯利,并与多名计算机专家及媒体代表进行互动
2017年8月,四川九寨沟发生地震,中国地震台网中心的机器人运用地震数据管理与服务系统,仅用25秒便完成了第一条关于此次地震的速报,并在震后18分钟发出
新华社推出的现场云支持手机新闻在线采集、加工、分发,通俗地讲,“记者带个手机就可以发稿了”,记者可以即采即拍即传、编辑即收即审即发,现场云采用全媒体信息流,把有价值的信息按时间和逻辑顺序铺开,用户只要动动手指刷刷手机就能快速了解事件全貌
3)人工智能实现了人与信息的精准匹配
纵观新闻传媒领域,人工智能技术正将内容生产者和消费者紧密地串联起来
人工智能以大数据分析为依托,辅助读者进行精确的内容消费,同时针对不同领域、行业垂直深耕,帮助媒体实现精细化传播;媒体根据大数据分析预测未来热点,增强议程设置能力,提升舆论引导效果,并对读者的阅读颗粒与文章颗粒进行适当匹配,实现新闻内容的定制化生产
以今日头条、一点资讯、天天快报为代表的新兴媒体,依托智能分发技术,为用户提供个性化资讯
今日头条作为一款基于数据挖掘和机器学习的智能推荐引擎,可根据用户画像、内容理解和情景信息,计算用户对内容感兴趣的概率,推荐分发内容
今日头条将信息流与推荐引擎结合,实现了智能连接人与信息
新华社的“媒体大脑”通过人脸核查技术,可在海量的图片、视频资料中精确定位人物,并依托大数据为读者量身定制新闻资讯
2 人工智能给媒体带来的严峻挑战
人工智能对媒体而言,更像一把双刃剑
人工智能给媒体带来劣质信息泛滥、内容低俗化、个体的信息孤岛化、视角狭隘等问题已严重影响到用户体验,已在用户侧产生痛点,需要媒体以高度的责任感来审慎规避
1)内容低俗化影响了阅读体验
“依靠标题抓眼球”算法带来的阅读浅薄化甚至低俗化,读标题很精彩,但点开往往文不对题,没有任何有价值的信息
这是因为海量数据的运算是基于点击,有无穷多用户是被耸动的标题吸引的
虽然用户个人体验很不愉快,但用户点击这个行为留下来了,又被算法捕捉到,就形成恶性循环,越多的用户被吸引,这条新闻就会被赋予更多权重,就会被大范围推荐,这严重影响了阅读体验
2)信息孤岛化拉大了社群隔阂
人工智能可以敏锐地捕捉到用户非常细小的兴趣需求,并根据兴趣推荐同类新闻和资讯,而很多国内外重大政治事件、影响国计民生的政策等却没有机会进入用户的视野,基于个人兴趣和消遣的信息过于在垂直人群中传播,不仅会带来信息孤岛化,还会加大不同社群的沟通难度,拉大社群隔阂
如何在时间敏感性的高质量新闻与个人兴趣之间取得平衡,如何在用户的潜在兴趣、公众的共性兴趣和个性需求之间找到平衡,需要媒体更多的思考和关注
3 人工智能时代媒体的转型路径
1)数据化转型,重建与用户的链接
无论用户是拿起手机浏览新闻资讯,还是在移动端消费、支付、社交就会产生数据
媒体对用户数据的沉淀和挖掘,可以获取更高效的需求匹配能力,从而满足用户在不同场景下的即时需求
用户在内容消费上的兴趣导向、社交伴随、全移动化日常、弱目的性阅读,将出现更多的内容需求和场景,这种消费趋势,将向全年龄段加速扩张
用户在哪,服务就延伸到哪,争取延长用户的注意力,培养用户使用媒体的习惯和粘性,是媒体向数据化转型、重建与用户链接的重要基础
2)做强优质内容,提升舆论引导效果
人工智能对媒体的创新转型具有巨大的推动作用,在此基础上,所有手段、形式的改进都是吸引受众的重要方式,但坚持正确导向,生产优质内容,才是媒体的核心竞争力
未来优质内容的回归将是内容产业的一大趋势,内容呈现多元化、高质化生长,新闻内核重新回归,价值导向和用户思维将主导内容生态
媒体要适应分众化精细化传播趋势,探索并推动将人工智能技术应用到新闻采写编发的全流程之中,根据大数据分析预测未来热点,增强议程设置能力,提升舆论引导效果,不断巩固和壮大主流阵地
3)增强互动,提升与用户的共情能力
与传统媒体新闻发布流程不同,现在新闻发出后,仅仅是传播的开始,文章发出后,编辑要迅速跟进、观察、分析、总结用户数据和留言,从而获得用户反馈,并将其作为内容进一步改进的重要依据,和用户一起投入新一轮的内容生产,与用户的互动频次和程度成为判断新闻影响力的重要标尺
趣味性、互动性、社交性强的新闻极易获得用户的注意力,用户越来越看重阅读中情感的交换,在理性基础上的感性表达
因此,媒体需要共情能力,要善于发掘用户心理去讲有意思有审美趣味的故事,这样用户才会主动参与内容生产和传播
4 结束语
人工智能给媒体带来的巨大变革,特别是机器人写作的兴起,曾让媒体人产生了本领恐慌,一度担心将来的工作会被机器取代
其实新技术不是让人失业,而是让人从繁重地重复性劳动中获得解放,有更多精力去从事创新工作,做更有价值的事情,让人的工作能够随时代发展“进化”.无论技术的趋势如何演进,无论介质的迭代如何迅猛,人工智能对媒体而言,机遇大于挑战,技术的应用终将会为更好地服务用户而存在
参考文献:[1]凯文·塔尔博特
移动革命:人工智能平台如何改变世界[M].北京:机械工业出版社,2017.[2]胡正荣,周亭
新媒体前沿:人工智能与虚拟现实[M].北京:社会科学文献出版社,2018.[3]中国记协网
盘点2017融媒体报道年度“爆款”[EB/OL].
人工智能论文2000字范文(精选7篇)
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。本文提供几篇有关于人工智能论文范文,供大家参考学习。
第一篇关于人工智能论文:
《电脑人工智能日趋成熟》
电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。
现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。
舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。
一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。
舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。
人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”
舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。
舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。
舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?
讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。
一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。
换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”
微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。
舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。
从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。
显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”
在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。
舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。
目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。
日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。
除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。
舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。
第二篇关于人工智能论文:
《电气工程自动化中人工智能技术的应用》
文章摘要:随着社会的不断发展,人们的生活水平也在不断的提升,工业化也向着智能化的方向进行发展。在电气工程自动化中使用人工智能技术能够有效的提高电气工程的工作效率,对电气工程设备进行自动化的控制,明显的提高电气自动化的工作效率。因此,对电气工程自动化中人工智能技术的运用进行综合性的分析,使得人工智能技术能够更好的服务于电气工程。
关键词:电气工程;自动化;人工智能技术;应用
现阶段,我国的工业企业在进行工作的过程中,运用电气工程自动化技术较为广泛,并且随着人工智能化技术的不断提高,促进了电气工程自动化产业的发展,还可以模拟人体大脑进行工作,对庞大的数据信息进行分析、处理和搜集,从而实现电气工作的自动化生存,这样一来,不但能够提供电气工程的工作效率,而且还能对产业结构进行优化。同时,智能化技术的运用不仅仅提高了电气工程自动化控制系统的工作效率,而且还有效的减少了问题的出现。
1.人工智能化技术的基本概述
人工智能化技术是指借助人力所制造的智能化设备来代替人力进行工作的机器被称为人工智能化机器。目前,人工智能化设备主要借助计算机来作为基础,结合人工的方法和科学技术,将人类的思维和智慧融入设备中,使得制造出来的机器更加的智能化和自动化。人工智能化技术的发展离不开科学技术的发挥。随着社会的不断进步,科学技术也在不断的发展,从传统的自动化机器向人工智能化的方式进行转变,其中运用到的知识不仅仅是单纯的计算机知识,还包含其他学科的知识。比如,心理学、物理学、计算机学等。与此同时,电气工程自动化技术为工业化生产提供了监督管理能力和控制能力。
2.人工智能技术在电气工程自动化中的应用所占的优势
2.1、能够帮助企业实现人力资源的最优化配置
传统的电气工程项目中,设备的操作程序较为繁琐,并且由于电气工程项目中也包含一些电气设备,如变压器、电路电线等。在这种情况下,需要安排专业的人员来对电气设备进行管理。与人工智能技术相比较,包含的电气设备较少,大大减少了企业的资金投入,实现资源的最大化。
2.2、人工智能技术受到外界环境的影响因素较小
传统的电气工程中,控制器在建立模型的过程中会遇到诸多的不确定因素,并且直接影响了控制器的构建,甚至会都控制器的正常运行和工作产生营销。比如,在控制器模型建立的过程中,由于重要参数的变化,使得控制器的正常运行无法达到预期目标。与人工智能化技术进行比较,人工智能化技术在设计控制器的过程中,以建立动态模型为理念,大大降低了人工智能化技术对外部环境的影响,确保了系统的正常运行。
2.3、大大的简化了电气设备参数的调节方式
在电气工程自动化工作中运用人工智能技术,在对参数进行调整的过程中,工作人员需要对人工智能化设备进行具体的参数设置,从而才能实现电气工程自动化的控制,简化了工作流程。除此之外,与传统的控制器进行比较,人工智能化技术的优势还体现在以下几方面:(1)较好的适应能力,能够满足多变的情况下自动化系统的正常运行;(2)简化操作流程。在没有专业技术人员在场的情况下,整体系统也能正常的进行工作,帮助企业降低了对人力、物力方面的资金投入。除此之外,人工智能技术还能根据实际工作的情况,科学合理的设定参数,大大减轻了工作人员的工作压力和工作量;(3)对现有设定的参数进行综合性的分析,并且根据实际的情况来进行数据的修改,从而提高工作效率。
3.对电气工程自动化中人工智能的具体应用进行分析
3.1、人工智能在电气产品设计方面的应用
在电气工程自动化系统中,产品的设计过程较为复杂,并且设计方案较为繁琐。设计人员在进行产品的设计过程中,需要选择科学合理的方法来进行产品的设计,并且对现有的设计技术和设计经验进行借鉴,确保设计出来的产品具有实用性。但是,在科学技术和计算机技术发展的过程中,借助人工智能技术来对产品进行设计,将设计过程从传统的设计方式向着人工智能设计方向进行转变。这样不但能够有效的缩短电器产品的设计时间,而且还需要提高产品的质感。
3.2、大大缩短电气工程自动化机器故障的检测周期
电气设备在进行正常的运作过程中,由于工作时间较长,工作人员缺乏专业的保养技术和维修设备的技术。一旦设备发生故障,需要浪费大量的时间来进行故障的检修,然而,人工智能技术在电气工作自动化工作中的运用,能够有效的缩短设备的维修和保养时间。除此之外,可以借助网络技术在设备发生故障时,可以详细的记录设备出现故障的时间、原因等内容,缩短了故障检修的周期,增加故障检修的安全性和可靠性。
3.3、人工智能技术在设备故障诊断方面的应用
在电气设备进行运作的过程中,由于一些突发情况导致设备发生故障。工作人员在对故障进行诊断的过程中,需要借助新型的诊断技术来对设备发生的问题进行分析。人工智能技术对故障的分析已经应用在很多方面,比如:发电器故障的检修、变压器故障的检修、电动机故障的检修等。但是,借助传统的人工技术来对设备的故障进行分析和诊断,不仅仅浪费的人力、物力,增加了企业的资金投入,并且无法提高故障的诊断效率。将人工智能技术运用在电气设备故障检测过程中,可以在最短时间内诊断出设备发生故障的原因,并且将人工智能技术与其他理论相结合,大大提高了电气设备故障的诊断效率和准确性。
3.4、人工智能技术在电气控制方面的应用
随着社会的不断发展,对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。目前,在电气设备控制中最核心的工作是提高电气系统的工作效率,从而促进电力企业的发展。为了更好的实现制定的目标,需要对现有的电气自动化控制技术进行提高,有效的将人工智能技术运用在电气设备的控制中,实现电气控制自动化的发展,从而提高电气设备的运行效率。除此之外,还能帮助企业节约人力和物力。现阶段,人工智能技术在电气设备的运用主要包含以下几个方面:专家系统的控制、神经网络的控制、模糊控制等。在电气设备控制的过程中,使用最为频繁的是模糊控制,主要由于其操作较为简单,并且与实际的工作目标相符合。
4.结语
随着社会的不断发展,科学技术也在不断的发展过程中,并且对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。因此,需要对人工智能技术在电气工程自动化的具体应用进行分析,确保其满足电气设备的正常运作需求,提高电气工程自动化的运作效率。总而言之,人工智能技术在电气工程自动化中具有良好的发展前景,能够有效的促进企业的发展,减少企业在人力、物力和财力方面的投资,降低企业的生产成本。
参考文献
[1]张雪,马青强,高健.智能化技术在电气工程自动化控制中的具体应用探析[J].科技畏望,2015,25(5):94-95.
[2]何美琼.试论电气工程及其自动化的智能化技术应用[J].2015,(11):213-215.
[3]李志琴.电气工程自动化控制中智能化技术的应用研究[J].山东工业技术,2016,(15):90.
第三篇关于人工智能论文:
《电气自动化控制中的人工智能技术》
摘要:电气设备也在人工智能技术的应用下实现了电气自动化,本文将围绕着电气自动化控制中的人工智能技术展开探讨。
关键词:电气自动化人工智能应用
电气自动化是比较重视实践的一门科学,主要对电力系统的开发与运行进行研究。在社会发展的过程中,大部分的人类现代文明都离不开自动化与智能化。在电气工程中,热工智能化的实现.对于电气系统的运行具有非常大的影响,不仅提高了运行效率而且方便管理,节约大量的人工,在一定程度上降低了运行成本。
1、人工智能技术
毫无疑问,人工智能技术的出现是社会与科技发展的必然成果,并且随着人工智能技术的成熟,其在社会各个行业的应用也越来越多。人工智能技术是以计算机技术理论为基础,其他多个专业学科共同作用下共同构建出的。
人工智能技术的出现,让人类的智慧得以延伸,使只有人类可以完成的工作可以找到替代设备。
2、人工智能技术在电气自动化过程中的应用
2.1、在电气设备中的应用
在电气工程中,人工智能技术主要应用在电气设备的设计方面。电气设备的设计程序繁多、复杂,进行设计的时候,不仅要熟练掌握电路、电磁场、电机、电器等等相关理论知识,还应该有足够的判断能力和设计经验,能够处理一些临时的变化。按照传统的设备设计方法,设计程序主要依靠人工编制,这种方式远远不能满足电气自动化的标准设计,但是,如果加以计算机辅助,就会大大缩减设计时间,同时还可以在很大程度上提高产品质量以及其工作效率。
2.2、平常操作中的应用
随着社会的不断进步,人们的生活水平有了很大的提升,无论是平常的生活,还是工作,学习,都已经不能缺少电气设备,所以说,电气设备安全、稳定的运行,在一定意义上,就是社会生产,人们生活的安全与稳定。在利用电气设备的时候,应该按照设计说明书,遵循操作规范进行操作使用。传统的操作方法不仅复杂,而且操作程序比较死板,一个环节出错就可能引发重大失误,带来严重后果。而人工智能化的出现,在很大程度上改变了这些问题,不仅简化了设备的操作程序,提高了操作效率,而且可以智能化的识别错误、提示错误,进而更正错误,降低错误率,甚至在一定程度上将错误发生率降至零。大大提高了电气设备的安全与稳定,对电气设备的运行具有很大的促进作用,提高了设备的实用性。
2.3、应用于事故及故障诊断
电气自动化中事故与故障诊断,就是指对相关机械设备进行信息确定,对其运行状态进行判断.杳看是否正常,一旦发现异常,能够快速对故障进行准确的定位,并分析故障类型,然后有针对性的找出对策。电气设备的运行受到各种干扰因素的影响,特别容易出现故障或者事故,如果没有及时的进行处理,就有可能小故障变大故障,甚至引发安全事故,对工作人员、电气系统以及企业都造成重要的损害,同时带来不良的社会影响。所以,对于电气设备的故障进行准确而又及时的判断,是非常重要的。
2.4、电气控制工作中的应用
在电气系统中,对电气设备的控制同样是非常重要的一部分工作。现如今,实现电气设备的自动化与智能化已经是一个大的趋势,智能化的实现主要就是通过对设备的控制。不仅能够在很大程度上提高工作效率,适当降低成本,还可以减少人员用工。例如,在人工智能技术中,比较先进的技术有模糊控制、神经网络控制、专家系统等,他们都可以实现对电气设备的智能化控制,而且非常精确,控制效果非常不错。就拿模糊控制来说,最常用的方法就是Sugeno与Mamdani,Mamdani技术主要是对设备的速度进行调节,其主要是一种高效率的交流传动控制技术,在很大程度上提高了电气设备的工作质量和工作效率。
2.5、在产品设计中应用人工智能技术
在传统的电气设备设计中,主要是依靠设计人员的经验,缺乏一定的技术性,同时设计工序比较简单,设计质量不高。然而,当经济水平与科技力量都有所提高,国家也开始注重这方面的开发,加大了资金的投人。随着研究力度的加大,我国在这方面的成就也逐渐显现出来,人工智能技术也逐渐被应用于产品设计。人工智能化的应用,提高了产品的自动化程度,提高了生产效率,加大了产品的智能化,对产品质量来说是一个巨大的保障。
3、结束语
综上所述,随着科学技术的不断发展,人工智能技术已经逐渐成熟,其精度与控制力都有了很大的提高,将其应用在电气工程中,不仅提高了系统的运行效率,还极大的方便了管理,提高了电气设备的安全与稳定,在很大程度上提高了企业的经济效益,带来了很大的社会效益,所以说,在电气工程中使用人工智能化技术是值得推广的。
参考文献
[1]纪文革.人工智能技术在电气自动化控制中的应用思路分析田.电子浏试,2014(03):137-138.
