人工智能八大关键技术简析
人工智能是一个非常宽泛的概念,简单来说就是对人类思维的机器模拟,利用机器学习和数据分析方法赋予机器类人的能力。
近些年人工智能有了长足的进步,也一步步融入到了我们的日常生活当中,随着入门门槛的降低,使得我们这些普通人也有了更多接触人工智能的机会。今天我们就来一起了解下人工智能的八大关键技术
计算机视觉技术计算机视觉,简称CV(ComputerVision),是一门研究如何使计算机更好的“看”世界的科学。给计算机输入图片,图像等数据,通过各种深度学习等算法的计算,使得计算机可以进行识别、跟踪和测量等功能
一般来说,CV技术主要有如下几个步骤:图像获取、预处理、特征提取、检测/分割和高级处理
计算机视觉技术近些年所取得的突破
计算机视觉技术的一些典型应用场景
自然语言处理技术自然语言处理(NaturalLanguageProcessing)技术是一门通过建立计算机模型、理解和处理自然语言的学科。是指用用计算机对自然语言的形、音、义等信息进行处理并识别的应用,大致包括机器翻译、自动提取文本摘要、文本分类、语音合成、情感分析等。
自然语言处理的技术层次
从2008年开始,自然语言处理技术的发展也是突飞猛进,从最初的词向量到2013年的word2vec,将深度学习与自然语言处理深度结合在一起,并在机器翻译、问答系统,阅读理解等多个方面取得了一定成功。
NLP技术可以分为基础性研究和应用性研究,语音和文本是两个重点方向。各大厂也纷纷入局,并都取得了相当不错的成绩
跨媒体分析推理技术以前的媒体信息处理模型往往是针对单一的媒体数据进行处理分析,比如图像识别、语音识别,文本识别等等,但是现在越来越多的任务需要跨媒体类别分析,即需要综合处理文本、视频,语音等信息。
对于该项技术,业界也取得了非常不错的成绩
智适应学习技术智适应学习技术(IntelligentAdaptiveLearning),是教育领域最具突破性的技术。该技术模拟了老师对学生一对一的教学过程,赋予了学习系统个性化教学的能力。在2020年之后,智适应学习技术得到了快速发展,背后的推动里有强大的计算能力和海量的数据,更重要的还有贝叶斯网络算法的应用。
群体智能技术群体智能(CollectiveIntelligence)也称集体智能,是一种共享的智能,是集结众人的意见进而转化为决策的一种过程,用来对单一个体做出随机性决策的风险。
群体智能的四项原则
群体智能也有很多应用案例
自主无人系统技术自主无人系统是能够通过先进的技术进行操作或管理,而不需要人工干预的系统,可以应用到无人驾驶、无人机、空间机器人,无人车间等领域。
智能芯片技术一般来说,运用了人工智能技术的芯片就可以称为智能芯片,智能芯片可按技术架构、功能和应用场景等维度分成多种类别。
智能芯片分类
脑机接口技术脑机接口(Brain-ComputerInterface)是在人或动物脑与外部设备间建立的直接连接通道。通过单向脑机接口技术,计算机可以接受脑传来的命令,或者发送信号到脑,但不能同时发送和接收信号;而双向脑机接口允许脑和外部设备间的双向信息交换。
脑机接口在各行业中的应用
好了,以上就是今天介绍的人工智能八大关键技术
参考资料:中科院人工智能发展白皮书
人工智能最有前景的六大领域
转载自lhyd.top
人工智能最有前景的六大领域
目前来说,有许多关于人工智能公认定义的争论。有些人认为人工智能就是“认知计算”或是“机器智能”,而另一些人则把它与“机器学**”的概念混淆了。然而,人工智能并不是特指某种技术,它实际上是一个由多门学科组成的广阔领域,包括机器人学和机器学**等。人工智能的终极目标是让机器替代人类去完成需要认知能力的任务。为了实现这一目标,机器必须自动学**掌握能力,而不仅仅是执行程序员编写的命令。
人工智能在过去的十年里取得了令人叹为观止的进步,例如自动驾驶汽车、语音识别和语音合成。在此背景之下,人工智能这一话题越来越多地出现在同事和家人的闲谈之间,人工智能技术已经渗透到他们生活的角角落落。与此同时,流行媒体几乎每天也在报道人工智能和技术巨头们,介绍他们在人工智能领域的长期战略。一些投资者和企业家渴望了解如何从这个新领域挖掘价值,大多数人还是绞尽脑汁思考究竟人工智能会改变什么。此外,各国政府也正在努力应对自动化给社会带来的影响(如奥巴马总统的离职演讲)。
