人工智能
人工智能(英文名:ArtificialIntelligence,英文缩写:AI)。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。[1]
人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
人工智能与设计(1):人工智能的发展和定义
本文是主题为“人工智能与设计”系列文章的第一篇,主要讲述现在人工智能的基础知识,enjoy~
今年年初出于个人兴趣,我开始了对人工智能的研究。为了更好理解人工智能和设计的关系,我开始学习机器学习、深度学习、Alexa开发等知识,从当初觉得人工智能只会让大部分设计师失业,到现在觉得人工智能只是一个设计的辅助工具,也算是成长了不少。
这次希望能将积累的知识写成一本电子书,没别的,因为字太多,更重要的是这样很酷。由写作时间可能太长,互联网每天都在变化,一些比较前沿的思考可能转眼成为现实,所以先把前四章陆续发出来。
前四章主要讲了现在人工智能的基础知识、底层设计、互联网产品设计以及人工智能与设计的关系,后面会通过3~4章详细分析人工智能对不同行业设计的影响,目前考虑的领域是室内设计、公共设计和服务设计。
人工智能的发展历史说起人工智能这词,不得不提及人工智能的历史。人工智能的概念主要由AlanTuring提出:机器会思考吗?如果一台机器能够与人类对话而不被辨别出其机器的身份,那么这台机器具有智能的特征。同年,AlanTuring还预言了存有一定的可能性可以创造出具有真正智能的机器。
说明:AlanTuring(1912.6.23-1954.6.7)曾协助英国军队破解了德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。因提出一种用于判定机器是否具有智能的试验方法,即图灵试验,被后人称为计算机之父和人工智能之父。
AI诞生1956年,在达特茅斯学院举行的一次会议上,不同领域(数学,心理学,工程学,经济学和政治学)的科学家正式确立了人工智能为研究学科。
2006年达特茅斯会议当事人重聚,左起:TrenchardMore、JohnMcCarthy、Marvin Minsky、OliverSelfridge、RaySolomonoff
第一次发展高潮(1955年—1974年)
达特茅斯会议之后是大发现的时代。对很多人来讲,这一阶段开发出来的程序堪称神奇:计算机可以解决代数应用题、证明几何定理、学习和使用英语。在众多研究当中,搜索式推理、自然语言、微世界在当时最具影响力。
大量成功的AI程序和新的研究方向不断涌现,研究学者认为具有完全智能的机器将在二十年内出现并给出了如下预言:
1958年,H.A.Simon,AllenNewell:“十年之内,数字计算机将成为国际象棋世界冠军。” “十年之内,数字计算机将发现并证明一个重要的数学定理。”
1965年,H.A.Simon:“二十年内,机器将能完成人能做到的一切工作。”
1967年,MarvinMinsky:“一代之内……创造“人工智能”的问题将获得实质上的解决。”
1970年,MarvinMinsky:“在三到八年的时间里我们将得到一台具有人类平均智能的机器。”
美国政府向这一新兴领域投入了大笔资金,每年将数百万美元投入到麻省理工学院、卡耐基梅隆大学、爱丁堡大学和斯坦福大学四个研究机构,并允许研究学者去做任何感兴趣的方向。
当时主要成就:
人工神经网络在30-50年代被提出,1951年MarvinMinsky制造出第一台神经网络机贝尔曼公式(增强学习雏形)被提出感知器(深度学习雏形)被提出搜索式推理被提出自然语言被提出首次提出人工智能拥有模仿智能的特征,懂得使用语言,懂得形成抽象概念并解决人类现存问题ArthurSamuel在五十年代中期和六十年代初开发的国际象棋程序,棋力已经可以挑战具有相当水平的业余爱好者机器人SHAKEY项目受到了大力宣传,它能够对自己的行为进行“推理”;人们将其视作世界上第一台通用机器人微世界的提出第一次寒冬(1974年—1980年)