[2]任博.人工智能技术在电气自动化控制中的应用思路分析田.科技视界,2015(09):108-109.
第四篇关于人工智能论文:
《基于当前社会的人工智能初探》
本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。
弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。
人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。
第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。
人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。
第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?
以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。
强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。
人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。
有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。
人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。
第五篇关于人工智能论文:
《当人工智能应用于黑色产业》
请各位同学想象一下这个场景:你老妈打电话跟你说她把银行密码忘记了,让你告诉她银行卡密码。想必你也知道了,跟你通话的其实不是她本人,而是电脑合成的声音,只是听起来很像而已,这就是人工智能技术的杰作。
人工智能技术正在不断发展
虽然利用人工智能在电话中伪装某人的这种技术仍然只会出现在科幻电影中,但这种高科技犯罪手法在未来很可能会成为现实。目前,这种伪装技术所需要的软件组件正在飞速发展之中。例如,最近Alphabet公司旗下的子公司DeepMind(该公司开发了一款能打败顶尖棋手的人工智能围棋程序Al-phaGo)宣布,他们已经设计出了一款能够模仿人类声音的新程序,而且声音听起来比目前最好的文本语音转换系统更自然,并且成功将机器语音与人类声音的差异缩小了50%以上。
需要注意的是,年收入高达750亿美元的计算机安全行业已开始讨论机器学习这个话题了。因为信息安全研究人员打算通过机器学习和模式识别技术来改善目前计算机安全方面的糟糕状况。
人工智能的阿喀琉斯之踵
虽然一切听起来十分美好,但人工智能技术也有其自身的缺陷。MarcGoodman是某执法机构的一名顾问,同时他也是《FutureCrimes》的作者,他表示:“可能很多人现在还没有意识到,网络犯罪正趋向于自动化,而且扩张速度惊人。现在已经不是MatthewBroderick躲在地下室去攻击别人计算机的年代了(电影《战争游戏》1983年版中的情节)。”
今年年初,美国国家情报局的负责人JamesR.Clapper发出了关于恶意使用人工智能技术的警告。Clapper在他的年度安全报告中强调,虽然人工智能系统可以让我们的生活变得更加简单,但与此同时网络世界中的“薄弱之处”也会因为人工智能的出现而不断被放大。
如今计算机犯罪活动日益复杂化,从不断升级更新的攻击工具身上就可以看出了。比如目前得到了广泛使用的恶意软件Blackshades,这款恶意软件的开发者叫Goodman,他是个瑞典人。不过悲剧的是,他已于2015年在美国被定罪了。
这款恶意软件在地下黑市的销量非常高,据Goodman所说,由于Blackshades可以为犯罪分子提供很多强大的功能,因此这款恶意软件也被大家称为“网络犯罪分子的潘多拉魔盒”。在Blackshades的帮助下,使用者压根不需要懂得任何的黑客技术,用户只需要点击几下鼠标便可以实现攻击。这款恶意软件不仅可以轻易地让目标计算机感染勒索软件,而且还能对目标进行视频和音频监控。
人工智能领域的研究人员目前正在研究如何提升机器学习的能力,因为他们希望改善计算机视觉、语音理解、语音合成和自然语言理解的处理质量。但这也会带来一些不好的影响,因为犯罪分子也可以在下一代恶意软件中增加这种机器学习的能力。有一些安全研究专家则认为,其实早在五年前就已经有犯罪分子在利用人工智能技术进行网络犯罪活动了。
安全保护技术与人工智能的博弈
现在,几乎所有的互联网+服务都会要求用户在使用前输入验证码,而犯罪分子们一直都在试图破解验证码技术。验证码的全称是“全自动区分计算机和人类的图灵测试”,这项技术是美国卡内基梅隆大学的研究员于2003年发明的,网站运营者可以利用这项技术来防止自动化程序盗取用户的网络账户数据。
来自加利福尼亚大学的计算机安全研究专家StefanSavage表示:“近五年来,人工智能专家和网络犯罪分子都在尝试使用计算机视觉软件来破解验证码技术。如果你两年来都没有更改过你的验证码,那么你的验证码肯定会被计算机视觉算法搞定。”
社会工程学
毫无疑问,随着科技的不断发展,网络犯罪分子肯定会尝试利用新兴的技术来进行犯罪活动。像苹果的Siri和微软的Cortana这样的语音识别技术目前已经得到了广泛使用。亚马逊的声控智能音箱Echo和Facebook的人工智能聊天机器人也成为了电商与顾客之间的沟通工具。与以前一样,每当类似语音识别技术这样的新型技术成为了市场上的主流之后,犯罪分子一定会利用这项技术去大做文章。
调查记者BrianKrebs在krebsonsecurity.com上发表文章称:“在我看来,那些为客户提供了智能聊天服务的公司绝对忽略了一个问题:在信息安全领域中,想要获得便捷性,往往就会以牺牲安全性作为代价。通过聊天机器人来服务客户,这一切看似非常方便,但这也使得攻击者有可能通过社会工程学技术来攻击这些网络服务。”
社会工程学技术针对的是人性的弱点,而这也是计算机安全链中最薄弱的一个环节,网络犯罪分子通常会把那些容易轻信别人或乐于助人的人们作为攻击目标。假如犯罪分子有能力去研发人工智能恶意软件,并利用这种恶意软件在网上进行犯罪活动的话,那么计算机安全形势将会变得更加严峻。
话虽如此,但是智能聊天机器人目前仍然得到了广泛的应用。例如政府在进行某些宣传时,或者在政治选举之类的活动中,我们都可以看到智能聊天机器人的身影。值得一提的是,政治聊天机器人在英国脱欧公投中可是扮演了一个非常重要的角色啊!