其中,人工智能的六大领域在未来可能对数字产品和数字服务产生重要的影响。作者一一列举了这六个方向,解释了它们的重要性,目前的应用场景,并列举出正在使用的公司和研究机构。
强化学习
强化学**是一种通过实验和错误来学**的方法,它受人类学**新技能的过程启发。在典型的强化学**案例中,代理者通过观察当前所处的状态,进而采取行动使得长期奖励的结果最大化。每执行一次动作,代理者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。在这个过程中,代理者需要平衡根据经验寻找最佳策略和探索新策略两方面,以期实现最终的目标。
Google的DeepMind团队在Atari游戏和围棋对抗中都运用了强化学**的技术。在真实场景中,强化学**有被用来提高Google数据中心的能源利用率。强化学**技术为这套冷却系统节省了约40%的能耗。强化学**有一个非常重要的优势,它的代理者能以低廉的代价模拟生成大量的训练数据。相比有监督的深度学**任务,这个优势非常明显,节省了一大笔人工标注数据的费用。
应用:包括城市道路的自动驾驶;三维环境的导航;多个代理者在同样的环境中交互和学**等
生成模型
不同于用来完成分类和回归任务的判别模型,生成模型从训练样本中学到一个概率分布。通过从高维的分布中采样,生成模型输出与训练样本类似的新样本。这也意味着,若生成模型的训练数据是脸部的图像集,那么训练后得到的模型也能输出类似于脸的合成图片。细节内容可以参考IanGoodfellow的文章。他提出的生成对抗模型(GAN)的结构当下在学术界非常的火热,因为它给无监督学**提供了一种新思路。GAN结构用到了两个神经网络:一个是生成器,它负责将随机输入的噪声数据合成为新的内容(比如合成图片),另一个是判别器,负责学**真实的图片并判断生成器生成的内容是否以假乱真。对抗训练可以被认为是一类游戏,生成器必须反复学**用随机噪音数据合成有意义的内容,直到判别器无法区分合成内容的真伪。这套框架正在被扩展应用到许多数据模式和任务中。
应用:仿真时间序列的特征(例如,在强化学**中规划任务);超分辨率图像;从二维图像复原三维结构;小规模标注数据集的泛化;预测视频的下一帧;生成自然语言的对话内容;艺术风格迁移;语音和音乐的合成
记忆网络
为了让人工智能系统像人类一样能够适应各式各样的环境,它们必须持续不断地掌握新技能,并且记住如何在未来的场景中应用这些技能。传统的神经网络很难掌握一系列的学**任务。这项缺点被科学家们称作是灾难性遗忘。其中的难点在于当一个神经网络针对A任务完成训练之后,若是再训练它解决B任务,则网络模型的权重值不再适用于任务A。
目前,有一些网络结构能够让模型具备不同程度的记忆能力。其中包括长短期记忆网络(一种递归神经网络)可以处理和预测时间序列;DeepMind团队的微神经计算机,它结合了神经网络和记忆系统,以便于从复杂的数据结构中学**;渐进式神经网络,它学**各个独立模型之间的侧向关联,从这些已有的网络模型中提取有用的特征,用来完成新的任务。
应用:训练能够适应新环境的代理者;机器人手臂控制任务;自动驾驶车辆;时间序列预测(如金融市场、视频预测);理解自然语言和预测下文。
微数据学习微模型
一直以来深度学习模型都是需要堆积大量的训练数据才能达到最佳的效果。比如,某只参加ImageNet挑战赛的团队使用了120万张分布于1000个类别的人工标注图像训练模型。离开大规模的训练数据,深度学习模型就不会收敛到最优值,也无法在语音识别、机器翻译等复杂的任务上取得好效果。数据量需求的增长往往发生在用单个神经网络模型处理端到端的情况下,比如输入原始的语音片段,要求输出转换后的文字内容。这个过程与多个网络协同工作各处理一步中间结果不同(比如,原始语音输入→音素→词→文本输出)。如果我们想用人工智能系统解决训练数据稀缺的任务时,希望模型训练用到的样本越少越好。当训练数据集较小时,过拟合、异常值干扰、训练集和测试集分布不一致等问题都会接踵而至。另一种方法是将在其它任务上训练好的模型迁移到新的任务中,这种方法被称为是迁移学习。