70年代初,AI遭遇到瓶颈。研究学者逐渐发现,虽然机器拥有了简单的逻辑推理能力,但遭遇到当时无法克服的基础性障碍,AI停留在“玩具”阶段止步不前,远远达不到曾经预言的完全智能。由于此前的过于乐观使人们期待过高,当AI研究人员的承诺无法兑现时,公众开始激烈批评AI研究人员,许多机构不断减少对人工智能研究的资助,直至停止拨款。
当时主要问题:
计算机运算能力遭遇瓶颈,无法解决指数型爆炸的复杂计算问题常识和推理需要大量对世界的认识信息,计算机达不到“看懂”和“听懂”的地步无法解决莫拉维克悖论无法解决部分涉及自动规划的逻辑问题神经网络研究学者遭遇冷落说明:莫拉维克悖论:如果机器像数学天才一样下象棋,那么它能模仿婴儿学习又有多难呢?然而,事实证明这是相当难的。
第二次发展高潮(1980年—1987年)
80年代初,一类名为“专家系统”的AI程序开始为全世界的公司所采纳,人工智能研究迎来了新一轮高潮。在这期间,卡耐基梅隆大学为DEC公司设计的XCON专家系统能够每年为DEC公司节省数千万美金。日本经济产业省拨款八亿五千万美元支持第五代计算机项目。其目标是造出能够与人对话、翻译语言、解释图像、能够像人一样推理的机器。其他国家也纷纷作出了响应,并对AI和信息技术的大规模项目提供了巨额资助。
说明:专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。由于专家系统仅限于一个很小的领域,从而避免了常识问题。“知识处理”随之也成为了主流AI研究的焦点。
当时主要成就:
专家系统的诞生AI研究人员发现智能可能需要建立在对分门别类的大量知识的多种处理方法之上BP算法实现了神经网络训练的突破,神经网络研究学者重新受到关注AI研究人员首次提出:机器为了获得真正的智能,机器必须具有躯体,它需要有感知、移动、生存,与这个世界交互的能力。感知运动技能对于常识推理等高层次技能是至关重要的,基于对事物的推理能力比抽象能力更为重要,这也促进了未来自然语言、机器视觉的发展。第二次寒冬(1987年—1993年)
1987年,AI硬件的市场需求突然下跌。科学家发现,专家系统虽然很有用,但它的应用领域过于狭窄,而且更新迭代和维护成本非常高。同期美国Apple和IBM生产的台式机性能不断提升,个人电脑的理念不断蔓延;日本人设定的“第五代工程”最终也没能实现。人工智能研究再次遭遇了财政困难,一夜之间这个价值五亿美元的产业土崩瓦解。
当时主要问题:
受到台式机和“个人电脑”理念的冲击影响商业机构对AI的追捧和冷落,使AI化为泡沫并破裂计算机性能瓶颈仍无法突破仍然缺乏海量数据训练机器第三次发展高潮(1993年至今)
在摩尔定律下,计算机性能不断突破。云计算、大数据、机器学习、自然语言和机器视觉等领域发展迅速,人工智能迎来第三次高潮。
摩尔定律起始于GordonMoore在1965年的一个预言,当时他看到因特尔公司做的几款芯片,觉得18到24个月可以把晶体管体积缩小一半,个数可以翻一番,运算处理能力能翻一倍。没想到这么一个简单的预言成真了,下面几十年一直按这个节奏往前走,成为了摩尔定律。
主要事件:
1997年:IBM的国际象棋机器人深蓝战胜国际象棋世界冠军卡斯帕罗夫2005年:Stanford开发的一台机器人在一条沙漠小径上成功地自动行驶了131英里,赢得了DARPA挑战大赛头奖;2006年:GeoffreyHinton提出多层神经网络的深度学习算法;EricSchmidt在搜索引擎大会提出“云计算”概念2010年:SebastianThrun领导的谷歌无人驾驶汽车曝光,创下了超过16万千米无事故的纪录2011年:IBMWaston参加智力游戏《危险边缘》,击败最高奖金得主BradRutter和连胜纪录保持者KenJennings;苹果发布语音个人助手Siri;NestLab发布第一代智能恒温器Nest。