博舍

人工智能的常用十种算法 人工智能最主流的算法有哪些呢图片

人工智能的常用十种算法

导读:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

小编有以下的学习视频资料,有需要的可以扫码加我哦~人工智能题库,大厂面试题学习大纲自学课程大纲还有200GAI资料大礼包免费送哦~

这是小编发布的人工智能必备数学基础人工智能必备数学基础(二)/微积分、泰勒公式与拉格朗日乘子法_Java_rich的博客-CSDN博客

人工智能必备数学基础(一)_Java_rich的博客-CSDN博客

1、决策树

根据一些feature(特征)进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

 2、随机森林

随机森林是集成学习的一个子类,它依靠于决策树的投票选择来决定最后的分类结果。集成学习通过建立几个模型组合的来解决单一预测问题。集成学习的简单原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林的构建过程:

假设N表示训练用例(样本)个数,M表示特征数目,随机森林的构建过程如下:

 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集,并用未抽到的用例(样本)作预测,评估其误差。  对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据m个特征,计算其最佳的分裂方式。每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用。 重复上述步骤,构建另外一棵棵决策树,直到达到预定数目的一群决策树为止,即构建好了随机森林。其中,预选变量个数(m)和随机森林中树的个数是重要参数,对系统的调优非常关键。这些参数在调节随机森林模型的准确性方面也起着至关重要的作用。科学地使用这些指标,将能显著的提高随机森林模型工作效率。

 3、 逻辑回归

基本上,逻辑回归模型是监督分类算法族的成员之一。Logistic回归通过使用逻辑函数估计概率来测量因变量和自变量之间的关系。

逻辑回归与线性回归类似,但逻辑回归的结果只能有两个的值。如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。

逻辑函数中Y值的范围从0到1,是一个概率值。逻辑函数通常呈S型,曲线把图表分成两块区域,因此适合用于分类任务。

 比如上面的逻辑回归曲线图,显示了通过考试的概率与学习时间的关系,可以用来预测是否可以通过考试。

4、线性回归

所谓线性回归,就是利用数理统计中的回归分析,来确定两种或两种以上变量间,相互依赖的定量关系的一种统计分析方法。

线性回归(LinearRegression)可能是最流行的机器学习算法。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Leastofsquares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

5、朴素贝叶斯

朴素贝叶斯(NaiveBayes)是基于贝叶斯定理,即两个条件关系之间。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果。

朴素贝叶斯分类器是一种流行的统计技术,经典应用是过滤垃圾邮件。

6、神经网络

NeuralNetworks适合一个input可能落入至少两个类别里:NN由若干层神经元,和它们之间的联系组成。第一层是input层,最后一层是output层。在hidden层和output层都有自己的classifier。

input输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output层的节点上的分数代表属于各类的分数,下图例子得到分类结果为class1;同样的input被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights和bias,这也就是forwardpropagation。

7、K-均值

K-均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到K个聚类。K-均值用于无监督学习,因此,我们只需使用训练数据X,以及我们想要识别的聚类数量K。

先要将一组数据,分为三类,粉色数值大,黄色数值小。最开始先初始化,这里面选了最简单的3,2,1作为各类的初始值。剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别。欺诈检测中应用广泛,例如医疗保险和保险欺诈检测领域

8、支持向量机

要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离。

是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。

 应用于面部识别、文本分类等

9、K-最近邻算法

给一个新的数据时,离它最近的k个点中,哪个类别多,这个数据就属于哪一类。例子∶要区分“猫”和“狗”,通过“claws”和“sound”两个feature来判断的话,圆形和三角形是已知分类的了,那么这个“star”代表的是哪一类呢? 

 10、降维

降维(Dimensionalityreduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(PrincipalComponentAnalysis,PCA)是最流行的降维技术。

主成分分析通过将数据集压缩到低维线或超平面/子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。

整理了一份关深度学习和机器视觉的资料,有python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,+vx领取的内部资源,人工智能题库,大厂面试题学习大纲自学课程大纲还有200GAI资料大礼包免费送哦~有什么问题都可以来问我

欢迎大家扫码 获取AI免费视频资料

人工智能十大流行算法,通俗易懂讲明白

往期精彩文章回顾:

PyTorch手把手搭建神经网络(MNIST)

(Python教程)什么是机器学习、人工智能、深度学习,三者又是什么关系?