一个相关的问题是用更少的模型参数建立更小的深学**架构,而模型的效果却保持最佳。这种技术的优势在于更高效的分布式训练过程,因为训练过程中需要传输的参数减少了,并且能够方便地将模型部署在内存大小受限制的嵌入式硬件上。
应用:训练浅层模型来模拟在大规模的已标注训练数据集上训练得到的深度网络模型;构建效果相当但参数更少的模型结构(如SqueezeNet);机器翻译
学习/推理硬件
促进人工智能发展的催化剂之一就是图形处理器(GPU)的升级,不同于CPU的顺序执行模式,GPU支持大规模的并行架构,可以同时处理多个任务。鉴于神经网络必须用大规模(且高维度)数据集训练,GPU的效率远高于CPU。这就是为什么自从2012年第一个GPU训练的神经网络模型——AlexNet公布之后,GPU已经成为名副其实的淘金铁锹。NVIDIA在2017年继续领跑行业,领先于Intel、Qualcomm、AMD和后起之秀Google。
然而,GPU并非专为模型训练或预测而设计,它原本是用于视频游戏的图像渲染。GPU具有高精度计算的能力,却遭遇内存带宽和数据吞吐量的问题。这为Google之类的大公司和许多小型创业公司开辟了新领域,它们为高维机器学**任务设计和制造处理芯片。芯片设计的改进点包括更大的内存带宽,图计算代替了向量计算(GPU)和矢量计算(CPU),更高的计算密度,更低的能源消耗。这些改进令人感到兴奋,因为最终又反哺到使用者的身上:更快和更有效的模型训练→更好的用户体验→用户更多的使用产品→收集更大的数据集→通过优化模型提高产品的性能。因此,那些训练和部署模型更快的系统占据显著的优势。
应用:模型的快速训练;低能耗预测运算;持续性监听物联网设备;云服务架构;自动驾驶车辆;机器人
仿真环境
正如之前提到,为人工智能系统准备训练数据很具有挑战性。而且,若要将人工智能系统应用到实际生活中,它必须具有适用性。因此,开发数字环境来模拟真实的物理世界和行为将为我们提供测试人工智能系统适应性的机会。这些环境给人工智能系统呈现原始像素,然后根据设定的目标而采取某些行动。在这些模拟环境中的训练可以帮助我们了解人工智能系统的学**原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。
转载自lhyd.top
十大最热门人工智能技术
人工智能(AI)技术市场正在蓬勃发展。除了大肆炒作和媒体的日益关注外,众多初创公司和互联网巨头都在竞相加入进来,企业的投资力度和采用程度随之大幅提升。NarrativeScience公司在去年的一项调查发现,38%的企业已经在使用人工智能技术,到2018年这个比例有望增长到62%。弗雷斯特研究公司预测,2017年人工智能领域的投入将比2016年猛增300%。IDC公司估计,人工智能市场将从2016年的80亿美元,增加到2020年的470亿美元。
“人工智能”是1955年杜撰的一个术语,用来描述计算机科学领域的一个新兴分支学科。如今,人工智能包括一系列广泛的技术和工具,有些久经时间的考验,而另一些还比较新颖。为了帮助了解什么是热门技术、什么不是热门技术,弗雷斯特研究公司刚刚发布了关
于人工智能的TechRadar报告(面向应用软件开发专业人员),该报告详细深入地分析了企业应该考虑采用、以支持人类决策的13种技术。
基于弗雷斯特研究公司的分析结果,本人在下面列出了10种最热门的人工智能技术:
自然语言生成:利用计算机数据生成文本。目前应用于客户服务、报告生成以及总结商业智能洞察力。代表性厂商包括:Attivio、CambridgeSemantics、DigitalReason、Lucidworks、NarrativeScience和SAS。语音识别:将人类语音转录和转换成对计算机应用软件来说有用的格式。目前应用于交互式语音应答系统和移动应用领域。代表性厂商包括:NICE、NuanceCommunications、OpenText和VerintSystems。虚拟代理:弗雷斯特公司声称,“虚拟代理可谓是媒体界目前竞相报道的对象。”从简单的聊天机器人,到可以与人类进行交际的高级系统,不一而足。目前应用于客户服务和支持以及充当智能家居管理器。代表性厂商包括:亚马逊、苹果、ArtificialSolutions、AssistAI、CreativeVirtual、谷歌、IBM、IPsoft、微软和Satisfi。机器学习平台:不仅提供了设计和训练模型,并将模型部署到应用软件、流程及其他机器的计算能力,还提供了算法、应用编程接口(API)、开发工具包和训练工具包。目前应用于一系列广泛的企业应用领域,主要涉及预测或分类。代表性厂商包括:亚马逊、FractalAnalytics、谷歌、H2O.ai、微软、SAS和Skytree。针对人工智能优化的硬件:这是专门设计的图形处理单元(GPU)和设备,其架构旨在高效地运行面向人工智能的计算任务。目前主要在深度学习应用领域发挥作用。代表性厂商包括:Alluviate、克雷、谷歌、IBM、英特尔和英伟达。决策管理:引擎将规则和逻辑嵌入到人工智能系统,并用于初始的设置/训练和日常的维护和调优。这是一项成熟的技术,应用于一系列广泛的企业应用领域,协助或执行自动决策。代表性厂商包括:AdvancedSystemsConcepts、Informatica、Maana、Pegasystems和UiPat。深度学习平台:一种特殊类型的机器学习,包括拥有多个抽象层的人工神经网络。目前主要应用于由很庞大的数据集支持的模式识别和分类应用领域。代表性厂商包括:DeepInstinct、ErsatzLabs、FluidAI、MathWorks、Peltarion、SaffronTechnology和SentientTechnologies。
生物特征识别技术:能够支持人类与机器之间更自然的交互,包括但不限于图像和触摸识别、语音和身体语言。目前主要应用于市场研究。代表性厂商包括:3VR、Affectiva、Agnitio、FaceFirst、Sensory、Synqera和Tahzoo。机器人流程自动化:使用脚本及其他方法,实现人类操作自动化,从而支持高效的业务流程。目前应用于人类执行任务或流程成本太高或效率太低的地方。代表性厂商包括:AdvancedSystemsConcepts、AutomationAnywhere、BluePrism、UiPath和WorkFusion。文本分析和NLP:自然语言处理(NLP)使用和支持文本分析,为此它借助统计方法和没有明确的商业理由
42%
不清楚人工智能可以用在什么地方
39%
缺乏所需的技能
33%
首先需要投入资金,以更新改造数据管理平台
29%
没有相应预算
23%
对于实施人工智能系统需要什么心里没底
19%
人工智能系统并没有得到验证
14%
没有合适的流程或治理
13%
人工智能尽是炒作,还没有落地
11%
自己没有所需的数据,或无法访问所需的数据
8%
不清楚人工智能是什么意思
3%
机器学习方法,为理解句子结构及意义、情感和意图提供方便。目前应用于欺诈检测
和安全、一系列广泛的自动化助理以及挖掘非结构化数据等领域。代表性厂商包括:BasisTechnology、Coveo、ExpertSystem、Indico、Knime、Lexalytics、Linguamatics、Mindbreeze、Sinequa、Stratifyd和Synapsify。
当然,如今公司企业可以从人工智能技术获得诸多好处,不过据弗雷斯特研究公司在去年进行的一项调查显示,采用人工智能方面也面临一些障碍,未打算投入于人工智能的公司表达了这些顾虑:
弗雷斯特研究公司得出结论,一旦企业克服了上述障碍,它们势必会得益于人工智能在面向客户的应用环境下加快转型,并编织成一个高度互联的企业信息网络。
人工智能技术应用的领域主要有哪些
随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?