它可以了解用户的习惯,并相应自动地调节温度2012年:Google发布个人助理GoogleNow2013年:深度学习算法在语音和视觉识别率获得突破性进展2014年:微软亚洲研究院发布人工智能小冰聊天机器人和语音助手Cortana;百度发布DeepSpeech语音识别系统2015年:Facebook发布了一款基于文本的人工智能助理“M”2016年:GoogleAlphaGo以比分4:1战胜围棋九段棋手李世石;Chatbots这个概念开始流行;Google发布为机器学习定制的第一代专用芯片TPU;Google发布语音助手Assistant2017年:AlphaGO在围棋网络对战平台以60连胜击败世界各地高手;Google开源深度学习系统Tensorflow1.0正式发布;GoogleAlphaGo以比分3:0完胜世界第一围棋九段棋手柯洁;默默深耕机器学习和机器视觉的苹果在WWDC上发布CoreML,ARKit等组件;Google发布了ARCoreSDK;百度AI开发者大会正式发布Dueros语音系统,无人驾驶平台Apollo1.0自动驾驶平台;华为发布全球第一款AI移动芯片麒麟970;iPhoneX配备前置3D感应摄像头(TrueDepth),脸部识别点达到3W个,具备人脸识别、解锁和支付等功能;配备的A11Bionic神经引擎使用双核设计,每秒可达到运算6000亿次很多专家学者对此次人工智能浪潮给予了肯定,认为这次人工智能浪潮能引起第四次工业革命。人工智能逐渐开始在保险,金融等领域开始渗透,在未来健康医疗、交通出行、销售消费、金融服务、媒介娱乐、生产制造,到能源、石油、农业、政府……所有垂直产业都将因人工智能技术的发展而受益,那么我们现在讲的人工智能究竟是什么?
人工智能是什么?在60年代,AI研究人员认为人工智能是一台通用机器人,它拥有模仿智能的特征,懂得使用语言,懂得形成抽象概念,能够对自己的行为进行推理,它可以解决人类现存问题。由于理念、技术和数据的限制,人工智能在模式识别、信息表示、问题解决和自然语言处理等不同领域发展缓慢。
80年代,AI研究人员转移方向,认为人工智能对事物的推理能力比抽象能力更重要,机器为了获得真正的智能,机器必须具有躯体,它需要感知、移动、生存,与这个世界交互。为了积累更多推理能力,AI研究人员开发出专家系统,它能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。
1997年,IBM的超级计算机深蓝在国际象棋领域完胜整个人类代表卡斯帕罗夫;相隔20年,Google的AlphaGo在围棋领域完胜整个人类代表柯洁。划时代的事件使大部分AI研究人员确信人工智能的时代已经降临。
可能大家觉得国际象棋和围棋好像没什么区别,其实两者的难度不在同一个级别。国际象棋走法的可能性虽多,但棋盘的大小和每颗棋子的规则大大限制了赢的可能性。深蓝可以通过蛮力看到所有的可能性,而且只需要一台计算机基本上就可以搞定。相比国际象棋,围棋很不一样。围棋布局走法的可能性可能要比宇宙中的原子数量还多,几十台计算机的计算能力都搞不定,所以机器下围棋想赢非常困难,包括围棋专家和人工智能领域的专家们也纷纷断言:计算机要在围棋领域战胜人类棋手,还要再等100年。结果机器真的做到了,并据说AlphaGo拥有围棋十几段的实力(目前围棋棋手最高是9段)。
那么深蓝和AlphaGo在本质上有什么区别?简单点说,深蓝的代码是研究人员编程的,知识和经验也是研究人员传授的,所以可以认为与卡斯帕罗夫对战的深蓝的背后还是人类,只不过它的运算能力比人类更强,更少失误。而AlphaGo的代码是自我更新的,知识和经验是自我训练出来的。与深蓝不一样的是,AlphaGo拥有两颗大脑,一颗负责预测落子的最佳概率,一颗做整体的局面判断,通过两颗大脑的协同工作,它能够判断出未来几十步的胜率大小。所以与柯洁对战的AlphaGo的背后是通过十几万盘的海量训练后,拥有自主学习能力的人工智能系统。
这时候社会上出现了不同的声音:“人工智能会思考并解决所有问题”、“人工智能会抢走人类的大部分工作!”“人工智能会取代人类吗?”那么已来临的人工智能究竟是什么?