总之,网络犯罪分子迟早会利用人工智能技术来进行攻击,一切只是时间问题。但值得庆幸的是,目前还没有人利用机器学习技术来进行网络犯罪活动。
第六篇关于人工智能论文:
《人工智能不是未来派概念》
Pelican公司的创始人兼首席执行官帕尔特·德赛(ParthDesai)认为,人工智能已是事实,而非幻想,银行业现如今的重中之重是在交易与支付上实现人工智能的实际应用。
根据Gartner预计,到2020年,人工智能将普遍存在于新产品中。帕尔特说:“现在大家都在讨论人工智能在金融服务上的潜力,以及它将如何帮助精简程序并提高附加价值,但我们必须从现实的角度了解哪些是具有可能性和操作性的。”
循序渐进的迭代过程
无疑,人工智能正通过计算能力和机器学习来模仿人类的智能行为,尤其是在军用和民用领域。尽管各行各业对它的炒作热度有增无减,人工智能也不应被视为解决任何问题的灵丹妙药,甚至它还有较长的一段路要走。
在帕尔特看来,人工智能是游戏规则的改变者。金融服务业的早期采用者则认为这是一个循序渐进的迭代过程,随着时间的推移,人工智能将戏剧性地改变银行业的用户体验。在某些交易银行和支付合规领域,已经可以在劳动密集型的环节中看到人工智能应用的身影,例如最低成本的路由维修等。银行业下一步将集中在产品创新领域,并减少市场投放时间。人工智能的应用案例几乎都证明了,人工智能确实有助于减少甚至取代一直以来由人类劳力担任的知识密集型、单调性和重复性的工作。
但问题的关键在于,目前人工智能仅仅提高了高水平人工环节的附加价值。人工智能技术能在先前的经验、事件和行为数据的基础上,提供理解交互能力并智能化地挖掘这种能力,使计算机在类似事件重复发生时能自动执行过去的行为指令。
在金融领域,深度学习必须受到一定的控制和监督,人工智能的见解及其行为背后的原因分析应继续安排专人审查,以确保应用程序自动化的准确性和一致性。这样做的好处是,一旦更好地、准确地理解了上下文和操作,机器学习也将获得改善知识发现的新方法。
在这种方式下,人工智能的情报能力通过经验和行为的变化与调整,获得了持续发展。
智能支付管理
金融行业迫切需要改变,这也是智能支付管理概念出现的原因。根据对人工智能20多年来的沉浸式研究,帕尔特认为智能支付管理有潜力改变每一个金融机构的运营方式,并且最终所有金融机构都能开展这项业务。人工智能以深度学习、自然语言处理和基础知识系统这3个关键领域为支撑,而智能支付管理可确保计算机精确处理每个支付环节,并充分理解每笔模仿人类推理而达成的交易背后的目的。
据帕尔特了解,几乎每一家银行在交易银行和支付领域采用的都是效率低下并且高度依赖人为干预的处理方式,这也成为银行智能化的主要阻滞剂。许多银行正疲于应对这种复杂低效且扼杀创新的大环境,这反过来严重限制了银行快速高效的业务处理能力,难以满足日益苛刻的客户群的需求。
目前仍存在这种状况,不少人认为,人与机器之间的交互通过人工智能得以丰富起来,但同时也认为人工智能基本上仍是一个未来派的概念。尽管人工智能还远远不够智能,一个小孩子轻易能够完成的动作对机器人来说,都几乎是难于逾越的挑战,但在帕尔特看来,人工智能不是一个未来派的概念。
他认为,根据现有的应用经验,智能支付管理与传统高度依赖人工的支付系统有所不同,它能从根本上降低成本,加快产品创新,大大减少投放市场的时间。因此,基于人工智能技术之上的智能支付管理将解放银行生产力,使他们能够快速高效地开发下一代产品,提供更高水平的客户服务,提高盈利能力,从而在日趋激烈且拥挤的市场竞争上占据明显优势。
第七篇关于人工智能论文:
《计算机人工智能识别技术的应用瓶颈探赜》
【摘要】21世纪以来,随着计算机技术、信息技术和网络技术的快速发展,人工智能识别技术应运而生,成为一种新兴计算机技术,在各行各业、各个领域的应用范围不断扩大,为经济增长、社会发展提供重要基础保障。然而,就当前应用情况来看,计算机人工智能识别技术的应用面临一系列瓶颈问题。基于此,文章通过研究和探析计算机人工智能识别技术应用瓶颈问题,为计算机人工智能识别技术的应用和发展奠定坚实基础。
【关键词】计算机人工智能识别技术应用瓶颈
作为一种自动化、智能化、科学化计算机技术,计算机人工智能识别技术通过将人类思维模式从抽象化到具体化,进行准确识别、科学判断和准确模拟,最终通过计算机程序完整体现出来。计算机人工智能识别技术被广泛运用于各个领域,与其他计算机技术相比,人工智能识别技术的应用前景更为广阔,能够为人类提供更为高效、便捷和优质服务。近年来,计算机人工智能识别技术在我国相关领域中取得一系列显着应用成效,然而由于发展时间较短,尚未形成一套完整的运行体系,整个应用过程依然面临诸多瓶颈问题。因此,本文研究具备一定的实践意义。
1、计算机人工智能识别技术的含义及类型
1.1、人工智能识别技术的含义
人工智能识别技术,实质上指的是基于计算机技术和人工智能平台所衍生出来的一种科学技术,人工智能识别技术能够对人类各种思维模式、行为方式进行准确识别和完整模拟,经过智能化、自动化,所形成的一种自动智能化机器。在实际应用过程中,计算机人工智能识别技术装置可以对相关物品信息进行扫描、识别。比如:超市中所利用的扫描装置,就是一种人工智能识别装置,通过扫描产品上的条形码,产品的质量、单价、名称等相关信息便会完整呈现出来,售货员进行数量的录入,便可以进行总价的计算,作为计算机人工智能识别技术的一种典型应用案例[1]。此外,计算机人工智能识别技术还能够被应用于企业办公自动化、生产智能化等方面,从而有利于人们办事效率、工作水平的大幅提高。
1.2、人工智能识别技术的类型
按照人工智能化特征进行划分,我们可以将人工智能化识别技术划分为机械化识别技术和人工化识别技术两种类型。
1.2.1、机械化识别技术
机械化识别技术,顾名思义,就是通过识别无生命特征的物体信息,主要涉及到的技术有以下三种:
第一,智能卡技术。作为一种集成电路卡,与计算机系统紧密关联起来,共同完成信息数据的采集、管理、传输、加密和处理。通常情况下,智能卡识别技术被广泛运用于物品验证、车辆识别、信息跟踪等方面。
第二,条形码识别技术。一般而言,条形码识别技术可以划分为两种:一是一维条码技术;二是二维条码技术。二维条码技术是一维条码技术的衍生物,在一维条码技术的改进和优化之上所形成,所以二维条码技术更为先进,能够进行数据信息的采集、识别,并能够准确、即时显示出来,被广泛运用于条码扫描和信息识别等方面。
第三,射频识别技术。射频识别技术与智能卡、条形码识别技术应用原理不同,它不需要与物体进行零距离接触,只需要借助无线电磁波进行信息的采集和识别。射频识别技术主要对物品信息进行有效标识,从一定程度上可以取代传统条形码识别技术,将有可能成为物品标识管理最为有效和先进的一项技术。
1.2.2、人工化识别技术
人工化识别技术,是针对人体所设计的一项智能识别技术,主要涉及到的核心技术有以下三种:
第一,人脸识别技术。对人脸进行扫描,进而进行身份信息的识别和判断,通常所扫描的部位是人的眼睛或脸部结构。人脸识别技术通过局部放大,自动进行人脸部关键特征信息的收集、识别,通过调节亮度,提高识别结果的精准性。
第二,声音识别技术。通过对人的声音进行有效识别,以此来判断声音主体身份。声音识别技术运作原理为,从音色、音调、音质等层面,进行声音的辨别,并在系统中进行特征的记录和匹配,进而实现识别目的[2]。
第三,指纹识别技术。通过扫描人的指纹,进而进行身份的识别和判定。由于每个人与其他人的指纹并不相同,所以指纹识别技术十分先进,能够准确识别和判断个人身份信息。
2、计算机人工智能识别技术应用领域
20世纪60年代之后,随着计算机技术、信息技术和网络技术的快速革新,人工智能识别技术因此得到快速发展,其应用范围和领域不断扩大,逐步发展成为各行各业、各个领域的核心技术。
2.1、应用于机器人技术领域
研究表明,机器人技术源自于20世纪70年代,成为一种专业学科。同时,机器人技术被各个领域所使用,取得一系列显着应用成效。比如:机器人技术运用于外科手术中,机器人助手能够帮助外科手术医生进行手术,其应用范畴不断扩大。究其原因,机器人人工智能识别技术不仅能够减少组织成本性资金投入,而且有利于组织内外部风险的预防和规避。当然,尽管人工智能识别技术在机器人产业中的应用力度较大、范围较广,但是依然需要改进和完善。
2.2、应用于语音识别技术领域