什么是人工智能?人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。
##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
1、深度学习深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。
深度学习的技术原理:
1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;
2、计算机视觉计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……
计算机视觉的技术原理:
计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
3、语音识别语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。
语音识别技术原理:
1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;
4、虚拟个人助理说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。
虚拟个人助理技术原理:(以Siri为例)
1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。
5、语言处理自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。
语言处理技术原理:
1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;
6、智能机器人智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
智能机器人技术原理:
人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。
智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。
Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。
关于人工智能的展望除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。
当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。
转自:http://www.arduino.cn/thread-45848-1-1.html
人工智能涉及的领域和技术有哪些方面
人工智能(计算机科学的一个分支)主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
人工智能上世纪的发展情况
从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。20世纪80年代Newell等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《SocietyofMind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的。
人工智能的技术应用领域
目前,人工智能在我国及欧美国家都属于热门的话题。我国更是有不少公司的产品动则加上“智能”2字。除了目前最热的机器学习,人工智能方向还有不少的技术应用,下面就简要介绍人工智能的技术应用领域。
主体技术
主体技术(agenttechnology)不仅是分布智能的研究热点,而且可能成为下一代软件开发的重要突破点。事实上,对主体的研究已经成为人工智能学科的核心内容,有人认为是人工智能研究的初始目标和最终目标
主体(agent)也叫智能体,代理,或智能agent。在本书中将agent统一采用主体。在计算机和人工智能领域中,主体可以看作是一个自动执行的实体,它通过传感器感知环境,通过效应器作用于环境。若主体是人,则传感器有眼睛、耳朵和其它器官,手、腿、嘴和身体的其它部分是效应器。若主体是机器人,摄像机等是传感器,各种运动部件是效应器。
机器学习