人工智能目前有两个定义,分别为强人工智能和弱人工智能。
普通群众所遐想的人工智能属于强人工智能,它属于通用型机器人,也就是60年代AI研究人员提出的理念。它能够和人类一样对世界进行感知和交互,通过自我学习的方式对所有领域进行记忆、推理和解决问题。这样的强人工智能需要具备以下能力:
存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力知识表示的能力,包括常识性知识的表示能力规划能力学习能力使用自然语言进行交流沟通的能力将上述能力整合起来实现既定目标的能力说明:以上结论借鉴李开复所著的《人工智能》一书。
这些能力在常人看来都很简单,因为自己都具备着;但由于技术的限制,计算机很难具备以上能力,这也是为什么现阶段人工智能很难达到常人思考的水平。
由于技术未成熟,现阶段的人工智能属于弱人工智能,还达不到大众所遐想的强人工智能。弱人工智能也称限制领域人工智能或应用型人工智能,指的是专注于且只能解决特定领域问题的人工智能,例如AlphaGo,它自身的数学模型只能解决围棋领域的问题,可以说它是一个非常狭小领域问题的专家系统,以及它很难扩展到稍微宽广一些的知识领域,例如如何通过一盘棋表达出自己的性格和灵魂。
弱人工智能和强人工智能在能力上存在着巨大鸿沟,弱人工智能想要进一步发展,必须具备以下能力:
跨领域推理拥有抽象能力“知其然,也知其所以然”拥有常识拥有审美能力拥有自我意识和情感说明:以上结论借鉴李开复所著的《人工智能》一书。
在计算机理念来说,人工智能是用来处理不确定性以及管理决策中的不确定性。意思是通过一些不确定的数据输入来进行一些具有不确定性的决策。从目前的技术实现来说,人工智能就是深度学习,它是06年由GeoffreyHinton所提出的机器学习算法,该算法可以使程序拥有自我学习和演变的能力。
机器学习和深度学习是什么?机器学习简单点说就是通过一个数学模型将大量数据中有用的数据和关系挖掘出来。机器学习建模采用了以下四种方法:
监督学习与数学中的函数有关。它需要研究学者不断地标注数据从而提高模型的准确性,挖掘出数据间的关系并给出结果。非监督学习与现实中的描述(例如哪些动物有四条腿)有关。它可以在没有额外信息的情况下,从原始数据中提取模式和结构的任务,它与需要标签的监督学习相互对立。半监督学习,它可以理解为监督学习和半监督学习的结合。增强学习,它的大概意思是通过联想并对比未来几步所带来的好处而决定下一步是什么。目前机器学习以监督学习为主。
深度学习属于机器学习下面的一条分支。它能够通过多层神经网络以及使用以上四种方法,不断对自身模型进行自我优化,从而发现出更多优质的数据以及联系。
目前的AlphaGo正是采用了深度学习算法击败了人类世界冠军,更重要的是,深度学习促进了人工智能其他领域如自然语言和机器视觉的发展。目前的人工智能的发展依赖深度学习,这句话没有任何问题。
人工智能基础能力在了解人工智能基础能力前,我们先聊聊更底层的东西——数据。计算机数据分为两种,结构化数据和非结构化数据。结构化数据是指具有预定义的数据模型的数据,它的本质是将所有数据标签化、结构化,后续只要确定标签,数据就能读取出来,这种方式容易被计算机理解。非结构化数据是指数据结构不规则或者不完整,没有预定义的数据模型的数据。非结构化数据格式多样化,包括了图片、音频、视频、文本、网页等等,它比结构化信息更难标准化和理解。
音频、图片、文本、视频这四种载体可以承载着来自世界万物的信息,人类在理解这些内容时毫不费劲;对于只懂结构化数据的计算机来说,理解这些非结构化内容比登天还难,这也就是为什么人与计算机交流时非常费劲。
全世界有80%的数据都是非结构化数据,人工智能想要达到看懂、听懂的状态,必须要把非结构化数据这块硬骨头啃下来。学者在深度学习的帮助下在这领域取得了突破性成就,这成就为人工智能其他各种能力奠定了基础。
如果将人工智能比作一个人,那么人工智能应该具有记忆思考能力,输入能力如视觉、听觉、嗅觉、味觉以及触觉,以及输出能力如语言交流、躯体活动。以上能力对相应的术语为:深度学习、知识图谱、迁移学习、自然语言处理、机器视觉、语音识别、语音合成(触觉、嗅觉、味觉在技术研究上暂无商业成果,躯体活动更多属于机器人领域,不在文章中过多介绍)
简单点说,知识图谱就是一张地图。它从不同来源收集信息并加以整理,每个信息都是一个节点,当信息之间有关系时,相关节点会建立起联系,众多信息节点逐渐形成了图。知识图谱有助于信息存储,更重要的是提高了搜索信息的速度和质量。
迁移学习把已学训练好的模型参数迁移到新的模型来帮助新模型训练数据集。由于大部分领域都没有足够的数据量进行模型训练,迁移学习可以将大数据的模型迁移到小数据上,实现个性化迁移,如同人类思考时使用的类比推理。迁移学习有助于人工智能掌握更多知识。
自然语言处理是一门融语言学、计算机科学、数学于一体的学科,它是人工智能的耳朵-语音识别和嘴巴-语音合成的基础。计算机能否理解人类的思想,首先要理解自然语言,其次拥有广泛的知识,以及运用这些知识的能力。自然语言处理的主要范畴非常广,包括了语音合成、语音识别、语句分词、词性标注、语法分析、语句分析、机器翻译、自动摘要等等、问答系统等等。
机器视觉通过摄影机和计算机代替人的眼睛对目标进行识别、跟踪和测量,并进一步对图像进行处理。这是一门研究如何使机器“看懂”的技术,是人工智能最重要的输入方式之一。如何通过摄像头就能做到实时、准确识别外界状况,这是人工智能的瓶颈之一,深度学习在这方面帮了大忙。现在热门的人脸识别、无人驾驶等技术都依赖于机器视觉技术。
语音识别的目的是将人类的语音内容转换为相应的文字。机器能否与人类自然交流的前提是机器能听懂人类讲什么,语音识别也是人工智能的最重要输入方式之一。由于不同地区有着不同方言和口音,这对于语音识别来说都是巨大的挑战。目前百度、科大讯飞等公司的语音识别技术在普通话上的准确率已达到97%,但方言准确率还有待提高。