人工智能是什么?很多人都知道,但大多又都说不清楚。

事实上,人工智能已经存在于我们生活中很久了。

比如我们常常用到的邮箱,其中垃圾邮件过滤就是依靠人工智能;

比如每个智能手机都配备的指纹识别或人脸识别,也是用人工智能技术实现的;

比如疫情期间大规模使用的无人体温检测仪,同样也使用了人工智能;

但对很多人来讲,人工智能还是一个较为“高深”的技术,然而再高深的技术,也是从基础原理开始的。

人工智能领域中就流传着10大算法,它们的原理浅显,很早就被发现、应用,甚至你在中学时就学过,在生活中也都极为常见。

本文学堂君就为大家用最简单的语言来介绍目前最流行的10种人工智能的算法,让对人工智能感兴趣,或想要入门的同学,能有更为直观的了解。

1线性回归

线性回归(LinearRegression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x值)和数值结果(y值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Leastofsquares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

例如,简单线性回归,它有一个自变量(x轴)和一个因变量(y轴)

比如预测明年的房价涨幅、下一季度新产品的销量等等。听起来并不难,不过线性回归算法的难点并不在于得出预测值,而在于如何更精确。为了那个可能十分细微的数字,多少工程师为之耗尽了青春和头发。

2逻辑回归

逻辑回归(Logisticregression)与线性回归类似,但逻辑回归的结果只能有两个的值。如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。

逻辑函数中Y值的范围从0到1,是一个概率值。逻辑函数通常呈S型,曲线把图表分成两块区域,因此适合用于分类任务。

比如上面的逻辑回归曲线图,显示了通过考试的概率与学习时间的关系,可以用来预测是否可以通过考试。

逻辑回归经常被电商或者外卖平台用来预测用户对品类的购买偏好。

3决策树

如果说线性和逻辑回归都是把任务在一个回合内结束,那么决策树(DecisionTrees)就是一个多步走的动作,它同样用于回归和分类任务中,不过场景通常更复杂且具体。

举个简单例子,老师面对一个班级的学生,哪些是好学生?如果简单判断考试90分就算好学生好像太粗暴了,不能唯分数论。那面对成绩不到90分的学生,我们可以从作业、出勤、提问等几个方面分开讨论。

以上就是一个决策树的图例,其中每一个有分叉的圈称为节点。在每个节点上,我们根据可用的特征询问有关数据的问题。左右分支代表可能的答案。最终节点(即叶节点)对应于一个预测值。

每个特征的重要性是通过自顶向下方法确定的。节点越高,其属性就越重要。比如在上面例子中的老师就认为出勤率比做作业重要,所以出勤率的节点就更高,当然分数的节点更高。

4朴素贝叶斯

朴素贝叶斯(NaiveBayes)是基于贝叶斯定理,即两个条件关系之间。它测量每个类的概率,每个类的条件概率给出x的值。这个算法用于分类问题,得到一个二进制“是/非”的结果。看看下面的方程式。

朴素贝叶斯分类器是一种流行的统计技术,经典应用是过滤垃圾邮件。

当然,学堂君赌一顿火锅,80%的人没看懂上面这段话。(80%这个数字是学堂君猜的,但经验直觉就是一种贝叶斯式的计算。)

用非术语解释贝叶斯定理,就是通过A条件下发生B的概率,去得出B条件下发生A的概率。比如说,小猫喜欢你,有a%可能性在你面前翻肚皮,请问小猫在你面前翻肚皮,有多少概率喜欢你?

当然,这样做题,等于抓瞎,所以我们还需要引入其他数据,比如小猫喜欢你,有b%可能和你贴贴,有c%概率发出呼噜声。所以我们如何知道小猫有多大概率喜欢自己呢,通过贝叶斯定理就可以从翻肚皮,贴贴和呼噜的概率中计算出来。

猫:别算了,我不喜欢你

5支持向量机

支持向量机(SupportVectorMachine,SVM)是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为n维空间中的点,其中,n是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。

超平面与最近的类点之间的距离称为边距。最优超平面具有最大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离最大化。

所以支持向量机想要解决的问题也就是如何把一堆数据做出区隔,它的主要应用场景有字符识别、面部识别、文本分类等各种识别。

6K-最近邻算法(KNN)

K-最近邻算法(K-NearestNeighbors,KNN)非常简单。KNN通过在整个训练集中搜索K个最相似的实例,即K个邻居,并为所有这些K个实例分配一个公共输出变量,来对对象进行分类。