语音识别,顾名思义就是通过某种特别手段和人工智能识别技术,让机器对人类的语言有一定的理解,并且能够产生识别、交互行为。长期以来,语音识别技术深受国内外学术界的高度重视。
语音识别类产品涉及面较广、服务领先,具有巨大交互优势。近年来,随着人工智能识别技术的快速发展,语音识别技术同样实现了较快发展,建立在语音识别技术之上的芯片越来越多,已然成为新时期人工智能识别与交互的核心内容。
2.3、应用于人工神经网络领域
人工神经网络简称为神经网络,是批量处理单元相互交织形成的一种特殊网络形态。神经网络基于人脑,是对人脑抽象活动的具体化、简单化和模拟化,与人脑基本功能极为相似。人工神经网络是通过对人脑活动、指令的模拟、效仿,并从中得到启发,进行批量单元信息的处理。人工神经网络中,神经元之间的相互作用便会产生信息处理过程。尽管人工神经网络并不能等同于人脑,也不能完全发挥出人脑所有作用,但是却能够通过人工智能识别技术帮助人类进行自动化、智能化事件的处理。
3、计算机人工智能识别技术的应用瓶颈
20世纪末,以密码、密钥等安全识别技术为主的信息、数据安全保障手段被广泛运用于各行各业、各个领域之中。然而,其具备一定的易复制性、丢失性、不稳定性,所以在一定程度上严重制约和影响到信息安全技术的发展。计算机人工智能识别技术基于计算机技术之上,通过对信息数据进行采集、识别和录入,能够为人们提供便捷的操作方法[3]。然而,我国计算机人工智能识别技术发展应用时间较短,尽管取得了一系列显着成效,应用范围不断扩大,但是其依然面临巨大的应用瓶颈问题。
3.1、语音人工智能识别技术应用瓶颈
语音人工智能识别技术旨在让机器能够读懂和识别出人类语言,并按照人类的指令进行一系列操作。语音人工智能识别技术作为计算机人工智能识别技术的一项核心技术,长期以来,深受国内外学术界的高度重视。与此同时,语音人工智能识别技术被广泛应用于各行各业、各个领域,其技术和产品优势十分鲜明,在语音电话、语音通信、语音交互等方面取得显着应用成效。21世纪以来,计算机人工智能识别类产品类型的不断增多,语音人工智能识别技术得到快速发展,以语音识别技术为载体的芯片数量日渐增多。然而,语音人工智能识别技术的发展时间较短,依然存在应用瓶颈问题,具体表现在以下三个方面:
(1)语音识别技术有待提升。语音识别技术实际应用过程中,必须尽可能排除外界环境的干扰,比如:外部其他噪声。唯有此,才能准确识别音色、音调、音质。尽管语音识别技术基本上实现了智能化,但是以目前的技术来讲,并无法在外部噪音的干扰下准确识别语音。如此一来,从一定程度上影响到语音识别技术的发展。因此,要想确保语音识别技术能够在外部噪音影响的情况下实现准确识别,必须采取特殊抗噪音麦克风,这对于普通用户来讲,基本上达不到该项要求。与此同时,用户在日常谈吐过程中,较为随意,具有明显的地方特色,加之语速、频率等控制影响较大,普通话不标准等问题,直接影响到语音识别设备对音色、音调、音质等的准确识别。除此之外,人们的语言受到年龄、情绪、身体素质等的影响,其音色、音调、音质随着自身及外部环境的变化而改变,直接给语音识别形成影响。因此,当前语音识别技术可靠性有待提升。
(2)语音识别系统不健全,词汇量较少。目前,我国计算机人工语音识别系统词汇量较少,在实际运行过程中,并不能识别到所有的音色、音调和音质。倘若语音模型有一定的限制,词汇中出现一些难以识别的方言、外语,那么语音识别系统将无法在较短的时间内准确识别出语音,甚至会出现识别错误、不准等情况。基于此,随着语音识别技术的不断发展,其应用范围的进一步扩大,需要进行其词汇量的增加,尽可能准确、快速识别出更多的语音,而建模方法、搜索算法的逐步变革,使得语音识别系统不能实现智能化识别,仅仅能够识别出基础的音色、音调和音质,对于其系统、深入、全面应用来讲,依然存在较多的瓶颈问题[4]。
(3)应用成本较高、体积较大。目前,我国计算机人工智能识别技术的应用范围不断扩大、应用领域不断增多,特别是语音识别技术的应用成效十分显着。然而,语音识别技术的应用成本依然很高,使得普通用户基本无法接受。就目前的发展情况来看,语音识别技术应用成本的降低似乎难度很大。对性能、功能要求较高的语音识别基本上无法实现,当前的条件并不成熟,无法实现规模化、系统化和全面化,仅仅能够准确识别要求标准较低的语音,而受到成本因素的制约,使得语音识别设备的研发和生产过程受到严重影响。与此同时,语音识别技术体积较大,占用较多的空间资源,巨型化向微型化发展作为语音识别技术未来发展的主要趋势。
而微型化语音识别设备的研发和生产,需要集成微电子芯片,当前的微电子芯片与语音识别技术关联并不密切,在实际操作过程中,微型化语音识别技术并无法在降低成本的同时得以实现,从一定程度上直接阻碍到语音识别技术的广泛推广和应用普及。
3.2、视觉人工智能识别技术应用瓶颈
视觉人工智能识别技术与语音人工智能识别技术相同,均作为计算机人工智能识别技术的重要组成部分。然而,视觉人工智能识别技术面临的应用瓶颈问题更为严重。通过进行相关信息数据的采集、传输、识别和处理,进而达到人工智能化的目的。常见的视觉人工智能识别技术有人脸识别技术、指纹识别技术等,下面重点阐述人脸识别技术和指纹识别技术应用瓶颈。
(1)人脸识别技术应用瓶颈。人脸识别技术主要通过对人脸结构、瞳孔等关键部位进行准确识别和有效判断。尽管人脸识别技术非常方便,便于人们进行身份的认证,但是在实际应用过程中,依然面临以下几个方面的瓶颈问题:一是由于人们脸部表情各不相同,即使同一人,其面部表情也随情绪、外部环境的变化而改变,数据库中的人脸表情数据十分有限,从而之间影响到人脸识别效果;二是人脸结构、轮廓均会跟随外部环境、个人情绪、年龄等发生改变,从而造成识别效果并不明显;三是受到外部环境,诸如光线之类的因素影响,人脸识别同样面临不确定性因素;四是人脸具有一定的雷同性,这就难免造成人脸识别设备的误判、误识。现阶段,人脸人工智能识别技术在我国相关领域已经取得一系列显着成效,但是在实际应用过程中,依然面临较大的瓶颈问题,比如:脸部表情、脸部轮廓、脸部结构、发型、化妆、外部光线等的不同,都将给人脸识别带来巨大的挑战和识别压力。国内外学术界专业学者经过几十年的研究和探索,从各个学科层面出发,对人脸智能识别技术展开了大量研究,但是依然有一些难以彻底解决的难题。就人类自身而言,在日常的生活交际过程中,对人们的面孔识别也难免会出现差错,而人脸智能识别技术跟人脑相比,依然有一定差距,其人脸识别过程更为困难,特别是精准度方面难以有效掌控,这将是制约和影响其发展的一大瓶颈问题。
(2)指纹识别技术应用瓶颈。人类的指纹是独一无二的,也就是说,世界上任何一个人的指纹与其他人均不相同。基于此,指纹识别技术应运而生,成为一种有效识别身份信息的高科技技术。
指纹识别技术通过对人们指纹断点、纹路、交叉点等进行准确识别,从而识别出人们独一无二的身份,有利于个人身份及其他私人信息的保护。然而,看似非常严密的指纹识别,却面临指纹被非法采集的问题,倘若一个人将指纹信息泄露出去,或者被他人所利用,那么其自身信息将容易被暴露、被利用[5]。如此一来,面临巨大的风险隐患。与此同时,尽管指纹识别系统采取非常先进的计算机人工智能识别技术,但是在实际应用过程中,某些人的指纹信息较为模糊,基本上无法看清纹路等,这将无法进行指纹的准确识别。例如:目前国内外大型公司所配置的签到打卡机,便是一种典型的指纹识别装置,便于公司掌握员工出勤情况,但是如果员工指纹损伤,那么将基本上不能被识别。由此可见,指纹识别技术在实际应用过程中,面临一系列瓶颈问题。
当前,人们在应用人脸识别技术和指纹识别技术过程中,基本上均使用计算机进行了密码的设置,但是从应用成效来看,并不显着,存在较大的弊端。这将需要继续对人脸识别和指纹识别技术进行改进、升级,进而来解决计算机人工智能识别技术应用瓶颈,有力推动其健康、持续发展。
参考文献:
[1]杨恒.计算机人工智能技术研究进展和应用分析[J].信息通信,2014(01):130.
[2]周娟.计算机人工智能识别技术应用瓶颈分析[J].软件导刊,2014(09):28~29.
[3]刘乔辉.计算机人工智能识别技术的应用探讨[J].科技风,2016(04):121~122.
[4]黄鑫.分析计算机人工智能识别技术的应用瓶颈[J].数字技术与应用,2016(07):244.
[5]罗勇,向奕雪.计算机人工智能技术研究进展和应用分析[J].电子制作,2014(18):47.