学习能力是人类智能的根本特征,人类通过学习来提高和改进自己的能力。学习的基本机制是设法把在一种情况下是成功的表现行为转移到另一类似的新情况中去。1983年西蒙(H.Simon)对学习定义如下:能够让系统在执行同一任务或同类的另外一个任务时比前一次执行得更好的任何改变[119]。这个定义虽然简洁,却指出了设计学习程序要注意的问题。学习包括对经验的泛化:不仅是重复同一任务,而且是域中相似的任务都要执行得更好。因为感兴趣的领域可能很大,学习者通常只研究所有可能例子中的一小部分;从有限的经验中,学习者必须能够泛化并对域中未见的数据正确的推广。这是个归纳的问题,这是学习的中心问题。在大多数学习问题中,不管用哪种算法,能用的数据不足以保证最优的泛化。学习者必须启发式的泛化,也就是说,他们必须选取经验中对未来更为有效的部分。这样的选择标准就是归纳偏置。
从事专家系统研究的人们认为,学习就是知识获取。因为在专家系统的建造中,知识的自动获取是很困难的。所以知识获取似乎就是学习的本质。也有的观点认为,学习是对客观经验表示的构造或修改。客观经验包括对外界事物的感受,以及内部的思考过程,学习系统就是通过这种感受和内部的思考过程来获取对客观世界的认识。其核心问题就是对这种客观经验的表示形式进行构造或修改。从认识论的观点看,学习是事物规律的发现过程。这种观点将学习看做从感性知识到理性知识的认识过程,从表层知识到深层知识的范化过程,也就是说,学习是发现事物规律,上升形成理论的过程。
总结以上观点,可以认为学习是一个有特定目的的知识获取过程,通过获取知识、积累经验、发现规律,使系统性能得到改进、系统实现自我完善、自适应环境。
自动推理
从一个或几个已知的判断(前提)逻辑地推论出一个新的判断(结论)的思维形式称为推理, 这是事物的客观联系在意识中的反映。人解决问题就是利用以往的知识, 通过推理得出结论。自动推理的理论和技术是程序推导、程序正确性证明、专家系统、智能机器人等研究领域的重要基础。
自动推理早期的工作主要集中在机器定理证明。机械定理证明的中心问题是寻找判定公式是否是有效的(或是不一致的)通用程序。对命题逻辑公式,由于解释的个数是有限的,总可以建立一个通用判定程序,使得在有限时间内判定出一个公式是有效的或是无效的。
从实际的观点来看, 每一种推理算法都遵循其特殊的、与领域相关的策略,并倾向于使用不同的知识表示技术。从另一方面来说,如果能找到一个统一的推理理论,当然是很有用的。人工智能理论研究的一个很强的推动力就是要设法寻找更为一般的、统一的推理算法。
数据挖掘
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。
数据挖掘可粗略地理解为三部曲:数据准备(datapreparation)、数据挖掘,以及结果的解释评估(interpretationandevaluation)。
由于数据挖掘是一门受到来自各种不同领域的研究者关注的交叉性学科,因此导致了很多不同的术语名称。其中,最常用的术语是"知识发现"和"数据挖掘"。相对来讲,数据挖掘主要流行于统计界(最早出现于统计文献中)、数据分析、数据库和管理信息系统界;而知识发现则主要流行于人工智能和机器学习界。
本体知识系统
20世纪70年代后期,专家系统、知识系统和知识密集型的信息系统的构建技术发展而形成知识工程,所建立的系统简称为知识系统(knowledge-basedsystems)。知识系统是人工智能学科最重要的工业化和商业化产物。知识系统用于辅助人们进行问题求解,如检测信用卡诈骗、加速船舶设计、辅助医疗诊断、使科学软件更加智能化、向全体决策人员提供金融服务、产品质量的评价和广告宣传、支持电子网络的服务恢复。
知识工程
1977年美国斯坦福大学计算机科学家费根鲍姆教授(B.A.Feigenbaum)在第五届国际人工智能会议—提出知识工程的新概念。他认为,“知识工程是人工智能的原理和方法,对那些需要专家知识才能解决的应用难题提供求解的手段。恰当运用专家知识的获取、表达和推理过程的构成与解释,是设计基于知识的系统的重要技术问题。”这类以知识为基础的系统,就是通过智能软件而建立的专家系统。
知识工程可以看成是人工智能在知识信息处理方面的发展,研究如何由计算机表示知识,进行问题的自动求解。知识工程的研究使人工智能的研究从理论转向应用,从基于推理的模型转向基于知识的模型,包括了整个知识信息处理的研究,知识工程已成为一门新兴的边缘学科。
专家系统
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即:
专家系统=知识库+推理机
它把知识从系统中与其他部分分离开来。专家系统强调的是知识而不是方法。很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-BasedSystems)。一般说来,一个专家系统应该具备以下三个要素:
(1)具备某个应用领域的专家级知识;
(2)能模拟专家的思维;
(3)能达到专家级的解题水平。
语义Web服务
语义Web是由WWW的创始人TimBerners-Lee在2001年正式提出的,它是对万维网本质的变革,它的主要任务是使数据能被计算机自动的处理和理解,其最终目标是让计算机可以在这些海量信息中找到人所需要的任何信息,从而将万维网中现存的信息发展成一个巨大的全球信息库、知识库。它研究的主要目的就是扩展当前的万维网,使得网络中的信息具有语义,能够被计算机理解,便于人和计算机之间的交互与合作,其研究重点就是如何把信息表示为计算机能够理解和处理的形式,即带有语义。TimBerners-Lee给出了语义Web中的层次结构关系,它主要基于XML和RDF/RDFS,并在此之上构建本体和逻辑推理规则,以完成基于语义的知识表示和推理,从而能够为计算机所理解和处理。
Web服务是当前最主要的一种服务实现技术,它为上述服务概念的落实提供了使能手段。Web服务最初是由Ariba、IBM和Microsoft等共同提出的,旨在为Internet上跨越不同地域、不同行业的应用提供更强大的互操作能力。Web服务是一种软件系统,被设计用于实现机器之间通过网络的互操作。Web服务拥有极其可处理的接口描述,外部系统可依据这个描述,通过SOAP消息与其交互。
语义网格
网格是一种新兴的技术,正处在不断发展和变化当中。简单地说,网格是一种信息社会的网络基础设施,是利用互联网把分散在不同地理位置上的多个资源,包括计算资源、存储资源、通信资源、软件资源、信息资源、知识资源等全面连通和统一分配、管理及协调起来,通过逻辑关系组成一台“虚拟的超级计算机”。这台机器把每一台参与其中的、包括个人电脑在内的计算机都作为自己的一个“节点”,成千上万个这样的“节点”并联起来,就组成了“一张有超级计算能力的网格”。而每一位将自己的计算机连接到网格上的用户,也就“拥有了”这架超级计算机,可以随时随地调用其中的计算和信息资源,在获得一体化信息服务的同时,最大程度地实现资源共享。网格计算模式首先把要计算的数据分割,然后不同节点的计算机可以根据自己的处理能力下载一个或多个数据片断。只要位于某个节点的计算机的用户不使用计算机时,就会调动闲置的计算能力。网格的优势在于不但数据处理能力超强,而且能充分利用网上的闲置处理能力来节约计算成本,实现资源的共享,消除资源孤岛。
网格计算技术首先出现在科研领域的大型科学计算和项目研究中,医药、制造、气象、勘探等需要大型计算机功能的行业将首批成为这一技术的受益者,随着连接到网格系统上的计算资源的增加,网格计算技术也会造福于小企业和消费者,家庭PC用户也将能够用上公、私机构提供的更快、更廉价的服务,到那时任何设备可以在任何地方接入以享用某种层次的资源,而不必关心这些资源是从那里来的,就像用现在的电网一样。
神经网络
神经网络在文献中也称为人工神经网络、神经计算,连接主义人工智能,并行分布处理等。一个神经网络是一个由简单处理元构成的规模宏大的并行分布处理器,具有存储经验知识和使之可用的特性。神经网络从两个方面上模拟大脑。
(1)神经网络获取的知识是从外界环境中学习得来的。
(2)内部神经元的连接强度,即突触权值,用于储存获取的知识。
用于完成学习过程的程序称为学习算法,其功能是以有序的方式改变系统权值以获得想要的设计目标。突触权值修改提供神经网络设计的传统方法。这种方法和线性自适应滤波器理论很接近,滤波器理论已经很好地建立起来并成功应用在很多不同领域。但是神经网络修改它的拓扑结构亦是可能的,这也和人的神经元会死亡和新的突触连接会建立等情况相适应。
决策支持系统
长期来信息系统的研究者以及技术人员不断研究和构建决策支持系统(DSS)。DSS的大致发展历程是:60年代后期,面向模型的DSS的诞生,标志着决策支持系统这门学科的开端;70年代,DSS的理论得到长足发展;80年代前期和中期,实现了金融规划系统以及群体决策支持系统(GroupDSS)。80年代中期,通过将DDS与知识系统相结合,我们提出并实现了智能决策支持系统(IDSS)(参考:史忠植:知识工程)。文献表明,在那以后开始出现了主管信息系统,联机分析处理(OLAP)以及商业智能。90年代中期,发展基于Web的DSS成为了活跃的研究领域,并产生了广泛的影响。
