博舍

人工智能会取代人类吗 人工智能可能完全取代人类吗,为什么这么可怕

人工智能会取代人类吗

会这样吗?蔡华伟绘

不久前,在中国乌镇围棋峰会上,人工智能程序“阿尔法狗”与排名世界第一的中国围棋职业九段棋手柯洁对战,以3∶0的总比分大获全胜。在此之前,它曾经以4∶1的总比分击败过同为围棋世界冠军的韩国职业九段棋手李世石,并在中国棋类网站上以“大师”为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。两年来,“阿尔法狗”横扫中日韩围棋棋坛,并且每次表现都堪称完美。

一直以来,就有人工智能的发展会威胁到人类生存的观点,而“阿尔法狗”能在典型的反映人类智慧的围棋比赛中屡屡打败人类,更是加重了一些人的担忧。

那么,人工智能对人们工作、生活的直接影响到底有多大?它具备了人的部分能力,甚至比人类做得更好,未来会不会和人类抢“饭碗”,甚至对我们产生威胁?

具有不可

比拟的优势

未来人工智能可在金融投资、医疗诊断、企业经营、军事指挥等方面进行高水平的预测和决策

人工智能会取代人类吗?应当说,这种担忧也有一定道理。

近年来,人工智能各方面的发展都在逐渐完善,应用也越来越多,并且在很多方面的表现都超越了人类。

比如,2015年9月,腾讯财经推出了自动化新闻写作机器人。它能根据算法在第一时间自动生成稿件,瞬时输出分析和研判,一分钟内就能将重要资讯和解读送达用户。

还有,备受关注的微软小冰,作为一个虚拟伴侣型机器人,它能够模拟人的语气与人对话,聊天时让人感觉这就是一个活生生的人而并非机器。

此外,据外媒报道,摩根大通已经开发出一款金融合同解析软件,原来律师和信贷人员每年需要36万小时才能完成的工作,该软件只需几秒就能完成,且错误率大大降低。

青岛智能产业研究院智慧教育研究所副所长刘希未说:“在问题求解方面,人工智能程序已经能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。在无人驾驶方面,人工智能已经可以实现长距离复杂路况下的自主驾驶。”

“未来在认知层次,人工智能还将会有广阔应用空间,例如人工智能可在金融投资、医疗诊断、企业经营、军事指挥等方面进行高水平的预测和决策。”中国科学院自动化研究所研究员孙哲南说。

而著名物理学家史蒂芬・霍金则认为人工智能给人类社会带来的冲击将更为巨大。2016年底,他在英国《卫报》发表文章预言说:“工厂的自动化已经让众多传统制造业工人失业,人工智能的兴起很有可能会让失业潮波及中产阶级,最后只给人类留下护理、创造和监管等工作。”

这样的判断还有待未来验证,不过,相比人类智慧,人工智能的确有着不可比拟的优势。

刘希未说:“和人脑相比,人工智能算法应对数值和符号计算更加精确快速,稳定可靠。特别是对于有确定规则的计算问题,人工智能可以远远超出人脑的计算速度,也更容易找到最优的解答。比如,在数值计算,图形、语音、生物特征、行为姿态等方面的识别,甚至更加复杂的预测推理任务方面,人工智能都有超越人脑的优秀表现。”

不会取代

甚至威胁人类

人工智能不具备感性思维,无法跨越到意识领域

那么,人工智能真的会因此而取代人类本身,甚至对我们产生威胁吗?记者采访的几位专家都给出了否定的答案。

首先,专家们认为,当前的计算机架构和编程模式具有本质上的劣势,使得人工智能无法实现与人脑情感、意志、心态、情绪、经验等方面的自然交互。本质上,人工智能仅仅是物质世界范畴的概念,无法跨越到意识领域。

1981年荣获诺贝尔生理学奖的罗杰・斯佩里博士曾发布著名的“左右脑分工理论”,认为人脑的左右半球有着不同分工:左半脑擅长分析、逻辑、演绎、推理等理性抽象思维;右半脑擅长直觉、情感、艺术、灵感等感性形象思维。迄今为止,人工智能的所有智能化表现仅仅在模仿人类左半脑的理性思维模式,而完全不具备右半脑的感性思维。