人工智能论文3000字 人工智能机器人3篇
【www.cqwcsy.com--热门资讯】
智能机器人是人类智慧的结晶,它在一定程度上使人们从繁忙的工作中解脱出来。以下是本站分享的人工智能论文3000字人工智能机器人,希望能帮助到大家!人工智能论文3000字人工智能机器人1一、人工智能的定义解读
人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
二、人工智能的发展历程
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
三、人工智能的多元应用
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级的AI通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
四、人工智能的未来思考
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。但是,从人工智能目前的发展现状来看,其研究也存在一定的问题,这些主要表现在以下三个方面:
1、宏观与微观隔离
一方面是哲学、认知科学、思维科学和心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次尚待研究,目前还无法把宏观与微观有机地结合起来和相互渗透。
2、全局与局部割裂
人工智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。这就导致了三者之间存在着明显的局限性。因此,必须从多层次、多因素、多维和全局观点来研究人工智能,才能克服上述局限。
3、理论与实际脱节
大脑的实际工作,在宏观上已知道不少;但是智能的千姿百态,变幻莫测,复杂的难以理出头绪。在微观上,我们对大脑的工作机制知之甚少,似是而非,这也使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某些方面表现出“智能”就已经算是相当的成功。
五、结语
人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的发展方向。人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。因此,要想从根本上了解人脑的结构和功能,完成人工智能的研究任务,就必须去寻找和建立更新的人工智能框架和理论体系,进而为人工智能的进一步发展奠定坚实的理论基础。我们坚信在不久的将来,人工智能技术的应用与发展必将会给人们的生活、工作和教育等带来更大的影响。
人工智能论文3000字人工智能机器人2摘要:随着社会的飞速发展,科学技术不断进步,工业领域生产模式发生变化,人工智能时代势不可挡,尤其是机器人得到更大范围的推广与应用。工业机器人的突出优势是精准度较高,工作效率高,能够承受较大工作强度,为整个工业领域产量的提升以及质量的提高创造更加优质的条件。由此可见,工业机器人已成为现代工业发展的趋势与方向。文章基于行业发展,详细阐述了工业机器人的特征,探讨其未来发展趋势与方向,以期为整个工业行业的持续性发展提供更大的技术支撑。
关键词:人工智能时代;工业机器人;趋势;
Abstract:
Withtherapiddevelopmentofsociety,thecontinuousprogressofscienceandtechnology,industrialproductionmodechanges,theeraofartificialintelligenceisunstoppable,especiallytherobothasbeenmorewidelypromotedandapplied.Theoutstandingadvantagesofindustrialrobotsarehighaccuracy,highworkefficiency,abletowithstandagreaterintensityofwork,fortheentireindustrialfieldofproductionandqualityimprovementtocreatemorehigh-qualityconditions.Thusitcanbeseenthatindustrialrobothasbecomethetrendanddirectionofmodernindustrialdevelopment.Basedonthedevelopmentoftheindustry,thispaperexpoundsthecharacteristicsoftheindustrialrobotindetail,anddiscussesitsfuturedevelopmenttrendanddirection,inordertoprovidegreatertechnicalsupportforthesustainabledevelopmentoftheentireindustrialindustry.
Keyword:
eraofartificialintelligence;industrialrobot;trend;
随着人工智能时代的到来,互联网技术取得巨大突破,大数据技术成为核心,为工业机器人产品性能的提升提供更加先进的技术支持。在工业机器人发展进程中,其操作趋于简易化,精准度更高,能够广泛应用在诸多领域,投入成本呈现不断降低的趋势。立足工业领域,机器人应用于产品检测、焊接以及搬运等环节。工业机器人的出现强化对人力应用的缓解,在优势上主要体现为较高的生产效率与较高品质的操作,同时,操作持久性更加突出。
1工业机器人的构成以及类型
从构成上分析,工业机器人主要包含三个部分,即本体、驱动以及控制三个系统。从功能上分析,一种机器人的作用体现在对人类手、手臂的模仿。另外一种更具智能化,有效发挥仿生学的特征,能力更显多样化,自由度更高。在当前的工业领域,之所以选择工业机器人,主要源于其较低的单机价格,便于维修,应用效率较高。
2人工智能时代工业机器人核心技术分析
2.1工业机器人以高精度减速机为核心构成,涉及多种技术类型,要求较高
在工业机器人中,关键性结构组成为高精度减速机,涉及多种技术类型。首先,材料成型控制技术十分关键,尤其对减速机减速齿轮的耐磨性与刚性提出更高要求,目的是保证运行的高精度标准。在材料构成方面,要强化对金相组织、材料化学元素以及含量的科学控制。其次,加工技术不容忽视。在减速器中,非标特殊轴承是必不可少的组成部分,结构极具特殊性,需要减速器零件加工尺寸来确认间隙标准,工人技术要求更高。
2.2以电机与高精度伺服驱动器为核心,实现对工业机器人的全方位控制
对于工业机器人的控制,电机与高精度伺服驱动器作用突出,强化对控制系统的管理,尤其是在瞬间力、功率输出方面面临更高的标准。首先,快响应伺服控制技术能实现对位置环、电流环以及速度的有序控制,合理运用干扰观测以及前馈补偿算法。具体讲,要采用指标预测法来构建内部预测模型,达到闭环优化的目的。其次,为了保证工业机器人能够有效发挥识别功能,要依托在线参数自整定技术,强化转动惯量以及PID参数的在线优化,达到参数的精准判定。另外,在线惯量辨识算法明确伺服驱动器的实际工况,强化参数的智能化控制,以现场实际为要求,合理进行参数的调整。
2.3以实时性为要求,强化控制操作系统的稳定性与精确性
在工业机器人中,运动学控制系统对实时性要求较高。目前,机器人运动控制卡以定制方式为主,同时,强调与操作系统的密切配合,强化数据传输、数据精确性以及稳定性的实现,尤其是对于操作系统的消息处理机制,更要关注稳定性与快速响应的需要,增强实时性,为机器人产业化道路的发展创造条件。
3结合工业机器人应用实际准确掌握发展趋势与方向
3.1工业机器人的发展更显系统性特征,整体性能增强,适用范围更广
立足新时期的发展,工业领域的机器人更显多样性,如焊接机器人、清洁机器人等逐渐投入使用,工程自动化程度显著增强。随着技术水平的不断提升,机器人的造价呈现下降的趋势,但是,性能却不断增强。例如,对于工业领域的机械手,其主要原理是进行人手及手臂的模仿,实现灵活抓取以及搬运的功能,满足自动化操作的目标。纵观当前,机械手应用最为广泛的领域是工业制造业、包装业等。机械手能够在既定的时间内较为准确与高效地完成操作动作,这也成为工业机器人发展的主要方向。目前,信息技术发展迅速,尤其是人工智能技术影响力不断扩大,加之互联网技术的支持,工业机器人发展更显系统性特征,强化在控制系统、诊断系统以及维护系统功能的提升。同时,依托仿真模拟化程序设计,切实增强智能化与自动化水平,整体性能不断提升,在应用方面更显可靠性,适用范围更广。
3.2以工业发展需求为基础,更显生物性与仿生性特点,强化不良工作环境生产效率的提升
立足工业生产,很多环节与环境保护相矛盾,对从业者身心健康产生不利影响,有些操作人类很难完成,这也成为工业机器人得以推广应用的重要因素。例如,对于真空机器人,其之所以在工业中应用,主要原因是半导体工业中,真空传输晶圆这一环节人类无法完成,而真空机器人的引进实现这一问题的解决。另外,在一些恶劣环境中,如适应无阻运动的蛇形机器人,满足水下作业的仿生鱼机器人等,都处于不断研发之中,备受瞩目。也就是说,在工业机器人的发展进程中,更加关注其仿生性与生物性的特征,能够有效实现对人类行为的模仿与替代,成为新时期工业机器人研发的新动向。
3.3基于不断升级与更新的计算机信息技术,工业机器人控制系统更加完善,加快统一化与标准化的实现
在机器人内部,核心构成为控制系统,是发挥功能的重要保障,强化对记忆、示教、通信连接以及坐标设置功能的支持。当前,计算机技术不断升级更新,为工业机器人控制系统的优化与完善提供强大动力,整体控制水平显著提升。具体讲,在控制器方面,由专用封闭式发展为开放式。也就是说,计算机水平的提升使得工业机器人的控制系统突破专供的束缚,更显统一化与标准化的趋势,网络化特征明显。基于此,工业机器人的操作更显便捷性,具备简单的操作常识即可,无需投入人力物力进行培训,在很短的时间内就可以对机器人进行模块功能调整,在根本上使机器人的使用更加方便与快捷,维护管理工作也易于进行。
3.4综合传感器融合配置技术日趋成熟与完善,实现对人类思维与神经的多功能仿生
立足信息时代,人工智能的发展势不可挡,智能化成为工业机器人在未来的发展方向。智能化的机器人,即强调机器人对人类模仿的更高层次,需要具备更高层级的仿生,既要能够模仿人类的动作行为,同时,还需要具有人类的思维与神经。基于此,传感器成为智能工业机器人的重要构成部分,尤其是视觉、力觉、触觉传感器的出现,加快工业机器人智能化的发展速度。例如,对于从事电弧焊接的机器人,采用多传感器融合配置,融电弧传感器、视觉传感器以及机器传感器于一体。在视觉传感器的支持下,机器人能够凭借激光视觉扫描功能,获取焊接过程中所需要的焊炬等数据信息,保证电弧焊接的精准性。另外,远距离遥控机器人的出现代表了综合性传感器融合配置技术上了新的台阶。这种技术在机器人未来发展中将得到更大范围的推广与应用,处于不断完善与成熟中。
4我国工业机器人发展存在的不足与凸显的问题
首先,我国工业机器人起步较晚,发展时间较短,资金投入方面彰显不足,在技术与经验方面彰显无力性,处于不断摸索与提升阶段,研发力度亟待增强。其次,对于我国机器人的发展,在生产技术与可靠性方面相对薄弱,尤其是机器人很多关键部件需要进口,生产成本大幅增加,机器人市场仍需不断扩大,尤其是过高的成本支出,使得工业机器人在生产研发方面缺乏较高的积极性。再次,工业机器人标准化生产的实现需要以规模优势为前提,但是,我国在生产与研发方面的投入尚未达标,给推广与应用造成巨大阻力。
5如何推动人工智能时代工业机器人的快速发展
随着时代的不断进步,智能机器人技术处于不断创新升级中,因此,工业智能机器人在未来的发展要集中做好如下几个方面的工作。首先,从理论研究方面分析,要重视加强指挥制造技术的探究,尤其是针对机器人中相关零部件的生产,要切实提升产品生产质量,有效应对生产难题,借助新型制造技术与制造模式,缩短机器人生产与推广时间。其次,要结合社会需求,合理增加智能机器人科研项目资金投入,设置专项资金,尤其是面对工业转型发展的新阶段,要扩大对机器人及相关产业的投资量,在根本上为工业智能机器人技术的进步创造条件。再次,立足新时期,要对工业机器人相关条例、规则等进行完善,加快核心技术研发速度,同时,做好研发技术与成功经验的总结分析,推动智能机器人工业化发展进程的加快,构建更加完善的标准体系,强化对人机交互准则的合理优化。
6结束语
综上,工业机器人是多学科相互融合与发展的产物,对工业行业的发展意义巨大。因此,要立足信息时代,在人工智能技术的支撑下,准确掌握工业机器人发展趋势,明确技术特征,促使工业机器人生产制造成本的不断降低,性能逐步增强。同时,要重视仿生学在工业机器人领域的研究与应用,强化控制系统功能的不断升级改造,加快多传感器融合配置技术的发展,大幅提升工业机器人的智能化水平,推动整个行业标准化与统一化建设,拓展机器人应用领域,以便更好发挥工业机器人在人工智能时代的价值。
参考文献
[1]谭文君,董桂才,张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理,2018(04):42-47.