人工生命
人工生命是指用计算机和精密机械等生成或构造表现自然生命系统行为特点的仿真系统或模型系统。自然生命系统的行为特点表现为自组织、自修复、自复制的基本性质,以及形成这些性质的混沌动力学、环境适应和进化。
美国圣菲研究所非线性研究组的兰顿(C.G.Langton)于1987年提出人工生命(artificiallife)[61]。人工生命的独立研究领域的地位已被国际学术界所承认。在1994年创刊并在世界著名学府麻省理工学院出版的国际刊物ArtificialLife,是该研究领域内的权威刊物。
为什么要研究人工生命?在这一领域研究时要支持哪些东西。从控制我们的生态环境的工程新应用到在自然界中为我们提供较好的前景这个广阔的范围,都可以找到它的应用。人工生命的研究可使我们更好地理解涌现特征,个体在低级组织中的集合,通过我们的相互作用,常可产生特征。该特征不仅仅是个体的重叠,而且是总体上新的出现特征。这样的现象可见于自然界的所有领域,但在生命系统中更为明显。生命本身确实有涌现性质,当总体分解为它们的组成部分时,相互作用所产生的涌现性质将全部消失。归约科学,它的研究方法今天看来是最严肃的学术研究,其中大部分是分析的方法。归约科学在各个领域都已取得很大成功。但自然的很多特性都被忽略,这并不是因为这些特性是无趣的或不重要的,相反,人们研究这些特性,但缺乏适当的工具和有效的方法来研究,人工生命领域的研究必须是综合的,把所有的因素综合考虑以创造生命形式,而不是肢解。
自然语言理解
自然语言是指人类语言集团的本族语,如汉语、英语等,它是相对于人造语言而言的,如C语言、JAVA语言等计算机语言。语言是思维的载体,是人际交流的工具,人类历史上以语言文字形式记载和流传的知识占到知识总量的80%以上。就计算机应用而言,有85%左右的应用都是用于语言文字的信息处理。在信息化社会中,语言信息处理的技术水平和每年所处理的信息总量已成为衡量一个国家现代化水平的重要标志之一。
自然语言理解作为语言信息处理技术的一个高层次的重要研究方向,一直是人工智能领域的核心课题,也是困难问题之一,由于自然语言的多义性、上下文有关性、模糊性、非系统性和环境密切相关性、涉及的知识面广等原因,使得很多系统不得不采取回避的方法;另外,由于理解并非一个绝对的概念,它与所应用的目标相关,如是用于回答问题、执行命令,还是用于机器翻译。因此,关于自然语言理解,至今尚无一致的、各方可以接受的定义。从微观上讲,自然语言理解是指从自然语言到机器内部的一个映射;从宏观上看,自然语言是指机器能够执行人类所期望的某些语言功能。这些功能包括:
回答问题:计算机能正确地回答用自然语言输入的有关问题;
文摘生成:机器能产生输入文本的摘要;
释义:机器能用不同的词语和句型来复述输入的自然语言信息;
翻译:机器能把一种语言翻译成另外一种语言。
图像处理
图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(ComputerTomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。
信息检索
信息检索(InformationRetrieval),通常指文本信息检索,包括信息的存储、组织、表现、查询、存取等各个方面,其核心为文本信息的索引和检索。从历史上看,信息检索经历了手工检索、计算机检索到目前网络化、智能化检索等多个发展阶段。信息检索的对象从相对封闭、稳定一致、由独立数据库集中管理的信息内容扩展到开放、动态、更新快、分布广泛、管理松散的Web内容;信息检索的用户也由原来的情报专业人员扩展到包括商务人员、管理人员、教师学生、各专业人士等在内的普通大众,他们对信息检索从结果到方式提出了更高、更多样化的要求。适应网络化、智能化以及个性化的需要是目前信息检索技术发展的新趋势。
模式识别
模式识别(PatternRecognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物的传感器等对象进行测量的具体模式进行分类和辨识。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行鉴别和分类。所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。