“也就是说,目前的人工智能技术还很难应对具有显著人类主观意识影响的社会文化和意识领域的各类问题,而人脑却可以通过长期在复杂社会环境下的学习成长轻松应对这类问题。”刘希未说。

他进一步举例说,比如人工智能至今也还没有创作出真正具有人性境界的作品。“电脑与人脑,毕竟有着机械性与生命灵性的本质区别,因此,电脑创作与人脑创作之间尚存在着难以逾越的鸿沟。个性化是人类文学艺术创作的生命,而已有电脑创作系统尚无个性可言,只不过是对已有的艺术作品的模仿、复制与重组。”

那么,随着人工智能的不断发展完善,将来是否有可能实现这种自发的情感智能呢?

“情感智能化分成两个层面,一个是让机器本身具有情感,另外一个是让机器理解人的情感,两者是不一样的”,中国科学院自动化研究所研究员易建强说,“让机器去理解人的情感,这件事是有可能做到的。目前有一部分机器人系统能够做到部分理解场景、环境及对话内容,并根据其结果做出相应的反应或者表情。但要机器人或人工智能系统完全达到人类的水平,有自发的情感和创造性,那是很难实现的,或者说不可能实现。”

中国自动化协会副理事长、秘书长王飞跃对此表示认同,“我个人认为100年内无法实现,或许永远不可能实现,除非重新定义什么是人的情感、理解、推理等等。原因很简单,人们现在都还不清楚这些情感的内涵、产生的过程及其方式。”

将成为人类

发展的加速器

人工智能的确会对人类就业造成一定冲击,但人类的工作不会消失,而是转变为新的形式

科学家们还认为,人工智能技术只是人类智慧创造的一种新型工具,它有助于人类更快做出突破,提高我们应对那些亟待解决的全球性难题的能力。

“我们需要人工智能这个强大的工具来帮助处理复杂问题,预测未知,支持我们实现以往不可能的目标。”王飞跃说。

专家们表示,很多划时代的科技成果必然引发人们生活方式的改变,短期内很可能难以被接受,但若放眼历史长河,就会发现,所有重大的科技革命无一例外地都最终成为人类发展的加速器,同时也是人类生活品质提高的根本保障。

“人工智能技术的出现也同样如此,它的确会对人类的就业造成一定冲击。比如,人工智能更适合处理简单重复、规则确定或者通过案例学习可以找到有效处理规则的问题。像安检、看病理切片和监控视频审核等交给人工智能更为高效可靠,这些工种也因此比较容易受到冲击和替代。”不过,易建强表示,不必因此就担心它会彻底取代人类。“以第一次工业革命为例,它不仅仅是让人类的既有工作被取代,同时会制造出足够多的新的就业机会。大多数情况下,工作不是消失了,而是转变为新的形式。”

易建强说,马车被汽车取代就是一个非常典型的例子。当年,汽车开始进入大城市并逐渐普及的过程中,曾经在数百年的时间里充当出行工具的马车,面临着“下岗”威胁。但后来的事实证明,新兴起的汽车行业拥有比传统马车行业多出数千倍甚至数万倍的产值和工作机会。

“现阶段,在一个真正实现人工智能的工作场景中,传统劳动者也并未被‘下岗’,只是改变了角色而已。仍然需要人类对人工智能的表现进行监控,进行情报采集与分析,以及开展预测性的实验与评估,引导性的过程管理与控制。”王飞跃说,“我相信将来人类90%以上的工作是由人工智能提供的,就像今天我们大多数的工作是由计算机和各种其它机器提供的一样。”

《人民日报》(2017年07月07日20版)

(责编:易潇、沈光倩)

分享让更多人看到

生成式人工智能迎来大爆发,人类真的要失业了吗

去年夏天以来,以ChatGPT为代表的“生成式”人工智能系统接连问世,人们惊艳于它们的智能程度,但也对其未来发展产生担忧。这样的系统可以按需求生产内容,不仅威胁到人们的工作,还可能造成错误信息的激增。