[2]王浩.工业机器人技术的发展与应用综述[J].中国新技术新产品,2018(03):109-110.
[3]蔡济云.工业机器人在自动化控制中的应用研究[J].科技与创新,2018(01):144-145.
人工智能论文3000字人工智能机器人3[摘要]经济全球化形势下,英语教学需求增长,尤其对于高校教育机构而言,传统英语教学模式的局限性弊端已逐渐显露,新型教学技术的引入与应用成为大势所趋。人工智能技术作为现代科技的重要产物,于近年来开始被尝试应用于教学工作当中,在语言类教学课堂中发挥着尤为重要的辅助作用。基于高校英语教学的现实需求,如何构建有益于提升教学实效性的教学模式,并由此实现人工智能技术在英语教学课堂中的有效利用,成为亟待解决的关键问题。现由人工智能视野出发,尝试在高校英语教学中拟建混合式课堂,以期实现教学效率及质量的优化。
[关键词]人工智能;高校英语;混合式教学;构建策略
从高校教育阶段的英语教学目的来看,其核心主要在于语言应用能力的培养,要达成这一目标,仅仅依靠单一的课堂内教学远远不够,在缺乏课外训练的情况下容易导致学生出现语义理解、口语表达方面的短板,不利于全面应用能力的构建。因此,以“线上+线下”为特征的混合式教学模式在高校英语课堂逐渐兴起,在很大程度上弥补了以往单一性教学模式的不足,也更有利于为人工智能等现代教学技术的引入与应用扩大空间。但由于长期受传统教学模式影响,人工智能与混合式教学模式在高校英语课堂中的融合构建容易受阻,需要以科学合理的策略加以推进,现提出相应方案。
一、人工智能与混合式教学模式的相关理论概述
(一)人工智能的概念及主要功能人工智能技术是建立在计算机信息处理基础上的一种智能化技术,能够对人类行为逻辑、方式及习惯做出相应的解析与模仿,使机器的运作能够在智能程序的驱使下更贴合人类的交互需求[1]。基于这一应用方向,人工智能技术主要由理论研究与工程研究两个方面共同推进完整体系的构建,其中,理论研究工作旨在为后续工程研究的实践奠定基础,重点一般放在对现有技术经验的总结探索、对相关理论体系的整合提炼等方向;工程研究工作则旨在利用现有人工智能技术独立完成产品的开发与设计,重点一般放在人工智能系统与设备的应用、新产品的研发实验与调整改进等。从人工智能目前的主要功能来看,大致可分为以下三类:一是通过智能系统完成信息的存储、提取及内部处理;二是通过智能化能力完成信息的符号化处理;三是建立与人类行为逻辑相近的程序逻辑,并利用这一能力对人类提出的问题予以解答或处理[2]。从语言学习的视角来看,人工智能的功能呈现更为具体,如语言解析技术、语言识别技术、语言翻译技术等均较为常见,随着人工智能普及率的增长,这些技术在语言教学课堂中的利用也更为广泛,且目前仍处于不断升级的进程当中,为语言教育方式的革新转变带来了巨大的契机。
(二)混合式教学模式的应用价值结合混合式教学模式在高校英语教学中的应用现状来看,其教学价值大致体现在以下两个方面:一是优势整合价值。语言学习中,传统课堂与网络信息课堂所能够提供的支持效果各不相同,且各有优势与短板。通过应用混合式教学模式能够有效提取并整合两种教学状态下的主要优势,使其相互补充、相互作用,进而发挥“1+1>2”的更优教学效果。二是范围拓展价值。语言类科目不仅对基础知识体系具有较高要求,同时也有着明显的实践需求,而单一的课堂教学模式很难将教学范围进行有效拓展[3]。在混合式教学模式支持下,这一问题得以解决,通过利用庞大的线上资源来突破线下教学范围的局限性,能够达到开辟新渠道、巩固认知结构的教学目的,有助于为学生跨文化交际能力的提升奠定基础。三是推进教学改革。混合式教学模式的深入开展,有助于实现教学方式的多元化和丰富性。充分借助于线上教学与线下教学的优势,综合运用多样化的教学手段,根据不同教学内容的要求来选择合适的混合式教学手法,这不仅可以为学生的学习活动提供良好的支持,同时还有助于调节课堂教学氛围,让教学实效性得以大大增强。
二、人工智能视野下高校英语混合式教学模式的应用路径
(一)听力训练———应用语料库完成自动化资源匹配及交互听力训练属于英语教学中的基础性部分,对于学生英语应用能力的构建有着决定性影响,且听力资源的广度及与学习需求的匹配度在很大程度上决定着学习效果。因此,在构建高校英语混合式教学模式时,可将人工智能技术作为打开听力训练资源广度的关键渠道,借助其特有的语料库储备来完成自动化匹配、交互,使学生能够快速在庞大的英语听力素材中获取与自身学习需求相符的听力资料,并根据资料内容,与人工智能设备展开具有针对性的自动化练习[4]。首先,学生可在线上人工智能系统中录入自己的年龄、学段、英语听力基础、重点训练方向等基本资料,由系统根据数据资料自动筛选、匹配相应的听力材料,从而省略手动搜集资料的繁琐工序。另外,为进一步增强线下课堂学习与情境的交互性,还可进一步利用人工智能的自动识别功能,由学生根据学习需求,随机选取某物体进行扫描,再由系统根据识别出的物品类别筛选出相关的听力练习资料,使学生能够在自动且随机的语言场景中获得更良好的学习体验。例如,当学生选择“手机”这一物品进行识别后,语料库便可自动筛选出与“手机”有关的听力材料,整理出类似主题:Therelevanceofmobilephonesandmodernlife,学生再根据听力内容展开自主练习,从而规避千篇一律的重复训练。
(二)写作指导———应用自动批改功能完成查漏补缺英语教学中,写作是用于锻炼学生词句表述水平、语法运用水平的重要环节,但传统英语写作教学课堂常受困于题材范围狭窄、批改过于主观等因素,既不利于学生创造能力的发挥,也容易导致学生对于自身英语写作的优缺点难以客观把握[5]。因此,在利用人工智能技术展开英语写作指导时,同样可由线上、线下两个不同角度出发,分别借助框架搭建功能与自动批改功能完成的自我审视与查漏补缺,进一步夯实英语书面表述能力。线上教学中,首先可由教师向学生布置以某一话题或某一词汇为主题的写作任务,如“Economicglobalization”,学生根据自身思路,在人工智能技术支持下的作文系统中进行写作,系统则由此发挥框架搭建功能,结合主题与基本思路提供大致的框架模板,以及用作参考的相关词汇、句式,使学生能够跟随框架的指导,形成更为清晰的写作逻辑链条,达到深化表达的训练目的。线下教学中,首先可针对经过系统自动批改后的写作内容与批改意见进行回顾,找出系统评测下的亮点与不足所在,梳理出写作过程中的存疑之处,通过与他人交流和询问教师的形式找出解决办法,并于课堂上完成习作修改,最后由教师根据写作主题,给出主观意见,从而达到主客观相结合的综合评定目的,使反馈成果更具辅助改进意义。
(三)翻译练习———应用云平台技术实现重难点突破英语翻译是以足够的词句积累、听力练习为基础的语言转换过程,对于学习者的语法运用水平、实时解析能力、组织表达能力都具有较高要求,因此学习过程中的重、难点也相对更多,如何提高翻译精准性成为教学过程中的重要问题[6]。人工智能支持下的云平台应用能够为英语翻译教学带来新的渠道,一方面可通过创设翻译情境来使学生快速投入到语言环境当中,另一方面也可透过知识模块拆分功能来理顺语句间的联系,从而使得翻译精确性提升。首先,可在线下课堂当中借助人工智能技术来营造身临其境的语言氛围,如通过追踪文本内容,自动化匹配并呈现与之相关的场景,给人以身临其境之感,如在进行“Foratime,theweatherchangedsud-denly,heavyrainandthunder,pedestriansontheroadwerelookingforeavestoavoid.”一句的翻译时,系统可自动提取“Thunderstorm”这一关键词,并在设备中播放关于“暴雨雷鸣”的音像,将学生引入语言情境当中[7]。在情景背景下完成翻译练习后,学生可各自将翻译成果上传至线上云平台,由云平台根据翻译内容,出具动态的评价链条,对翻译结果进行量化评定,使学生更快地从中厘清重点、难点,并结合不同的知识模块展开针对性补充练习。