目前大部分的语音合成技术是利用在数据库内的许多已录好的语音连接起来,但由于缺乏对上下文的理解以及情感的表达,朗读效果很差。现在百度和科大讯飞等公司在语音合成上有新的成果:16年3月百度语音合成了张国荣声音与粉丝互动;17年3月本邦科技利用科大讯飞的语音合成技术,成功帮助小米手机实现了一款内含“黑科技”的营销活动H5。它们的主要技术是通过对张国荣、马东的语音资料进行语音识别,提取该人的声纹和说话特征,再通过自然语言处理对讲述的内容进行情绪识别,合成出来的语音就像本人在和你对话。新的语音合成技术不再被数据库内的录音所限制语言和情感的表达。
经过多年的人工智能研究,人工智能的主要发展方向分为:计算智能、感知智能、认知智能,这一观点也得到业界的广泛认可。
计算智能是以生物进化的观点认识和模拟智能。有学者认为,智能是在生物的遗传、变异、生长以及外部环境的自然选择中产生的。在用进废退、优胜劣汰的过程中,适应度高的(头脑)结构被保存下来,智能水平也随之提高。机器借助大自然规律的启示设计出具有结构演化能力和自适应学习能力的智能。计算智能算法主要包括神经计算、模糊计算和进化计算三大部分,神经网络和遗传算法的出现,使得机器的运算能力大幅度提升,能够更高效、快速处理海量的数据。计算智能是人工智能的基础,AlphaGo是计算智能的代表。
感知智能是以视觉、听觉、触觉等感知能力辅助机器,让机器能听懂我们的语言、看懂世界万物。相比起人类的感知能力,机器可以通过传感器获取更多信息,例如温度传感器、湿度传感器、红外雷达、激光雷达等等。感知智能也是人工智能的基础,机器人、自动驾驶汽车是感知智能的代表。
认知智能是指机器具有主动思考和理解的能力,不用人类事先编程就可以实现自我学习,有目的推理并与人类自然交互。人类有语言,才有概念、推理,所以概念、意识、观念等都是人类认知智能的表现,机器实现以上能力还有漫长的路需要探索。
在认知智能的帮助下,人工智能通过发现世界和历史上海量的有用信息,并洞察信息间的关系,不断优化自己的决策能力,从而拥有专家级别的实力,辅助人类做出决策。认知智能将加强人和人工智能之间的互动,这种互动是以每个人的偏好为基础的。认知智能通过搜集到的数据,例如地理位置、浏览历史、可穿戴设备数据和医疗记录等等,为不同个体创造不同的场景。认知系统也会根据当前场景以及人和机器的关系,采取不同的语气和情感进行交流。
假如能像设想的一样实现认知智能,那么底层平台必须足够宽广和灵活,以便在各领域甚至跨领域得到应用。因此研发人员需要从全局性出发,打造这个健壮的底层平台,它应该包括机器学习、自然语言处理、语音和图像识别、人机交互等技术,便于上层应用开发者的开发和使用。
下一篇文章会从设计底层平台的角度来阐述个人的思考。
阅读资料:1、人工智能史
https://zh.wikipedia.org/wiki/人工智能史AlanTuringhttps://zh.wikipedia.org/wiki/艾伦·图灵科普AI之60年前的达特茅斯会议与AI缘起https://tech.163.com/16/0313/12/BI1P1CLI00094P0U.html2、人工神经网络
https://baike.baidu.com/item/人工神经网络
3、深度学习
https://baike.baidu.com/item/深度学习
4、自然语言
https://baike.baidu.com/item/自然语言
5、TensorFlow
https://baike.baidu.com/link?url=dO_lFqvg6FQLYVaQKcwnlol1noc-EgdfIGbG6pQUo481iBQQkXSC8ZtFdAZ7II2SXyvG-mrTu34UuRFGdb0xvu2gmiZL02Sm6X4zOKiJrJ_
6、知识图谱
https://www.jiqizhixin.com/articles/2017-03-20
7、《人工智能》-李开复、王咏刚著
https://item.jd.com/12169266.html
8、小米《奇葩说》花式广告大赛
http://w.benbun.com/xiaomi/koubo/?state=d81c977eeb74e8d8783dc94e39fe1972&code=1abbb176039771a76583804409fb3354
以上就是第一章的内容。
相关阅读人工智能与设计(2):面向用户的人工智能系统底层设计
人工智能与设计(3):人工智能时代下交互设计的改变
人工智能与设计(4):人工智能对设计的影响
作者:薛志荣(微信公众号:薛志荣),百度交互设计师,二年级生
本文由@薛志荣原创发布于人人都是产品经理。未经许可,禁止转载。
作者:薛志荣(微信公众号:薛志荣),百度交互设计师,二年级生
本文由@薛志荣原创发布于人人都是产品经理。未经许可,禁止转载。
人工智能可能有自主意识了吗
➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术
➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互
➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系
➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”
今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。
LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。
为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。
事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?
人工智能自主意识之辨勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。
受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。
至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。
清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”
中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。
被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。
这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。
当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。
但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。
段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。
若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。
不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。
若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。
段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。
但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”
换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。
郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”
技术换道有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。
据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。
一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。
从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。
梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”
不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。
谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。
郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。
梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。
相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。
这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。
“人工智能觉醒”背后有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。
梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”
据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。
这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”
梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”
我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。
中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”
在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。
毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。
从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。
为了人机友好的未来确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。
薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。
梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。
“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。
因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。
与其对立的观点则认为,目前这一担忧为时尚早。
“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。
商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。
郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”
在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”
编辑:李华山
2022年08月16日07:42:05