StableDiffusion根据提示自动生成的画作,真假难辨。图源:https://stablediffusionweb.com/

就在10多年前,三位人工智能研究人员取得了一项突破,永远地改变了这个领域。

“AlexNet”系统通过从网上采集的120万张图像进行训练,识别出了从集装箱船到豹子等不同物体,其准确性远远高于以往的计算机。

这一壮举帮助开发人员阿莱克斯·克里泽夫斯基(AlexKrizhevsky)、伊利娅·苏茨克维(IlyaSutskever)和杰弗里·辛顿(GeoffreyHinton)赢得了名为ImageNet的年度神秘竞赛。它还展示了机器学习的潜力,并在科技界引发了一场将人工智能带入主流的竞赛。

从那时起,计算机的人工智能时代基本上在幕后形成。机器学习是一项涉及计算机从数据中学习的基础技术,已普遍应用于识别信用卡欺诈、提高在线内容和广告相关性等领域。如果说从那时起机器人就开始抢走人们的工作,那基本上也是在我们看不到的地方发生的。

现在不是了。人工智能领域的另一项突破刚刚撼动了科技界。这一次,机器在众目睽睽之下运行,它们可能终于准备好取代数百万的工作岗位了。

一个11月底发布的查询和文本生成系统ChatGPT,以一种科幻小说领域之外很少见到的方式闯入了公众的视线。它由总部位于旧金山的研究公司OpenAI创建,是新一波所谓的“生成式”人工智能系统中最引人注目的一种,这种系统可以根据要求生成内容。

如果你在ChatGPT中键入一个查询,它将以一段简短的段落作为响应,列出答案和一些上下文内容。例如,你问它谁赢得了2020年美国总统大选,它会列出结果,并告诉你乔·拜登何时就职。

ChatGPT界面。

ChatGPT使用简单,能够在瞬间得出看起来像人类生成的结果,有望将人工智能推入日常生活。微软向OpenAI(由AlexNet创始人苏茨克维联合创立)投资数十亿美元的消息,几乎证实了这项技术将在下一阶段的人工智能革命中发挥核心作用。

ChatGPT是一系列日益引人注目的人工智能公众展示的最新例子。另一个OpenAI系统,自动书写系统GPT-3,在2020年年中发布时震惊了科技界。其他公司的所谓大型语言模型紧随其后,去年扩展到图像生成系统,如OpenAI的Dall-E2、来自StabilityAI的开源StableDiffusion和Midjourney。

这些突破引发了人们争相寻找这项技术的新应用。数据平台ScaleAI首席执行官亚历山大·王(AlexandrWang)将其称为“应用案例的寒武纪大爆发”,将其比作现代动物生命开始繁荣的史前时刻。

如果计算机可以编写和创建图像,那么在正确的数据训练下,还有什么是它们无法生成的吗?谷歌已经展示了两个实验系统,可以根据简单的线索生成视频,还有一个可以回答数学问题。StabilityAI等公司已将这项技术应用于音乐。

这项技术还可以用于向软件开发人员建议新的代码行,甚至整个程序。制药公司梦想着用它以更有针对性的方式合成新药。生物技术公司Absci本月表示,已经利用人工智能设计出了新的抗体,可以将一种药物进入临床试验所需的大约四年时间缩短两年多。

但随着科技行业竞相将这项新技术强加给全球受众,人们需要考虑潜在的深远社会影响。

例如,让ChatGPT以12岁孩子的风格写一篇关于滑铁卢战役的文章,你就能让一个小学生的家庭作业手到擒来。更严重的是,人工智能有可能被故意用来产生大量错误信息,还可能会自动取代大量工作,远远超出最容易躺枪的创造性工作。

微软人工智能平台主管埃里克•博伊德(EricBoyd)表示:“这些模型将改变人与电脑互动的方式。它们将以一种前所未有的方式理解你的意图,并将其转化为计算机行为”。因此,他补充说,这将成为一项基础技术,“涉及几乎所有现有的东西”。