K的选择很关键:较小的值可能会得到大量的噪声和不准确的结果,而较大的值是不可行的。它最常用于分类,但也适用于回归问题。

用于评估实例之间相似性的距离可以是欧几里得距离(Euclideandistance)、曼哈顿距离(Manhattandistance)或明氏距离(Minkowskidistance)。欧几里得距离是两点之间的普通直线距离。它实际上是点坐标之差平方和的平方根。

KNN分类示例

KNN理论简单,容易实现,可用于文本分类、模式识别、聚类分析等。

7K-均值

K-均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到K个聚类。K-均值用于无监督学习,因此,我们只需使用训练数据X,以及我们想要识别的聚类数量K。

该算法根据每个数据点的特征,将每个数据点迭代地分配给K个组中的一个组。它为每个K-聚类(称为质心)选择K个点。基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。

生活中,K-均值在欺诈检测中扮演了重要角色,在汽车、医疗保险和保险欺诈检测领域中广泛应用。

8随机森林

随机森林(RandomForest)是一种非常流行的集成机器学习算法。这个算法的基本思想是,许多人的意见要比个人的意见更准确。在随机森林中,我们使用决策树集成(参见决策树)。

(a)在训练过程中,每个决策树都是基于训练集的引导样本来构建的。

(b)在分类过程中,输入实例的决定是根据多数投票做出的。

随机森林拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源、保留及流失,也可以用来预测疾病的风险和病患者的易感性。

9降维

由于我们今天能够捕获的数据量之大,机器学习问题变得更加复杂。这就意味着训练极其缓慢,而且很难找到一个好的解决方案。这一问题,通常被称为“维数灾难”(Curseofdimensionality)。

降维(Dimensionalityreduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(PrincipalComponentAnalysis,PCA)是最流行的降维技术。

主成分分析通过将数据集压缩到低维线或超平面/子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。

可以通过将所有数据点近似到一条直线来实现降维的示例。

10人工神经网络(ANN)

人工神经网络(ArtificialNeuralNetworks,ANN)可以处理大型复杂的机器学习任务。神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。在输入层和输出层之间,我们可以插入多个隐藏层。人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习。

人工神经网络的工作原理与大脑的结构类似。一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。通过对输入数据训练神经网络来学习输入和输出之间的关系。在训练阶段,系统可以访问正确的答案。

如果网络不能准确识别输入,系统就会调整权重。经过充分的训练后,它将始终如一地识别出正确的模式。

每个圆形节点表示一个人工神经元,箭头表示从一个人工神经元的输出到另一个人工神经元的输入的连接。

图像识别,就是神经网络中的一个著名应用。

现在,你已经了解了最流行的人工智能算法的基础介绍,并且,对它们的实际应用也有了一定认识。

总结:

我整理了一份关于pytorch、python基础,图像处理opencv自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,,加我Q群【856833272 】也可以领取的内部资源,人工智能题库,大厂面试题学习大纲自学课程大纲还有200G人工智能资料大礼包免费送哦~扫码加V免费领取资料.

 

 

 

人工智能常见算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(SupervisedLearning),无监督学习(UnsupervisedLearning)、半监督学习(Semi-supervisedLearning)和强化学习(ReinforcementLearning)四大类。

常见的监督学习算法包含以下几类:(1)人工神经网络(ArtificialNeuralNetwork)类:反向传播(Backpropagation)、波尔兹曼机(BoltzmannMachine)、卷积神经网络(ConvolutionalNeuralNetwork)、Hopfield网络(hopfieldNetwork)、多层感知器(MultilyerPerceptron)、径向基函数网络(RadialBasisFunctionNetwork,RBFN)、受限波尔兹曼机(RestrictedBoltzmannMachine)、回归神经网络(RecurrentNeuralNetwork,RNN)、自组织映射(Self-organizingMap,SOM)、尖峰神经网络(SpikingNeuralNetwork)等。(2)贝叶斯类(Bayesin):朴素贝叶斯(NaiveBayes)、高斯贝叶斯(GaussianNaiveBayes)、多项朴素贝叶斯(MultinomialNaiveBayes)、平均-依赖性评估(AveragedOne-DependenceEstimators,AODE)贝叶斯信念网络(BayesianBeliefNetwork,BBN)、贝叶斯网络(BayesianNetwork,BN)等。(3)决策树(DecisionTree)类:分类和回归树(ClassificationandRegressionTree,CART)、迭代Dichotomiser3(IterativeDichotomiser3,ID3),C4.5算法(C4.5Algorithm)、C5.0算法(C5.0Algorithm)、卡方自动交互检测(Chi-squaredAutomaticInteractionDetection,CHAID)、决策残端(DecisionStump)、ID3算法(ID3Algorithm)、随机森林(RandomForest)、SLIQ(SupervisedLearninginQuest)等。(4)线性分类器(LinearClassifier)类:Fisher的线性判别(Fisher’sLinearDiscriminant)线性回归(LinearRegression)、逻辑回归(LogisticRegression)、多项逻辑回归(MultionmialLogisticRegression)、朴素贝叶斯分类器(NaiveBayesClassifier)、感知(Perception)、支持向量机(SupportVectorMachine)等。