(四)口语对话———应用人工智能机器人展开一对一对话高校教育阶段,英语教学的最终诉求在于实际语言应用能力的构建,因此,口语对话练习成为贯穿教学始终的必要环节,关系着学生最终能否将课堂学习成果转化为语言应用基础。人工智能技术的出现,在很大程度上打破了以往英语课堂中对话组织困难的僵局,学生可通过与人工智能机器人建立起一对一的对话关系,来解决师资有限而同学指导能力不足的问题,同时取得训练成效与查漏补缺成效。学生在进行线上自主练习时,可根据想要练习的方向设置关键词或主题,再将人工智能机器人作为对话对象,围绕主题展开聊天式对话,从而达到口语训练目的,同时还可避免与真人对话时羞于启齿的情况,有助于在放松状态下激发出更良好的表达水平[8]。线下课堂教学中,同样可利用人工智能机器人来催化练习效果,例如,在组织小组口语练习时,为避免话题匮乏、接话困难的情况,可利用智能机器人来提供一些固定的框架或句式搭配,并根据不同成员的薄弱点,对对话的层级与难度进行适当智能化调整,从而实现对话练习效果的提升。
三、人工智能视野下完善高校英语混合式教学模式的主要策略
(一)完善教学管理系统,拓宽混合式教学范围无论是人工智能技术还是混合式教学模式的利用,都需要以完善的教学管理系统作为依托,才能够最大限度发挥其价值与成效,真正在教育工作中起到支持作用。因此,在构建高校英语混合式教学模式的同时,还需要紧密结合内部教学需求与教学现状,组织校内各部门共同参与到教学管理工作中来,积极发挥监督与合作职能,在寻求改革发展契机的同时进一步拓宽混合式教学的应用范围[9]。一方面,打造以融入人工智能技术为核心的混合式教学方案,将其应用于英语教学工作当中,动态化观察各阶段教学成果,并用作后期修改教学管理方向的依据,同时积极举办教学比赛及教学研讨会议,以便及时发现方案中的问题所在;另一方面,将混合教学范围逐步扩大,如尝试通过校外拓展实践来探索人工智能的新应用渠道,同时建立综合线上、线下两个教学环节评价指标的教学反馈体系,以便于及时由反馈体系当中获取新的教学动向,并由此探索更利于发展的新模式。可以说,人工智能背景下的英语混合式教学,是以完善的教学管理系统为先导的,必须要不断地对教学管理系统进行完善,有效地拓展并延伸混合教学范围,才能够最大化地提升混合式英语教学的实际意义,真正促进教学质量的提升,为学生的成长和发展奠定坚实的基础。
(二)优化课件制作体系,突出合作互动功能除混合式教学方法的应用外,英语教学课件的制作也直接影响着最终教学成效。为突出人工智能技术的教学优势,在后期英语混合式教学课件的制作中,可进一步强调学习过程中的合作与互动,通过留置更大的交互空间来激发个体的主观能动性,从而达到强化训练效果的目的。一方面,高校可组建精于网课制作的教师队伍,在分析人工智能教学数据、总结以往经验的基础上,尽可能地丰富素材、去粗取精,使学生在线上学习中获得更优体验;积极打造线上精品网课,带给学生专业化的网络课程内容,使之可以从中收获知识的积累和能力的提升,此外还可以将精品网课作为范本在其他高校进行推广,这既可以进行课程推广还能够实现学术交流,以此来更好地强化课件制作效果;另一方面,在线下课件的制作中,更多地增加由学生作为主导的实践板块,如互动对话环节、实时翻译环节等,从根源上提高学生在混合式课堂中的参与度[10]。总而言之,在人工智能背景下,积极开展英语混合式教学,必须要以优质课件制作体系为先导,以课件优势来促进学生对于知识的吸收,这样有助于最大化发挥混合式英语教学的意义,强化教学实效性。
(三)重建教学评价制度,设置多元考核指标在混合式教学模式践行基础上,可通过重建教学评价制度、设置多元化考核指标来进一步倒逼教学质量的提升。例如,除了平时表现,期末考试成绩作为基础考核以外,可另外增加线上教学评价板块,即将学生在线资源学习情况、线上线下课堂活跃度以及师生互动情况等都纳入评价考核范围。借助人工智能技术及网络平台,将学生的学习情况细化为多个考核内容,如听、说、读、写能力的构建情况等,从而保证考核结果更加公正、有效,能够真实反映学生的学习情况以及英语应用水平,并帮助学生完成针对性改进。此外,为了进一步延伸教学评价效果,可以通过线上师生互评、学生互评、小组评价、学生自我评价等方式来实施多元化评价,这样通过多维度、多元化的混合式评价,有助于实现最真实、最客观、最全面的教学评价,能够全面衡量教学质量和教学效果,以便于为后续的教学改进创造基础。
参考文献:
[1]刘凡.高校英语教学线上+线下混合式模式的构建研究[J].吉林广播电视大学学报,2019(9):62-63.
[2]安琦.民族高校英语专业课程混合式教学模式初探———以内蒙古民族大学为例[J].民族高等教育研究,2019,7(5):90-92.
[3]郭玺平.混合式教学模式下的高校英语演讲课程设计与实践———以内蒙古师范大学为例[J].内蒙古师范大学学报(教育科学版),2018,31(3):87-90.
[4]陈洁.混合式教学法在高校英语专业《基础英语》课程中的应用[J].黑河学院学报,2020,11(2):107-109.
[5]贺红艳.混合式教学模式下课堂评价体系改革对高校英语教师评价素养的挑战[J].国际公关,2020(5):41-42.
[6]毛为慧,余庆泽.基于AI语音识别平台的英语混合式教学模式探讨[J].河南教育(职成教),2020(3):28-30.
[7]王艳红.人工智能背景下英语写作教学中混合式教学模式的应用[J].西部素质教育,2020,6(12):122-123.
[8]阚常娟.多模态视域下的英语教学云平台建设研究[J].江西电力职业技术学院学报,2020,33(3):37-38.
[9]王璐.浅议人工智能背景下的大学英语口语教学与评价[C].外语教育与翻译发展创新研究(第九卷).四川西部文献编译研究中心,2020:44-46.
[10]季燕.5G+人工智能视角下的英语教学创新探索[J].创新创业理论研究与实践,2020,3(7):67-68.
作者:王欣单位:陕西警官职业学院
本文来源:https://www.cqwcsy.com/news/59736/
关于人工智能作文300字
关于人工智能作文300字
6月30日,人工智能一级测试在巴蜀小学举行,当天我和同学们在程老师的指导下完成了各种练习。
下午就是紧张的比赛了,我的心情激动万分,这次考试的内容是要做一个桥梁,桥?我一点都没有把握,脑子里一片空白,手不停的在工具箱里寻找着各种可能的材料。第一步,找出桥柱、梁、插削;第二步,把梁装在柱子上固定好;第三步,美化,做成漂亮、大方的桥梁。我终于把桥梁建好了,完工。
第二场考试理论,里面的选择题还有大白在哪个电影里,后面还有三角形是什么结构,……这些题目真有趣,轻轻松松的把题答完了。
今天我第一次参加人工智能测试,人工智能无处不在,我相信自己以后会在人工智能方面发展地越来越好。我为我骄傲,为我自豪。