可靠性问题

生成式人工智能的倡导者表示,这些系统可以提高工人的生产力和创造力。微软称,公司旗下GitHub部门的软件开发人员,已经使用一个代码生成系统生成了40%的代码。

谷歌研究科技对社会影响的高级副总裁詹姆斯•马尼卡(JamesManyika)表示,对于任何需要在工作中提出新想法的人来说,这类系统的输出可以“解锁思维”。它们内置在日常软件工具中,可以提出想法、检查工作,甚至生成大量内容。

然而,尽管生成式人工智能易于使用,并有可能颠覆很大一部分科技领域,但对构建这项技术并试图在实践中应用的公司,以及许多可能在不久之后在工作或个人生活中遇到这项技术的人,都构成了深刻的挑战。

最重要的是可靠性问题。计算机可能会给出听起来可信的答案,但人们不可能完全相信它们说的任何话。其通过研究大量数据,根据概率假设做出最佳猜测,却不能真正明白它产生的结果。

圣菲研究所教授梅兰妮·米切尔(MelanieMitchell)表示:“它们对一次谈话之外的事情一无所知,无法了解你,也不知道词语在现实世界中意味着什么。”它们只是针对线索,产生大量听起来有说服力的答案,是聪明但无脑的模仿者,无法保证它们的输出不只是数字幻觉。

已经有事实展示,这项技术如何产生看起来有模有样但实际不可信的结果。

例如,去年年底,Facebook母公司Meta展示了一个名为Galactica的生成系统,它是根据学术论文进行训练的。人们很快发现,这个系统会根据要求发布乍一看可信但实际上是虚假的研究,导致Facebook在几天后撤回了系统。

ChatGPT的创建者也承认其有缺点。OpenAI表示,系统有时会给出“无意义”的答案,因为在训练人工智能时,“目前没有真相来源”。OpenAI补充说,使用人类直接训练它,而不是让它自己学习(这一种被称为“监督学习的方法”,可以由训练资料中学到或创建一个模式,并依此模式推测新的实例)并不奏效,因为系统通常比人类这个老师更善于找到“理想答案”。

一种潜在的解决方案是在生成系统的结果发布之前提交合理性检查检查。马尼卡说,谷歌的实验性LaMDA系统于2021年宣布,对每个线索提出了大约20种不同的响应,然后评估每种响应的“安全性、毒性和合理性”。“我们打电话去检验,看看这是真的吗?”

然而,斯坦福大学计算机科学副教授珀西·梁(PercyLiang)表示,任何依赖人类来验证人工智能输出结果的系统都存在问题。他说,这可能会教会人工智能如何“生成具有欺骗性但看上去可信的东西,实际上可以愚弄人类”。“事实是,真相难以捕捉,而人类并不擅长于此,这可能令人担忧。”

PhotobyArsenyTogulevonUnsplash

而这项技术的支持者说,有一些实用的方法可以使用它,而不必试图回答这些更深层次的哲学问题。微软联合创始人保罗•艾伦(PaulAllen)创立的人工智能研究所A12的顾问兼董事会成员奥伦•埃齐奥尼(OrenEtzioni)表示,就像互联网搜索引擎既能提供有用的结果,也能提供错误的信息一样,人们将设法最大限度地利用这些系统。

他说:“我认为消费者只会学会使用这些工具来造福自己。我只是希望这不会让孩子们在学校作弊。”

但让人类去猜测机器生成的结果是否准确,可能并不总是正确的答案。研究人工智能应用的科技行业组织“人工智能伙伴关系”首席执行官丽贝卡•芬利(RebeccaFinlay)表示,在专业环境中使用机器学习系统已经表明,人们“过度相信人工智能系统和模型得出的预测”。

她补充说,问题在于,“当我们与这些模型互动时,人们会将结果对于人类有何意义的不同方面灌输给它们”,这意味着他们忘记了系统并没有真正“理解”他们所说的话。

这些信任和可靠性问题,为不良行为者滥用人工智能提供了可能。对于任何故意试图误导的人来说,这些机器可能成为虚假信息工厂,能够生产大量内容,淹没社交媒体和其他渠道。在正确的例子训练下,它们可能还会模仿特定人物的写作风格或说话声音。

埃齐奥尼说:“制造虚假内容将非常容易、廉价和普遍。”