常见的无监督学习类算法包括:(1)人工神经网络(ArtificialNeuralNetwork)类:生成对抗网络(GenerativeAdversarialNetworks,GAN),前馈神经网络(FeedforwardNeuralNetwork)、逻辑学习机(LogicLearningMachine)、自组织映射(Self-organizingMap)等。(2)关联规则学习(AssociationRuleLearning)类:先验算法(AprioriAlgorithm)、Eclat算法(EclatAlgorithm)、FP-Growth算法等。(3)分层聚类算法(HierarchicalClustering):单连锁聚类(Single-linkageClustering),概念聚类(ConceptualClustering)等。(4)聚类分析(Clusteranalysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(FuzzyClustering)、K-means算法、K均值聚类(K-meansClustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。(5)异常检测(Anomalydetection)类:K最邻近(K-nearestNeighbor,KNN)算法,局部异常因子算法(LocalOutlierFactor,LOF)等。

常见的半监督学习类算法包含:生成模型(GenerativeModels)、低密度分离(Low-densitySeparation)、基于图形的方法(Graph-basedMethods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(DeepQNetwork)、策略梯度算法(PolicyGradients)、基于模型强化学习(ModelBasedRL)、时序差分学习(TemporalDifferentLearning)等。

常见的深度学习类算法包含:深度信念网络(DeepBeliefMachines)、深度卷积神经网络(DeepConvolutionalNeuralNetworks)、深度递归神经网络(DeepRecurrentNeuralNetwork)、分层时间记忆(HierarchicalTemporalMemory,HTM)、深度波尔兹曼机(DeepBoltzmannMachine,DBM)、栈式自动编码器(StackedAutoencoder)、生成对抗网络(GenerativeAdversarialNetworks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-classClassification)、多分类算法(Multi-classClassification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(AnomalyDetection)五种。1.二分类(Two-classClassification)(1)二分类支持向量机(Two-classSVM):适用于数据特征较多、线性模型的场景。(2)二分类平均感知器(Two-classAveragePerceptron):适用于训练时间短、线性模型的场景。(3)二分类逻辑回归(Two-classLogisticRegression):适用于训练时间短、线性模型的场景。(4)二分类贝叶斯点机(Two-classBayesPointMachine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-classDecisionForest):适用于训练时间短、精准的场景。(6)二分类提升决策树(Two-classBoostedDecisionTree):适用于训练时间短、精准度高、内存占用量大的场景(7)二分类决策丛林(Two-classDecisionJungle):适用于训练时间短、精确度高、内存占用量小的场景。(8)二分类局部深度支持向量机(Two-classLocallyDeepSVM):适用于数据特征较多的场景。(9)二分类神经网络(Two-classNeuralNetwork):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。常用的算法:(1)多分类逻辑回归(MulticlassLogisticRegression):适用训练时间短、线性模型的场景。(2)多分类神经网络(MulticlassNeuralNetwork):适用于精准度高、训练时间较长的场景。(3)多分类决策森林(MulticlassDecisionForest):适用于精准度高,训练时间短的场景。(4)多分类决策丛林(MulticlassDecisionJungle):适用于精准度高,内存占用较小的场景。(5)“一对多”多分类(One-vs-allMulticlass):取决于二分类器效果。