StabilityAI负责人伊马德•穆斯塔克(EmadMostaque)表示,这是人工智能普遍存在的一个固有问题。他说:“这是一种人们可以道德或不道德地、合法或非法地、符合伦理地或不符合地使用的工具。坏人已经拥有了先进的人工智能。”

他声称,唯一的防御措施就是尽可能大规模地推广这项技术,并向所有人开放。

这在人工智能专家中是一个有争议的解决方案,他们中的许多人主张限制对底层技术的使用。微软的博伊德表示,其“与我们的客户合作,了解他们的用例,以确保人工智能在这种情况下真的是一个负责任的用途。”

他补充说,微软还会努力防止人们“试图欺骗模型,做一些我们真的不想看到的事情”。微软为其客户提供工具,扫描人工智能系统的输出,以查找他们想要阻止的冒犯性内容或特定术语。

微软此前经历了惨痛的教训,认识到聊天机器人可能会失控:聊天机器人Tay在发表种族主义和其他煽动性言论后,不得不在2016年被匆忙召回。

在某种程度上,技术本身可能有助于控制新人工智能系统的滥用。例如,马尼卡表示,谷歌已经开发了一种语言系统,可以以99%的准确率检测出语音是否为合成。他补充说,谷歌的任何研究模型都不会生成真人的图像,从而限制了所谓深度造假的可能性。

人类的工作面临威胁

生成式人工智能的兴起,也引发了关于人工智能和自动化对就业影响的又一轮争论,这已经是一个老生常谈的话题。机器会取代工人吗?或者,通过接管重复性工作,它们会提高现有工人的生产力,并增加他们的成就感吗?

最明显的是,涉及大量设计或写作元素的工作面临风险。当StableDiffusion在去年夏末问世时,它对即时图像与提示相匹配的承诺,让商业艺术和设计界不寒而栗。

一些科技公司已经在尝试将这项技术应用于广告,其中就包括ScaleAI,其已经在广告图像方面训练了一个人工智能模型。王说,借助这个工具,小零售商和品牌可以得到专业的包装图像,而此前为产品拍摄此类图像价格高昂,他们无法负担。

Dall-E2解释生成原理的视频截图

这可能会威胁到内容创造者的生计。穆斯塔克说:“它彻底改变了整个媒体行业。世界上每一个主要的内容提供商之前都以为他们需要一个元宇宙策略:他们需要的是一个媒体生成策略。”

据一些面临失业的人说,这不仅仅事关生计。当歌手兼词曲作者尼克·凯夫看到ChatGPT写的听起来像他自己作品的歌曲时,他惊呆了。他在网上写道:“歌曲产生于痛苦,我的意思是,它们是基于人类复杂的、内在的创作斗争过程,而据我所知,算法是没有感觉的。数据没有感知。”

对科技持乐观态度的人相信,科技会放大而不是取代人类的创造力。斯坦福大学的梁说,有了人工智能图像生成器,设计师可以变得“更有野心”。“你可以创建完整的视频或全新的系列,而不仅仅是创建单个图像。”

版权制度最终可能发挥重要作用。应用这项技术的一些公司声称,出于“合理使用”,它们可以自由地使用所有可用数据来训练自己的系统。“合理使用”是美国的一项法律例外,允许有限度地使用受版权保护的材料。

其他人不同意这个说法。盖帝图像和三名艺术家上周在美国和英国对StabilityAI和其他公司提起诉讼,指控这些人工智能公司肆意使用受版权保护的图像来训练其系统,这是这一领域首个法律诉讼。

一名代表两家人工智能公司的律师表示,这个领域的所有人都已准备好应对诉讼,这是为这个行业制定基本规则不可避免的一步。对科技行业而言,围绕数据在训练人工智能方面作用的争论,可能会变得与智能手机时代初期的专利战一样重要。

最终,为人工智能新时代设定条款的将是法院,甚至是立法者,如果他们认为这项技术打破了现有版权法所基于的旧假设的话。

在那之前,随着计算机竞相吸收世界上更多的数据,生成式人工智能领域迎来了自由狩猎的季节。

原标题:《生成式人工智能迎来大爆发,人类真的要纷纷失业了吗?》

阅读原文

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