回归回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:(1)排序回归(OrdinalRegression):适用于对数据进行分类排序的场景。(2)泊松回归(PoissionRegression):适用于预测事件次数的场景。(3)快速森林分位数回归(FastForestQuantileRegression):适用于预测分布的场景。(4)线性回归(LinearRegression):适用于训练时间短、线性模型的场景。(5)贝叶斯线性回归(BayesianLinearRegression):适用于线性模型,训练数据量较少的场景。(6)神经网络回归(NeuralNetworkRegression):适用于精准度高、训练时间较长的场景。(7)决策森林回归(DecisionForestRegression):适用于精准度高、训练时间短的场景。(8)提升决策树回归(BoostedDecisionTreeRegression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。(1)层次聚类(HierarchicalClustering):适用于训练时间短、大数据量的场景。(2)K-means算法:适用于精准度高、训练时间短的场景。(3)模糊聚类FCM算法(FuzzyC-means,FCM):适用于精确度高、训练时间短的场景。(4)SOM神经网络(Self-organizingFeatureMap,SOM):适用于运行时间较长的场景。异常检测异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:(1)一分类支持向量机(One-classSVM):适用于数据特征较多的场景。(2)基于PCA的异常检测(PCA-basedAnomalyDetection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(InductiveTransferLearning)、直推式迁移学习(TransductiveTransferLearning)、无监督式迁移学习(UnsupervisedTransferLearning)、传递式迁移学习(TransitiveTransferLearning)等。

算法的适用场景:需要考虑的因素有:(1)数据量的大小、数据质量和数据本身的特点(2)机器学习要解决的具体业务场景中问题的本质是什么?(3)可以接受的计算时间是什么?(4)算法精度要求有多高?

有了算法,有了被训练的数据(经过预处理过的数据),那么多次训练(考验计算能力的时候到了)后,经过模型评估和算法人员调参后,会获得训练模型。当新的数据输入后,那么我们的训练模型就会给出结果。业务要求的最基础的功能就算实现了。

互联网产品自动化运维是趋势,因为互联网需要快速响应的特性,决定了我们对问题要快速响应、快速修复。人工智能产品也不例外。AI+自动化运维是如何工作的呢?

参考:《人工智能产品经理–AI时代PM修炼手册》作者:张竞宇

人工智能的算法有哪些AI常用算法

人工智能(AI)是一个非常广泛的领域,其中包含许多不同的算法和技术。以下是一些常见的人工智能算法:

人工智能的算法有哪些?

机器学习(MachineLearning):机器学习是人工智能领域的一个重要分支,其主要目的是通过利用统计学习理论和算法来训练模型,使得机器能够从数据中学习并不断优化自身的预测和决策能力。机器学习算法包括监督学习、无监督学习和半监督学习等。

深度学习(DeepLearning):深度学习是一种机器学习技术,通过建立深层神经网络模型,可以从大量的数据中进行学习和预测。深度学习被广泛应用于计算机视觉、自然语言处理、语音识别等领域。

自然语言处理(NaturalLanguageProcessing,NLP):自然语言处理是研究人工智能系统如何理解和处理人类语言的学科。自然语言处理涉及到文本预处理、语言分析、语言生成、语言理解等多个方面。

强化学习(ReinforcementLearning):强化学习是一种通过与环境互动来学习行为策略的学习方法。通过对不断变化的环境做出反应并获得反馈,强化学习算法可以逐步优化自己的行动策略。

遗传算法(GeneticAlgorithm):遗传算法是一种模拟自然选择和遗传机制的优化算法。通过从一个种群中选择和进化最适应的解决方案,遗传算法可以帮助人工智能系统找到最优解决方案。

支持向量机(SupportVectorMachine,SVM):支持向量机是一种常见的监督学习算法,通过将数据映射到高维空间中,将数据分成多个类别。支持向量机算法可以处理多维数据,具有较强的分类能力。

贝叶斯网络(BayesianNetwork):贝叶斯网络是一种用于表示变量之间条件依赖关系的概率图模型。贝叶斯网络可以用于预测、决策和诊断等领域,是一种广泛应用的人工智能算法。

总之,人工智能领域的算法种类繁多,随着技术的不断发展和深入研究,新的算法不断涌现。除了上述几种常见的算法,还有许多其他的算法,如决策树、神经进化算法、随机森林等等。

免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)

目录

一、人工智能免费视频课程和项目

二、人工智能必读书籍

三、人工智能论文合集

四、机器学习+计算机视觉基础算法教程

 五、深度学习机器学习速查表(共26张)

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